CN116351452B - 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用 - Google Patents

一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用 Download PDF

Info

Publication number
CN116351452B
CN116351452B CN202310306069.6A CN202310306069A CN116351452B CN 116351452 B CN116351452 B CN 116351452B CN 202310306069 A CN202310306069 A CN 202310306069A CN 116351452 B CN116351452 B CN 116351452B
Authority
CN
China
Prior art keywords
catalyst
preparation
melamine
urea
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310306069.6A
Other languages
English (en)
Other versions
CN116351452A (zh
Inventor
胡尊富
郑秀文
孙运强
戴志超
杨欣怡
秦洁雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi University
Original Assignee
Linyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi University filed Critical Linyi University
Priority to CN202310306069.6A priority Critical patent/CN116351452B/zh
Publication of CN116351452A publication Critical patent/CN116351452A/zh
Application granted granted Critical
Publication of CN116351452B publication Critical patent/CN116351452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂制备技术领域,具体涉及一种原子间距可控的Fe‑Co异核双金属单原子催化剂的制备方法及所得产品、应用。该方法通过三聚氰胺、尿素和Fe‑Co异金属配合物反应制备而成。本发明制备得到的异核双金属原子对催化剂能够用于有机污染物的降解,在极短时间内降解率可达100%,高于单金属单原子催化剂的降解效率。此外,制备的Fe‑Co‑g‑C3N4催化剂的双反应位点大大缩短了活性物质与有机污染物分子之间的迁移距离,显著提高了Fe‑Co‑g‑C3N4的催化性能,有利于在无二次金属污染的情况下降解有机污染物。为Fe‑Co‑g‑C3N4/PMS系统的高效污水处理提供了一种潜在的方法。

Description

一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备 方法及所得产品、应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用。
背景技术
目前,生产的抗生素约有48%用于人类消耗,其余40%被用于兽药、饲料添加等,但是约有46%的抗生素以原形化合物的形式被排出体外而最终进入水体环境中。由于抗生素的滥用及养殖业添加剂的无节制使用,全球抗生素使用量超过300亿剂/天。然而,有研究表明能被人体或者动物体吸收的占比不足三成。其余的抗生素一旦排放进入水体环境,很难通过被水生生物分解等水体环境自净能力而去除,导致过度积累并产生严重的水污染问题。
针对目前严重的水资源污染问题,多种有机废水处理技术应运而生,包括利用物理或者机械作用清除污染物的吸附、絮凝等物理法;依赖于水生菌类、藻类微生物消耗有机污染物的生物法;通过使用强氧化性试剂(如高锰酸钾、次氯酸盐等)氧化处理有机污染物的传统化学氧化法。然而,在实际应用过程往往出现吸附或者氧化效率低、材料和试剂需求量大、微生物由于生存条件苛刻及污染物毒性大而易失活等问题,导致有机废水处理效果不尽如人意。基于过渡金属活化过一硫酸盐(PMS)的多相类芬顿氧化技术具有氧化能力强、氧化剂稳定性高和受pH影响小等优点,在去除水体残余抗生素的技术中具有广阔的应用前景。但是多相类芬顿氧化技术仍存在催化剂重复利用性差、催化活性不足、氧化剂利用不充分、抗水体基质干扰能力弱以及氧化不彻底等问题,限制了该技术的实际应用。因此,构筑具有催化活性高、重复利用率高和稳定性好的PMS等氧化物活化剂对于推动多相类芬顿氧化技术的发展具有重要意义。
发明内容
针对现有技术中存在的问题,本发明提供了一种原子间距可控的Fe-Co异核金属单原子催化剂的制备方法。
本发明还提供了一种利用上述制备方法得到的Fe-Co异核金属单原子催化剂。
本发明还提供饿了上述Fe-Co异核金属单原子催化剂在降解污水中抗生素中的应用。
本发明为了实现上述目的所采用的技术方案为:
本发明提供了一种原子间距可控的Fe-Co异核金属单原子催化剂的制备方法,该方法通过三聚氰胺、尿素和Fe-Co异金属配合物反应制备而成。
本发明提供的制备方法具体包括以下步骤:
(1)将三聚氰胺,尿素,Fe/Co异金属配合物充分混合,球磨搅拌,收集得到的沉淀,离心洗涤后真空干燥得Fe-Co@Mel;
(2)将Fe-Co@Mel粉末置于管式炉中,惰性气氛下热解得到Fe-Co-g-C3N4
或者
(a)将10g三聚氰胺置于管式炉中,在550℃,氮气氛围下煅烧2小时,充分研磨后获得石墨相氮化碳g-C3N4;
(b)将1g研磨后的g-C3N4充分溶解于20ml乙醇中,加入0.2g 尿素和0.1 g Fe/Co异金属配合物充分混匀后,超声,收集得到的沉淀,离心后真空干燥得Fe/Co@g-C3N4;
(c)将Fe/Co@g-C3N4粉末置于管式炉中,900℃下热解2 h,升温速率5 C min-1,流动氩气下热解得到Fe-Co-g-C3N4
进一步的,步骤(1)中,所述三聚氰胺与Fe/Co异金属配合物的质量比为5~20:1;三聚氰胺与尿素的摩尔比为5:0.5;步骤(a)中,所述煅烧为在550℃的温度下,氮气氛围下煅烧2h。
进一步的,步骤(1)或步骤(a)中,所述Fe/Co异金属配合物为(µ2-羰基)-七羰基双(µ2-二苯基膦)-二钴铁、茂钴(η5-环戊二烯基羧酸盐)-(η5-环戊二烯基羧酸)-一水合铁)。
进一步的,步骤(1)中,所述球磨搅拌具体为:行星式球磨机的转速为100~500r/min,球磨时间为1~4小时,所述真空干燥的温度为60℃。
进一步的,步骤(b)中,所述g-C3N4在乙醇中的浓度为0.05g/mL;所述g-C3N4、尿素和Fe/Co异金属配合物的质量比为1:0.2:0.1;所述超声的时间为30min;所述真空干燥的温度为60℃。
进一步的,步骤(2)或步骤(c)中,所述热解为在流动氩气气氛下,以2~10℃. min-1的升温速率升温至800~1100℃,热解的时间为2~4h。
本发明还提供了一种利用上述制备方法制备得到的Fe-Co异核金属单原子催化剂。
本发明还提供了一种上述Fe-Co异核金属单原子催化剂在降解清除污水中抗生素中的应用,包括以下步骤:将污染物溶液中加入催化剂,溶液搅拌30 min,加入PMS即可。
进一步的,所述催化剂在污染物溶液中的浓度为0.01-0.4 g/L;所述搅拌的时间为30min;所述PMS在污染物溶液中的浓度为0.1-1.5g/L。
进一步的,所述抗生素为四环素类抗生素、磺胺类抗生素;所述抗生素的浓度为0.1~500mg/L。
通过自由基清除实验和密度泛函理论计算表明,本发明制备的Fe-Co异核双金属原子对催化剂中,Fe-N4/Co-N4活性位点可与PMS(过一硫酸盐)形成Me(Fe,Co)形成Me-O-O-键,并催化PMS分解产生硫酸根自由基(SO4 -﹒)和单线态氧(1O2)等自由基以降解污水中的抗生素等。g-C3N4结构中,三个sp2杂化的C和N形成的庚嗪环以“氮罐”为中心,该“氮罐”中充满了来自N原子的六个孤对电子,这给Fe-Co单分散活性位点的固定提供了理想位点。Fe-Co的引入可优化g-C3N4的电子和能带结构,Fe-Co间的电荷耦合效应可加快界面电荷转移及光生电子-空穴对的分离与转移,促使g-C3N4的费米能级负移提高电子的还原性,同时Fe-Co的引入可减小g-C3N4的禁带宽度提高可见光吸收能力,协同增强g-C3N4的光催化性能,实现大量活性氧的产生提高污染物降解效率。同时,相邻的吡啶N位点作为有机污染物分子的吸附位点,结合键能适中,作为功能位点锚定目标污染物进行氧化。PMS吸附位点和有机物吸附位点的距离较小,有利于缩短短寿命的活性氧的迁移距离,提高降解效率。Fe-Co-N-C的超高催化活性主要来源于其独特的双活性位点,显著缩短活性物质(1O2)向吸附的目标污染物分子的迁移距离。
Fe-Co-g-C3N4/PMS降解有机污染物的催化性能研究:本发明以四环素为靶标底物,研究Fe-Co-g-C3N4/PMS降解体系的催化效能。四环素的降解反应在水相中进行,以高效液相色谱检测四环素的浓度变化。
本发明的有益效果为:
(1)本发明提供的方法简单,可操作性强,合成的催化剂高效稳定;
(2)本发明提供了一种可精准调控异核双金属原子间距的策略,采用不同原子间距的异金属配合物,可实现不同原子间距的异核双金属原子对催化剂的可控制备;
(3)本发明提供了一种单分散过渡金属活性位点(Fe-Co)与石墨相氮化碳实现增强过硫酸盐和光催化协同
(4)本发明制备得到的异核双金属原子对催化剂(Fe-Co-g-C3N4)能够用于有机污染物的降解,经PMS活化后,Fe-Co-g-C3N4对四环素等有机污染物的降解表现出明显的类Fenton催化活性。合成的Fe-Co-g-C3N4催化剂在极短时间内降解率可达100%,高于单金属单原子催化剂(Fe-g-C3N4、Co-g-C3N4)的降解效率。此外,制备的Fe-Co-g-C3N4催化剂的双反应位点大大缩短了活性物质与有机污染物分子之间的迁移距离,显著提高了Fe-Co-g-C3N4的催化性能,有利于在无二次金属污染的情况下降解有机污染物。为Fe-Co-g-C3N4/PMS系统的高效污水处理提供了一种潜在的方法。
附图说明
图1为本发明提供的Fe-Co-g-C3N4的制备流程图;
图2为实施例1制备的Fe-Co-g-C3N4的HAADF-STEM图;
图3为实施例1制备的Fe-Co-g-C3N4DACs的XRD图;
图4为实施例2制备的Fe-Co-g-C3N4的TEM图;
图5为不同催化剂用量时Fe-Co-g-C3N4/PMS体系降解四环素的降解效率图;
图6为Fe-Co-g-C3N4/PMS降解体系抗阴离子干扰图;
图7为Fe-Co-g-C3N4/PMS降解体系降解其他有机有污染降解效率图;
图8为实施例与对比例降解效能对比图。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的解释和说明。
实施例1
Fe-Co-g-C3N4的制备:将三聚氰胺(5 g)、尿素(1g)和(µ2-羰基)-七羰基双(µ2-二苯基膦)-二钴铁(0. 5g)置于洁净玛瑙研钵中,并充分搅拌10min,充分混合均匀后转移至行星式球磨机,每分钟300转下搅拌4小时,收集得到的粉末,甲醇洗涤三次,最后在60℃真空干燥过夜(得到的粉末标记为Fe/Co@Mel)。然后将Fe/Co@Mel粉末置于管式炉中,900℃下热解2 h,升温速率5 C min-1,流动氩气下热解得到Fe-Co-g-C3N4(如图1所示)。
采用TEM、XRD、HAADF-STEM等手段对催化剂进行了一系列表征,充分证明了Fe-Co-g-C3N4的成功制备。从图2可见,HAADF-STEM图像中可以清晰地观察到没有团聚的Fe-Co团簇存在,而是均匀分散的单分散Fe、Co原子;图3为其XRD图。
实施例2
Fe-Co-g-C3N4的制备:
第一步:将10g三聚氰胺置于管式炉中,在550℃,氮气氛围下煅烧2小时,转移至洁净玛瑙研钵中充分研磨,获得石墨相氮化碳g-C3N4
第二步:将1g研磨后的g-C3N4充分溶解于20ml乙醇中,加入0.2g 尿素和0.1 g Fe-Co异金属配合物(µ2-羰基)-七羰基双(µ2-二苯基膦)-二钴铁充分混匀后,超声30 min,收集得到的沉淀,离心,最后在60℃真空干燥过夜(得到的粉末标记为Fe/Co@g-C3N4);
第三步:然后将Fe/Co@g-C3N4粉末置于管式炉中,900℃下热解2 h,升温速率5 Cmin-1,流动氩气下热解得到Fe-Co-g-C3N4
实施例2得到的Fe-Co-g-C3N4的TEM图如图4所示。
对比例1
Fe- g-C3N4的制备:将三聚氰胺(5 g)、尿素(1g)和FeCl3(0.2g)置于洁净玛瑙研钵中,并充分搅拌10min,充分混合均匀后转移至行星式球磨机,每分钟300转下搅拌4小时,收集得到的粉末,甲醇洗涤三次,最后在60℃真空干燥过夜(得到的粉末标记为Fe@Mel)。然后将Fe@Mel粉末置于管式炉中,900℃下热解2 h,升温速率5 C min-1,流动氩气下热解得到Fe-g-C3N4
效果实施例1
催化降解实验:在200 mL圆底烧瓶中进行降解实验。在此过程中,使用恒温水浴来维持反应容器的温度。用H2SO4(1M)和NaOH (0.5M)调节溶液的初始pH。在典型的运行中,将不同初始浓度(0.03-0.1 g/L)的四环素溶液(100mL)转移到圆底烧瓶中,然后在污染物溶液中加入一定量的催化剂(0.01-0.2 g/L)。溶液搅拌30 min,达到吸附-解吸平衡。加入PMS(0.1-1.0g/L)启动试验。在特定的时间点,用注射器收集得到的溶液2.0 ml,立即用过量的甲醇猝灭,通过0.22 µm的特氟龙过滤器过滤。用高效液相色谱检测溶液中四环素残留浓度。
图5为不同催化剂用量时Fe-Co-N-C/PMS体系降解四环素的降解效率图。体系中PMS浓度为1g/L,四环素浓度100mg/L,分别调节Fe-Co-N-C催化剂用量为0.05、0.1、0.15、0.2 g/L,利用液相色谱考察四环素降解效率。研究发现Fe-Co-N-C用量为0.15g/L时,四环素的降解效率可在6分钟内达到100%,此时的动力学一级速率常数为1.3881 min-1。继续提高催化剂用量,降解效率未见明显升高。
图6为Fe-Co-g-C3N4/PMS降解体系抗阴离子干扰图。研究发现,Fe-Co-g-C3N4/PMS降解体系对Cl-、H2PO4 -、HCO3 -、NO3 -的引入对Fe-Co-g-C3N4/PMS降解四环素的降解效率未见明显影响。
图7为Fe-Co-g-C3N4/PMS降解体系降解其他有机有污染降解效率图。该结果表明,Fe-Co-g-C3N4/PMS降解体系除了可以高效降解四环素外,对甲基蓝(MB)、罗丹明B(RhB)、橙黄II(orange II)、苯胺(Aniline)、苯酚(Phenol)均表现出较高的降解效能。
图8为本发明实施例1Fe-Co-g-C3N4和对比例1制备的Fe -g-C3N4的降解效能对比图。体系中PMS浓度为1g/L,四环素浓度100mg/L,Fe-Co-N-C、Fe -g-C3N4催化剂用量为0.15g/L。

Claims (10)

1.一种原子间距可控的Fe-Co异核金属单原子催化剂的制备方法,其特征在于,通过三聚氰胺、尿素和Fe-Co异金属配合物反应制备而成;
具体包括以下步骤:
(1)将三聚氰胺,尿素,Fe-Co异金属配合物充分混合,球磨搅拌,收集得到的沉淀,离心洗涤后真空干燥得Fe-Co@Mel;
(2)将Fe-Co@Mel粉末置于管式炉中,惰性气氛下热解得到Fe-Co-g-C3N4
或者
(a)将10g三聚氰胺置于管式炉中,在550℃,氮气氛围下煅烧2小时,充分研磨后获得石墨相氮化碳g-C3N4;
(b)将1g研磨后的g-C3N4充分溶解于20ml乙醇中,加入0.2g 尿素和0.1 g Fe-Co异金属配合物充分混匀后,超声,收集得到的沉淀,离心后真空干燥得Fe-Co@g-C3N4;
(c)将Fe-Co@g-C3N4粉末置于管式炉中,900℃下热解2 h,升温速率5 ℃/min,流动氩气下热解得到Fe-Co-g-C3N4
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述三聚氰胺与Fe-Co异金属配合物的质量比为5~20:1;三聚氰胺与尿素的摩尔比为5:0.5;步骤(a)中,所述煅烧为在550℃的温度下,氮气氛围下煅烧2h。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤(1)或步骤(a)中,所述Fe-Co异金属配合物为(µ2-羰基)-七羰基双(µ2-二苯基膦)-二钴铁、茂钴(η5-环戊二烯基羧酸盐)-(η5-环戊二烯基羧酸)-一水合铁)。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述球磨搅拌具体为:行星式球磨机的转速为100~500r/min,球磨时间为1~4小时,所述真空干燥的温度为60℃。
5.根据权利要求1所述的制备方法,其特征在于,步骤(b)中,所述超声的时间为30min;所述真空干燥的温度为60℃。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)或步骤(c)中,所述热解为在流动氩气气氛下,以2~10℃/min的升温速率升温至800~1100℃,热解的时间为2~4h。
7.一种利用权利要求1-6任一项所述的制备方法制备得到的Fe-Co异核金属单原子催化剂。
8.一种如权利要求7所述的Fe-Co异核金属单原子催化剂在降解清除污水中抗生素中的应用,其特征在于,包括以下步骤:将污染物溶液中加入催化剂,溶液搅拌30 min,加入过一硫酸盐。
9.根据权利要求8所述的应用,其特征在于,所述催化剂在污染物溶液中的浓度为0.01-0.4 g/L;所述搅拌的时间为30min;所述过一硫酸盐在污染物溶液中的浓度为0.1-1.5g/L。
10.根据权利要求8或9所述的应用,其特征在于,所述抗生素为四环素类抗生素、磺胺类抗生素;所述抗生素的浓度为0.1~500mg/L。
CN202310306069.6A 2023-03-27 2023-03-27 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用 Active CN116351452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310306069.6A CN116351452B (zh) 2023-03-27 2023-03-27 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310306069.6A CN116351452B (zh) 2023-03-27 2023-03-27 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用

Publications (2)

Publication Number Publication Date
CN116351452A CN116351452A (zh) 2023-06-30
CN116351452B true CN116351452B (zh) 2024-02-27

Family

ID=86935123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310306069.6A Active CN116351452B (zh) 2023-03-27 2023-03-27 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用

Country Status (1)

Country Link
CN (1) CN116351452B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245792A1 (en) * 2018-06-22 2019-12-26 The Curators Of The University Of Missouri Novel method of manufacture of metal nanoparticles and metal single-atom materials on various substrates and novel compositions
WO2020015281A1 (zh) * 2018-07-19 2020-01-23 西南石油大学 一种金属掺杂非晶态氮化碳光催化材料及其制备方法
CN112892575A (zh) * 2021-01-26 2021-06-04 大连理工大学 一种用于活化可溶性氧化剂的金属单原子催化材料m-c3n4的制备方法及应用
CN113198511A (zh) * 2021-05-10 2021-08-03 南京大学 高效活化过硫酸盐的氮掺杂碳载Fe-Co双金属单原子催化剂及其制备方法
CN113559911A (zh) * 2021-07-30 2021-10-29 中国科学院生态环境研究中心 一种单原子催化剂及其制备方法和应用
CN114011413A (zh) * 2021-11-08 2022-02-08 威腾电气集团股份有限公司 一种制备铁钴双金属单原子锚定氮杂石墨烯助催化剂的方法及其应用
CN114534759A (zh) * 2022-01-19 2022-05-27 湖南大学 单原子钴负载管状氮化碳催化剂及其制备方法和应用
CN115301269A (zh) * 2022-07-11 2022-11-08 临沂大学 一种钌单原子催化剂的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113058635B (zh) * 2021-04-06 2023-02-17 南昌航空大学 一种活化过硫酸盐生成纯单线态氧的单原子催化剂及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245792A1 (en) * 2018-06-22 2019-12-26 The Curators Of The University Of Missouri Novel method of manufacture of metal nanoparticles and metal single-atom materials on various substrates and novel compositions
WO2020015281A1 (zh) * 2018-07-19 2020-01-23 西南石油大学 一种金属掺杂非晶态氮化碳光催化材料及其制备方法
CN112892575A (zh) * 2021-01-26 2021-06-04 大连理工大学 一种用于活化可溶性氧化剂的金属单原子催化材料m-c3n4的制备方法及应用
CN113198511A (zh) * 2021-05-10 2021-08-03 南京大学 高效活化过硫酸盐的氮掺杂碳载Fe-Co双金属单原子催化剂及其制备方法
CN113559911A (zh) * 2021-07-30 2021-10-29 中国科学院生态环境研究中心 一种单原子催化剂及其制备方法和应用
CN114011413A (zh) * 2021-11-08 2022-02-08 威腾电气集团股份有限公司 一种制备铁钴双金属单原子锚定氮杂石墨烯助催化剂的方法及其应用
CN114534759A (zh) * 2022-01-19 2022-05-27 湖南大学 单原子钴负载管状氮化碳催化剂及其制备方法和应用
CN115301269A (zh) * 2022-07-11 2022-11-08 临沂大学 一种钌单原子催化剂的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Braga, D et al..《Chem. Commun.》 Grinding of an organometallic crystalline material leads to quantitative formation of a hydrated polymorph.1999,第10卷第937-938页. *
DAVID A. YOUNG .《Inorg. Chem.》A Phosphido-Bridged Cluster Synthesis with Metal-Coordinated Diphosphine. 1. Synthesis and Characterization of FeCo2(μ-CO) (CO)7(μ-PPh2)2.1981,第20卷第2049-2054页. *
Xiaoming Peng et al..《Chemical Engineering Journal》 Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites.2021,第427卷第1-13页. *
马晴晴.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 碳基材料活化过硫酸氢盐降解有机污染物的研究.2020,(第1期),全文. *

Also Published As

Publication number Publication date
CN116351452A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
Luo et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation
CN108675430B (zh) 产生硫酸根自由基和活性氧物种的催化方法及难生物降解有机污染物的高级氧化方法
Peng et al. Yeast biomass-induced Co2P/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
CN109364939B (zh) 利用生物炭负载铁锰双金属氧化物光芬顿复合材料去除抗生素的方法
Xiong et al. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway
CN113908878B (zh) 一种双金属普鲁士蓝类似物催化剂的制备方法及应用
CN113061441B (zh) 用于氧化修复土壤水体有机污染的生物炭负载铁材料及其制备方法、应用
Wang et al. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix
CN113231105B (zh) 二氧化锰负载金属酞菁复合材料及制备与降解抗生素应用
Li et al. Ammonia-nitrogen removal from water with gC3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process
CN113943030A (zh) 用于活化过一硫酸盐处理氯苯污染水体的生物质炭包覆纳米零价铁复合材料及其制备和应用
CN109621974A (zh) 一种CuMn2O4/rGO复合材料臭氧催化氧化除污染水处理方法
CN114950526A (zh) 一种藻基炭限域单原子铜催化材料、制备方法及其用途
CN112844386B (zh) 一种痕量硼掺杂的羟基氧化钴的制备方法及其应用
CN114634220A (zh) 一种光降解有机砷化物的方法
CN113731416A (zh) 一种局域酸位点改性的单原子催化剂、制备方法及其应用
CN116351452B (zh) 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用
Cai et al. Removal of metronidazole using a novel ZnO–CoFe2O4@ Biochar heterostructure composite in an intimately coupled photocatalysis and biodegradation system under visible light
CN115999547B (zh) 一种负载型双组分金属氧化物催化臭氧氧化催化剂的制备方法及应用
CN115888717B (zh) 高效活化过硫酸盐的生物炭负载纳米CoOOH催化剂及制备方法
Guo et al. Tetracycline degradation by activated persulfate with enhancement of ZIF-67 loaded wood-microreactor
Jiang et al. A highly dispersed magnetic polymetallic catalyst to activate peroxymonosulfate for the degradation of organic pollutants in wastewater
CN114835171A (zh) 一种多孔纳米四氧化三钴的制备方法及其应用
CN111359623B (zh) 一种非均相类芬顿催化剂及其制备方法与用法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant