CN116352108A - 一种低缺陷硬质合金的激光增材制造方法 - Google Patents

一种低缺陷硬质合金的激光增材制造方法 Download PDF

Info

Publication number
CN116352108A
CN116352108A CN202310267889.9A CN202310267889A CN116352108A CN 116352108 A CN116352108 A CN 116352108A CN 202310267889 A CN202310267889 A CN 202310267889A CN 116352108 A CN116352108 A CN 116352108A
Authority
CN
China
Prior art keywords
powder
spherical
hard alloy
laser
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310267889.9A
Other languages
English (en)
Inventor
王海滨
宋晓艳
邢明
赵治
刘雪梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202310267889.9A priority Critical patent/CN116352108A/zh
Publication of CN116352108A publication Critical patent/CN116352108A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种低缺陷硬质合金的激光增材制造方法,属于硬质合金增材制造技术领域。首先对WC‑Co复合粉末进行团聚造粒,然后与团聚造粒后的Co粉进行机械混合,采用选区激光熔化设备对上述混合粉末进行逐层打印成形,利用混合粉末中含有聚集态的Co熔化后填充粉末颗粒间的孔洞,降低凝固时金属陶瓷相间的应力梯度,从而打印得到低缺陷、且综合力学性能良好的异形硬质合金工件。

Description

一种低缺陷硬质合金的激光增材制造方法
技术领域
本发明属于硬质合金增材制造技术领域,具体涉及一种利用激光3D打印一步制备无显微裂纹、少孔隙的硬质合金工件的工艺方法。
背景技术
以WC-Co为主要成分的硬质合金是现代制造业不可或缺的工具材料,被誉为“工业的牙齿”。传统的制造硬质合金零部件的工艺路线主要包括“粉末冶金成形”和“减材制造”两道工序,即首先将掺入了有机粘结剂的WC、Co等原料粉末压制成具有一定形状的坯体,然后在高温下烧结成形,最后再进行磨削加工,使其形状、尺寸及表面质量符合设计要求。现有方法在制备形状规则的硬质合金零件上具有技术成熟、易规模化生产的优势,但是模压成形难以获得外形复杂或具有镂空结构的坯体,且烧结后的硬质合金硬度极高,进一步的减材加工非常困难,这极大制约了硬质合金材料在需求高硬度、高强韧性的异形构件中的应用。
近些年发展起来的3D打印技术可以实现形状结构复杂的硬质合金零部件的快速近净成形。选区激光熔化技术是打印异形硬质合金零件较常用的方法之一,其主要原理是利用高能激光束根据轮廓数据逐层选择性地熔化金属或金属-陶瓷粉末,通过逐层铺粉、逐层熔化凝固堆积的方式制造三维实体零件。然而,通过选区激光熔化打印硬质合金时,由于陶瓷相WC和金属相Co在熔点、热膨胀系数上存在显著差异,打印件中极易产生微裂纹、孔洞等组织缺陷,难以获得高的力学性能。尽管通过后续热处理可去除这些缺陷,改善合金的性能,但处理工序的增加削弱了3D打印工艺的优势,如何一步打印得到组织致密、综合性能良好的硬质合金工件是本领域面临的重要挑战。
针对上述问题,本发明从3D打印粉末结构设计及打印工艺上创新,提出了一种基于选区激光熔化工艺打印制备几乎无缺陷的硬质合金块材的方法,即调控Co在打印粉末中的聚集状态,降低冷却时金属-陶瓷相间的应力梯度,提升熔融Co的流动性以充分填充粉末颗粒间的孔洞,从而打印获得低缺陷的硬质合金零件。
发明内容
本发明提供的制备方法的工艺流程和原理是:首先对WC-Co复合粉末进行团聚造粒,然后与团聚造粒后的Co粉进行机械混合,采用选区激光熔化设备对上述混合粉末进行逐层打印成形,利用混合粉末中含有聚集态的Co熔化后填充粉末颗粒间的孔洞,降低凝固时金属陶瓷相间的应力梯度,从而打印得到低缺陷、且综合力学性能良好的异形硬质合金工件。
本发明提供的一种低缺陷硬质合金的激光增材制造方法,其特征在于,包括以下步骤:
(1)以三氧化钨、四氧化三钴、炭黑和聚乙二醇为原料,按最终反应合成的WC-Co复合粉末中Co含量3%-10%、总碳含量5.5%-5.9%进行配料,以无水乙醇为介质,原料经充分湿磨、干燥后冷压成直径在20-40mm、高度在10-30mm的圆柱坯体,然后置于真空炉内于1000-1100℃进行化学反应,将反应得到的圆柱块体在搅拌研磨机中以无水乙醇为介质球磨10-15小时,干燥后即得到平均粒径在0.1-0.5μm的WC-Co复合粉末;
(2)利用高速离心雾化干燥工艺对上述WC-Co复合粉以及粒径小于1.0微米的纯Co粉分别进行团聚造粒,过筛后获得粒径在5-38μm的球形WC-Co复合粉末和球形Co粉;
(3)将球形WC-Co复合粉末与球形Co粉按比例进行充分的机械搅拌直至混合均匀,其中Co元素在混合粉末中的总质量占比为10%-15%(包括WC-Co复合粉末中的Co与球形Co粉的Co);
(4)以上述混合后的粉末为原料,采用选区激光熔化工艺进行逐层铺粉打印,激光束斑尺寸为100μm,激光功率为200-260W,激光扫描速率为550-700mm/s,铺粉厚度为30μm,根据上述工艺即打印得到低缺陷密度的硬质合金零件。
本发明方法的技术特色和优势主要有:(1)本发明基于选区激光熔化工艺直接加热粉末,可实现硬质合金零件的一次性高精度成形,并能得到无裂纹和几乎无孔洞的组织结构;(2)以处于聚集态的Co部分替代WC-Co复合粉中均匀分布的Co,在合适的打印工艺参数下,聚集态Co的熔化能有效填充粉末颗粒间的孔洞,降低凝固时金属陶瓷相间的应力梯度,从而制备得到低缺陷、且综合力学性能良好的异形硬质合金零件;(3)本发明提出的3D打印粉末结构设计和激光打印工艺的组合方案解决了金属陶瓷复合材料在打印时难以去除孔洞和裂纹等组织缺陷的技术难题,方法可操作性强、易于实现规模化。
附图说明
图1为本发明制备的球形WC-Co粉末和球形Co粉的扫描电镜形貌;其中,(a)为实施例1制备的球形WC-Co粉末的扫描电镜形貌,(b)为施例1制备的球形Co粉的扫描电镜形貌;
图2为本发明打印制备的硬质合金工件的扫描电镜显微组织;其中,(a)为实施例1打印制备的硬质合金工件的扫描电镜显微组织,(b)为实施例2打印制备的硬质合金工件的扫描电镜显微组织,(c)实施例3打印制备的硬质合金工件的扫描电镜显微组织;
表1为本发明打印制备的硬质合金工件的致密性和显微硬度。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
以三氧化钨、四氧化三钴、炭黑和聚乙二醇为原料,按最终反应合成的WC-Co复合粉末中Co含量为10%、总碳含量为5.5%进行配料,以无水乙醇为介质,原料经充分湿磨、干燥后冷压成直径在40mm、高度在10mm的圆柱坯体,然后置于真空炉内于1100℃进行化学反应,将反应得到的圆柱块体球磨15小时,以无水乙醇为介质,干燥后即得到平均粒径在0.1-0.5μm的WC-Co复合粉末;利用高速离心雾化干燥工艺对上述WC-Co复合粉以及粒径小于1.0微米的纯Co粉分别进行团聚造粒,过筛后获得粒径在5-38μm的球形WC-Co复合粉末和球形Co粉;将球形WC-Co复合粉末与球形Co粉按比例进行充分的机械搅拌直至混合均匀,其中Co元素在混合粉末中的总质量占比为15%;以上述混合后的粉末为原料,采用选区激光熔化工艺进行逐层打印,激光束斑尺寸为100μm,激光功率为260W,激光扫描速率为700mm/s,根据上述工艺即打印得到所设计的无缺陷的硬质合金零件。图1中(a)和(b)分别为实施例1制备的球形WC-Co粉末和球形Co粉的扫描电镜形貌。图2中(a)为实施例1打印获得的硬质合金工件的扫描电镜显微组织。实施例1打印制备的硬质合金工件的致密性和显微硬度列于表1中。
实施例2
以三氧化钨、四氧化三钴、炭黑和聚乙二醇为原料,按最终反应合成的WC-Co复合粉末中Co含量为7%、总碳含量在5.7%进行配料,以无水乙醇为介质,原料经充分湿磨、干燥后冷压成直径在30mm、高度在20mm的圆柱坯体,然后置于真空炉内于1050℃进行化学反应,将反应得到的圆柱块体球磨12小时,以无水乙醇为介质,干燥后即得到平均粒径在0.1-0.5μm的WC-Co复合粉末;利用高速离心雾化干燥工艺对上述WC-Co复合粉以及粒径小于1.0微米的纯Co粉分别进行团聚造粒,过筛后获得粒径在5-38μm的球形WC-Co复合粉末和球形Co粉;将球形WC-Co复合粉末与球形Co粉按比例进行充分的机械搅拌直至混合均匀,其中Co元素在混合粉末中的总质量占比为12%;以上述混合后的粉末为原料,采用选区激光熔化工艺进行逐层打印,激光束斑尺寸为100μm,激光功率为230W,激光扫描速率为620mm/s,根据上述工艺即打印得到所设计的无缺陷的硬质合金零件。图2中(b)为实施例2打印获得的硬质合金工件的扫描电镜显微组织。实施例2打印制备的硬质合金工件的致密性和力学性能列于表1中。
实施例3
以三氧化钨、四氧化三钴、炭黑和聚乙二醇为原料,按最终反应合成的WC-Co复合粉末中Co含量为3%、总碳含量在5.9%进行配料,以无水乙醇为介质,原料经充分湿磨、干燥后冷压成直径在20mm、高度在30mm的圆柱坯体,然后置于真空炉内于1000℃进行化学反应,将反应得到的圆柱块体球磨10小时,以无水乙醇为介质,干燥后即得到平均粒径在0.1-0.5μm的WC-Co复合粉末;利用高速离心雾化干燥工艺对上述WC-Co复合粉以及平均粒径为0.6-1.0微米的纯Co粉分别进行团聚造粒,过筛后获得粒径在5-38μm的球形WC-Co复合粉末和球形Co粉;将球形WC-Co复合粉末与球形Co粉按比例进行充分的机械搅拌直至混合均匀,其中Co元素在混合粉末中的总质量占比为10%;以上述混合后的粉末为原料,采用选区激光熔化工艺进行逐层打印,激光束斑尺寸为100μm,激光功率为200W,激光扫描速率为550mm/s,根据上述工艺即打印得到所设计的无缺陷的硬质合金零件。图2中(c)为实施例3打印获得的硬质合金工件的扫描电镜显微组织。实施例3打印制备的硬质合金工件的致密性和显微硬度列于表1中。
表1
Figure BDA0004133670220000061

Claims (3)

1.一种低缺陷硬质合金的激光增材制造方法,其特征在于,包括以下步骤:
(1)以三氧化钨、四氧化三钴、炭黑和聚乙二醇为原料,按最终反应合成的WC-Co复合粉末中Co含量3%-10%、总碳含量5.5%-5.9%进行配料,以无水乙醇为介质,原料经充分湿磨、干燥后冷压成圆柱坯体,然后置于真空炉内于1000-1100℃进行化学反应,将反应得到的圆柱块体在搅拌研磨机中以无水乙醇为介质球磨10-15小时,干燥后即得到平均粒径在0.1-0.5μm的WC-Co复合粉末;
(2)利用高速离心雾化干燥工艺对上述WC-Co复合粉以及粒径小于1.0微米的纯Co粉分别进行团聚造粒,过筛后获得粒径在5-38μm的球形WC-Co复合粉末和球形Co粉;
(3)将球形WC-Co复合粉末与球形Co粉按比例进行充分的机械搅拌直至混合均匀;
(4)以上述混合后的粉末为原料,采用选区激光熔化工艺进行逐层铺粉打印,激光束斑尺寸为100μm,激光功率为200-260W,激光扫描速率为550-700mm/s,铺粉厚度为30μm,根据上述工艺即打印得到低缺陷密度的硬质合金零件。
2.按照权利要求1所述的一种低缺陷硬质合金的激光增材制造方法,其特征在于,步骤(1)圆柱坯体直径在20-40mm、高度在10-30mm。
3.按照权利要求1所述的一种低缺陷硬质合金的激光增材制造方法,其特征在于,Co元素在混合粉末中的总质量占比为10%-15%,包括WC-Co复合粉末中的Co与球形Co粉的Co。
CN202310267889.9A 2023-03-14 2023-03-14 一种低缺陷硬质合金的激光增材制造方法 Pending CN116352108A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310267889.9A CN116352108A (zh) 2023-03-14 2023-03-14 一种低缺陷硬质合金的激光增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310267889.9A CN116352108A (zh) 2023-03-14 2023-03-14 一种低缺陷硬质合金的激光增材制造方法

Publications (1)

Publication Number Publication Date
CN116352108A true CN116352108A (zh) 2023-06-30

Family

ID=86941272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310267889.9A Pending CN116352108A (zh) 2023-03-14 2023-03-14 一种低缺陷硬质合金的激光增材制造方法

Country Status (1)

Country Link
CN (1) CN116352108A (zh)

Similar Documents

Publication Publication Date Title
CN112191854B (zh) 一种3d打印用硬质合金粉末及其应用
EP1252952A2 (en) Binder Composition for powder metalliurgy
CN108941537B (zh) 一种电子束3d打印特种高温合金的方法
CN111347048A (zh) 低成本的钛合金间接增材制造方法
CN112111684B (zh) 3D打印三元硼化物Mo2NiB2合金粉末及其生产工艺
CN112974836B (zh) 一种镁合金3d增材制造高粘全液相烧结方法
CN112195389A (zh) 3D打印三元硼化物Mo2FeB2合金粉及其生产工艺
CN114318037A (zh) 一种基于激光增材制造的高钨含量钨镍合金材料及其制备方法
CN111548163A (zh) 一种制备大尺寸风力发电用氮化硅陶瓷球的方法
US4461843A (en) Processes for preparing novel baddeleyite refractory articles
CN113953517B (zh) 一种高致密硬质合金块材的3d打印制备方法
CN113681024B (zh) 一种基于喂料打印制备钨金属零件的方法
CN115109981A (zh) 一种氧化物弥散强化TaNbVTi难熔高熵合金及其制备方法和用途
CN109332717B (zh) 一种球形钼钛锆合金粉末的制备方法
CN102924087A (zh) 一种立方氮化硼-碳化硅复相陶瓷材料的制备方法及其产品
KR20180076355A (ko) 티타늄 합금 주조용 주형 제조방법 및 이에 의해 제조된 티타늄 합금 주조용 주형
CN116352108A (zh) 一种低缺陷硬质合金的激光增材制造方法
JP4822534B2 (ja) セラミックスの製造方法
CN111945026A (zh) 一种激光成形碳化硅增强铝基复合材料的制备方法
CN114433859B (zh) 一种高品质钛合金粉末用电极、其制备和应用
CN110241420A (zh) 一种硬质合金材料和硬质合金样件
CN114807724A (zh) 一种利用激光3d打印技术制备的耐磨复合材料及方法
CN114682774A (zh) 一种球形Ti/TC4-TiC复合粉末及制备方法
RU2739774C1 (ru) Способ получения конструкционного керамического материала на основе карбида кремния для изделий сложной геометрии
CN103361581A (zh) 一种硅铝合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination