CN116273053A - 一种整装铁基氨分解催化剂及其制备方法和应用 - Google Patents

一种整装铁基氨分解催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN116273053A
CN116273053A CN202310296973.3A CN202310296973A CN116273053A CN 116273053 A CN116273053 A CN 116273053A CN 202310296973 A CN202310296973 A CN 202310296973A CN 116273053 A CN116273053 A CN 116273053A
Authority
CN
China
Prior art keywords
iron
self
catalyst
ammonia decomposition
metal carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310296973.3A
Other languages
English (en)
Inventor
张智强
张卿
陈崇启
刘海波
田勇
陈庆塘
黄婧婕
吴瑞鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuda Zijin Hydrogen Energy Technology Co ltd
Original Assignee
Fuda Zijin Hydrogen Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuda Zijin Hydrogen Energy Technology Co ltd filed Critical Fuda Zijin Hydrogen Energy Technology Co ltd
Priority to CN202310296973.3A priority Critical patent/CN116273053A/zh
Publication of CN116273053A publication Critical patent/CN116273053A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种整装铁基氨分解催化剂及其制备方法和应用,制备得到的整装铁基氨分解催化剂,是先在骨架基体上生长一层非水溶性铁金属盐晶体层,经热分解和还原处理,制得未经改性的铁基催化剂,或在热分解和还原处理前先通过等体积浸渍法引入助剂改性,制得在金属载体上负载助剂改性的铁基催化剂。相较于其他方法制备的整体式催化剂,本发明提供的整装铁基氨分解催化剂具有制备过程可控性强、易于规模化生产和活性组分负载量高且结构稳定不易脱落等优势。这些特性赋予本发明的整装铁基氨分解催化剂在长时间运行中保持优异的稳定性。

Description

一种整装铁基氨分解催化剂及其制备方法和应用
技术领域
本发明涉及氨分解催化剂的制备技术领域,具体涉及一种整装铁基氨分解催化剂及其制备方法和应用。
背景技术
燃烧化石燃料导致的环境污染和日益严重的能源危机激发了人们对清洁可持续能源的渴求。在所有替代能源中,氢能以优异的能量密度和环境友好性被公认为最有前景的“未来能源”。随着燃料电池技术的发展,进一步促使氢能成为清洁能源中的热点。然而,氢气输送成本高且安全系数低等因素严重阻碍了氢能的应用。相比之下,氨气液化条件温和,易于存储和运输,并且还具有安全性高(爆炸阈值为15.7%-27.4%)和体积能量密度(3kW/kg)大等优势(Energ.Fuel.2021,35,11693-11706)。因此,以氨气为储氢体进行储存和运输,再通过氨分解制取氢能的方式受到了广泛的关注和研究。
目前,氨分解制氢的方法主要是基于贵金属(如Ru、Ir和Pt等)和过渡金属(如Fe、Co和Ni等)催化剂的热催化过程。其中,贵金属Ru基催化剂的氨分解活性最好,低温活性佳,但其价格昂贵,制备成本高。大连化物所的陈萍等人报道了一种通过沉积沉淀法制备负载于MgO的K改性Ru催化剂,该催化剂在475℃,36000mL g-1h-1空速下,可得到近100%的氨气转化率。他们认为大表面的介孔MgO载体有利于Ru的分散以及对氨气的吸附,这使得该催化剂具有较好的低温性能(Appl.Catal.B,2017,211,167-175)。此外,过渡金属催化剂虽然价格低廉,但是氨分解温度较高(700-850℃)。东南大学肖睿等人报道一种以Al2O3为载体负载Co改性Ni催化剂,该催化剂在700℃,5000mL g-1h-1空速下,可得到近100%的氨气转化率。他们认为优异的催化性能得益于Co的引入可降低活性位的粒径和提高活性位的分散度(Fuel Process.Technol.,2021,221,106945)。迄今为止,氨分解催化剂的研究主要是以粉体型催化剂为主,该类催化剂在实际应用中为了减小压降,一般要进行成型操作。从反应器宏观角度上看,成型操作也将导致一系列传质问题如流体分布不均匀、湍流、返混和短路等。此外,该类粉体催化剂由于传热性能较差,在反应过程中还会存在反应温度不均匀,从而导致催化剂反应效率低和氨分解不完全等问题。
针对这一问题,也有研究者进行了一些探索。中国专利申请CN101147863A公开了一种整体式镍基氨分解催化剂,该催化剂的制备是将金属纤维、载体Al2O3颗粒以及粘结剂纤维素等加入打浆机打浆,接着进行成型制得载体,最后再浸渍活性组分Ni。该催化剂中含有开放结构的金属纤维,一定程度上可提高其传质和传热效率。在600℃和空速为17400h-1的反应条件下,CeO2改性的Ni催化剂可实现99%的氨气转化率。但是通过这种制备方法的整体式催化剂,其金属纤维和载体的粘结力较差结构强度低,在长时间的反应下极易脱落,从而堵塞反应器孔道,最终导致催化剂的传质/传热性能下降。
中国专利申请CN106693977A公开了一种以海泡石为载体的镍基催化剂,他们先将海泡石进行酸处理以提高其比表面积,从而有利于提高活性组分镍的分散度。Ni负载量为30%的催化剂在700℃的反应条件下,可实现近100%的氨气转化率。该类催化剂虽然活性较好,但是进一步放大应用时,同样面临着传质传热效率上的限制。
因此,开发一种兼具有良好反应性能和优异的传质传热性能的催化剂具有十分重要的意义。
发明内容
针对现有技术的不足,本发明旨在提供一种整装铁基氨分解催化剂及其制备方法和应用。
为了实现上述目的,本发明采用如下技术方案:
作为本发明的其中一种技术方案,一种整装铁基氨分解催化剂的制备方法,具体过程为:
S1、通过水热法在金属载体骨架上原位生长非水溶性铁盐晶体层,实现金属载体的原位催化功能化;
S2、将步骤S1制备得到的材料在空气气氛下于300-800℃焙烧0.5-12小时,最后在氢氮混合气气氛下于800℃还原0.5-6小时,即得整装铁基氨分解催化剂。
作为本发明的另一种技术方案,一种整装铁基氨分解催化剂的制备方法,具体过程为:
S1、通过水热法在金属载体骨架上原位生长非水溶性铁盐晶体层,实现金属载体的原位催化功能化;
S2、将步骤S1制备得到的材料浸渍于含助剂的水溶液中,在50-150℃下烘干2-24小时,制得整装铁基氨分解催化剂前驱体;
S3、将步骤S2制备得到的整装铁基氨分解催化剂前驱体在空气气氛下于300-800℃焙烧0.5-12小时,最后在氢氮混合气气氛下于200-900℃还原0.5-6小时,即得整装铁基氨分解催化剂。
进一步地,步骤S1的具体过程为:
S1.1、将金属载体置于丙酮溶液中超声,取出后用蒸馏水清洗并烘干备用;
S1.2、将步骤S1.1洗净的金属载体置于0.01-1摩尔每升的草酸溶液中,在50-250℃下于高压反应釜中反应2-48小时,冷却后取出用去离子水洗涤并烘干,从而得到草酸铁负载于金属载体的材料,完成金属载体的原位催化功能化。
进一步地,步骤S1中,所述金属载体骨架的材质为含铁合金。
更进一步地,所述含铁合金为铁、铁镍、铁铬铝、铁钨、铁硅、铁锰、铁钼中的任意一种。
进一步地,所述金属载体骨架的形态结构选自泡沫、纤维、纤维毡、丝网、圆管、圆片、颗粒中的任意一种。
进一步地,步骤S2中,所述助剂为钼酸铵、硝酸钴、硝酸钾、硝酸镍、硝酸铈、硝酸钌的任意一种或多种。
进一步地,所述整装铁基氨分解催化剂中,活性组分为铁,以质量百分比计,铁占催化剂的1~40%,助剂占催化剂的0~10%,余量为金属载体骨架。
本发明还提供一种上述制备方法制得的整装铁基氨分解催化剂。
一种上述制备方法制得的整装铁基氨分解催化剂可在氨分解反应中作为催化剂应用。
本发明的有益效果在于:
(1)本发明制备得到的整装铁基氨分解催化剂,是先在骨架基体上生长一层非水溶性铁金属盐晶体层,经热分解和还原处理,制得未经改性的铁基催化剂,或在热分解和还原处理前先通过等体积浸渍法引入助剂改性,制得在金属载体上负载助剂改性的铁基催化剂。相较于其他方法制备的整体式催化剂(如CN101147863A),本发明提供的整装铁基氨分解催化剂具有制备过程可控性强、易于规模化生产和活性组分负载量高且结构稳定不易脱落等优势。这些特性赋予本发明的整装铁基氨分解催化剂在长时间运行中保持优异的稳定性。
(2)本发明的整装铁基氨分解催化剂制作工艺简单,原料廉价易得,无需二次成型,传质传热性能好,适应高通量低压降的反应需求。相比于传统的粉末氨分解催化剂,本发明的整装铁基氨分解催化剂具有较好的导热性,使得催化剂床层温度分布更为均匀,较高的渗透率使得床层压降大大降低。此外,本发明提供的催化剂催化壳层较薄,可大幅度消除内扩散限制,从而提高活性组分的利用率。同时,本发明提供催化剂具有较高且规整的孔道结构,可避免在传统颗粒催化剂中普遍存在的流体分布不均匀、湍流、返混、沟流和气体短路等现象。因此,本发明提供的整装结构催化剂便于反应器的小型化和灵活设计,展现出了在氨分解制氢工业中的应用潜力。
附图说明
图1为本发明实施例1的Fe-foam和FeC2O4/Fe-foam的X射线衍射(XRD)图;
图2为本发明实施例1中Fe-foam和FeC2O4/Fe-foam的扫描电镜(SEM图),(a)和(b)为Fe-foam骨架基体的SEM图,(c)和(d)为FeC2O4/Fe-foam材料的SEM图;
图3为本发明实施例1中制备的FeC2O4/Fe-foam材料经过超声处理后的质量损失图;
图4为本发明实施例1中制备的FeC2O4/Fe-foam材料的吸脱附等温线和孔分布曲线图,(a)为吸脱附等温线,(b)为孔分布曲线图;
图5为本发明实施例8催化剂的稳定性测试图。
具体实施方式
以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
实施例1
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①将1克泡沫铁(孔隙度100PPI,表示为Fe-foam)在丙酮溶液中于80℃超声1小时,洗去表面油污和有机物,接着用蒸馏水洗净并烘干;
②将1.58克草酸(12.5毫摩尔)溶于50毫升的蒸馏水中(草酸摩尔浓度为0.25摩尔每升),并移入高压反应釜内,称取1克洗净后的泡沫铁浸入溶液中,于120℃下保持12小时,冷却后取出,并用去离子水洗涤后烘干,即可实现在金属载体骨架上原位生长草酸铁晶体层,表示为FeC2O4/Fe-foam;
③将所制备的FeC2O4/Fe-foam在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得未改性的整装铁基氨分解催化剂;
在500-800℃下,采用流速为40mL min-1纯氨气体对该催化剂进行活性评价,催化剂装填0.2克,空速为12000mL g-1h-1,根据公式氨气转化率=(初始氨含量-尾气氨含量)/初始氨含量×100%,具体结果见表1。
图1是本实施例的Fe-foam和FeC2O4/Fe-foam的X射线衍射(XRD)图。这说明了通过水热法能成功在Fe-foam上生长出FeC2O4物相。图2是本实施例Fe-foam和FeC2O4/Fe-foam的扫描电镜(SEM图),其中,(a)和(b)为Fe-foam骨架基体的SEM图,(c)和(d)为FeC2O4/Fe-foam材料的SEM图。从图中可见,光滑的Fe骨架基底经过水热处理后原位生长出了FeC2O4晶体层。
图3是本实施例制备的FeC2O4/Fe-foam材料经过超声处理后的质量损失图。从图中可见,本实施例制备的FeC2O4/Fe-foam材料呈现出了较好的结构稳定性。
图4是本实施例制备的FeC2O4/Fe-foam材料的吸脱附等温线和孔分布曲线图。从图中可见,本实施例制备的FeC2O4/Fe-foam材料具有一定的介孔结构,孔径分布主要在6.2nm。
经过对焙烧后的整装铁基氨分解催化剂进行穆斯堡尔谱分析测定可得催化剂中氧化铁的含量,通过换算即可得由氧化铁经还原得到的活性铁物相含量。实验结果表明,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,由氧化铁还原得到活性铁物相的质量含量为25%。
实施例2
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中步骤①和②的方法制备FeC2O4/Fe-foam;
②将0.247克的六水合硝酸钴溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得整装铁基氨分解催化剂;
催化剂评价条件同实施例1,具体结果见表1。
同实施例1的方法,对本实施例中步骤②中所得的催化剂进行穆斯堡尔谱表征和电感耦合等离子体原子发射光谱(ICP)可测得活性组分和助剂的含量,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为24.8%,助剂Co的质量含量为4.9%。
需要说明的是,步骤②中,六水合硝酸钴的用量可以是0.001-1克。
实施例3
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②将0.092克的四水合钼酸铵溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得整装铁基氨分解催化剂;
催化剂评价条件同实施例1,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为24.9%,助剂Mo的质量含量为5.0%。
需要说明的是,步骤②中四水合钼酸铵可以是0.001-1克。
实施例4
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②将0.248克的六水合硝酸镍溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得整装铁基氨分解催化剂;
催化剂评价条件同实施例1,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为24.9%,助剂Ni的质量含量为4.9%。
需要说明的是,步骤②中六水合硝酸镍可以是0.001-1克。
实施例5
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②将0.155克的六水合硝酸铈溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得氨分解催化剂;
催化剂评价条件同实施例1,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为25.0%,助剂Ce的质量含量为5.0%。
需要说明的是,步骤②中六水合硝酸铈可以是0.001-1克。
实施例6
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②将0.026克的硝酸钾溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得氨分解催化剂;
催化剂评价条件同实施例1,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为24.9%,助剂K的质量含量为1.0%。
需要说明的是,硝酸钾可以是0.001-1克。
实施例7
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①同实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②称取0.0667克硝酸钌溶液(钌含量30%)溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于500℃还原5小时,制得氨分解催化剂;
在400-700℃下,采用流速为40mL min-1纯氨气体对该催化剂进行活性评价,催化剂装填0.2克,空速为12000mL g-1h-1,根据公式氨气转化率=(初始氨含量-尾气氨含量)/初始氨含量×100%,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为25.0%,活性组分Ru的质量含量为2.0%。
需要说明是,步骤②中硝酸钌溶液(钌含量30%)可以是0.001-1克。
实施例8
本实施例提供一种整装铁基氨分解催化剂的制备方法,具体过程为:
①按照实施例1中的步骤①和②的方法制备FeC2O4/Fe-foam;
②称取0.026克的硝酸钾和0.0667克硝酸钌溶液(钌含量30%)溶于蒸馏水中,在室温下对1克所制备的FeC2O4/Fe-foam进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于500℃还原5小时,制得氨分解催化剂;
催化剂评价条件同实施例7,具体结果见表1。
同实施例2的方法可测得,在本实施例所制备的催化剂中,除骨架载体中的体相铁外,活性铁物种的质量含量为25.0%,活性组分Ru的质量含量为2.0%,助剂K的质量含量为0.9%。
需要说明的是,步骤②中的硝酸钾和硝酸钌溶液(钌含量30%)皆可以是0.001-1克。
对比例1
将0.026克的硝酸钾和0.0667克的硝酸钌溶于蒸馏水中,在室温下对1克的泡沫铁载体进行等体积浸渍,再于100℃进行烘干处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得对比例催化剂。
在400-700℃下,采用流速为40mL min-1纯氨气体对该催化剂进行活性评价,催化剂装填0.2克,空速为12000mL g-1h-1,根据公式氨气转化率=(初始氨含量-尾气氨含量)/初始氨含量×100%,具体结果见表1。
对比例2
将1.8克的九水合硝酸铁、0.026克的硝酸钾和0.0667克的硝酸钌溶于蒸馏水中,在室温下对1克的商用Al2O3载体进行等体积浸渍,再干燥处理,在空气气氛下于450℃焙烧2小时,最后在氢氮混合气气氛(氢气体积分数5%)下于800℃还原5小时,制得对比例催化剂。
在400-700℃下,采用流速为40mL min-1纯氨气体对该催化剂进行活性评价,催化剂装填0.2克且颗粒250-600μm,空速为12000mL g-1h-1,根据公式氨气转化率=(初始氨含量-尾气氨含量)/初始氨含量×100%,具体结果见表1。
对比例3
本对比例采用的催化剂为中国专利申请CN106693977A中实施例5的催化剂,在不同温度下,采用流速为40mL min-1纯氨气体对该催化剂进行活性评价,催化剂装填0.2克且剂颗粒250-600μm,反应温度为500-800℃,空速为12000mL g-1h-1,根据公式氨气转化率=(初始氨含量-尾气氨含量)/初始氨含量×100%,具体结果见表1。
表1
550℃ 600℃ 650℃ 700℃
实施例1 50.6 69.8 94.4 /
实施例2 53.4 74.1 97.2 /
实施例3 51.6 68.4 92.9 99.1
实施例4 63.6 84.3 99.6 /
实施例5 66.1 85.9 99.7 /
实施例6 60.7 80.9 99.7 /
实施例7 80.6 98.6 99.9 /
实施例8 84.1 99.5 / /
对比例1 38.0 61.1 88.5 94.9
对比例2 48.6 66.9 92.9 /
对比例3 33.6 55.4 80.9 95.3
由表1可见:采用本发明实施例8所制备的催化剂在600℃时,氨气转化率接近平衡转化率(99.5%),该催化剂在50小时的稳定性测试中(图5),反应性能基本不变。通过对比实施例8和对比例1可得,在泡沫铁载体上生长草酸铁层能有效提高催化剂的反应性能。通过对比实施例8和对比例2可得,等负载量的粉末催化剂,整体式催化剂在不同温度下,氨分解活性皆要高于相应的粉末催化剂。通过对比实施例1-8和对比例2-3可得,整装催化剂性能要显著高于粉体催化剂。以上结果说明了,整装结构化设计,提高了传质和传热性能,从而对反应性能具有较好的促进作用,另外通过采取独特的金属载体表面催化功能化方法,进一步提高了催化剂的活性。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,给出各种相应的改变和变形,而所有的这些改变和变形,都应该包括在本发明权利要求的保护范围之内。

Claims (10)

1.一种整装铁基氨分解催化剂的制备方法,其特征在于,具体过程为:
S1、通过水热法在金属载体骨架上原位生长非水溶性铁盐晶体层,实现金属载体的原位催化功能化;
S2、将步骤S1制备得到的材料在空气气氛下于300-800℃焙烧0.5-12小时,最后在氢氮混合气气氛下于800℃还原0.5-6小时,即得整装铁基氨分解催化剂。
2.一种整装铁基氨分解催化剂的制备方法,其特征在于,具体过程为:
S1、通过水热法在金属载体骨架上原位生长非水溶性铁盐晶体层,实现金属载体的原位催化功能化;
S2、将步骤S1制备得到的材料浸渍于含助剂的水溶液中,在50-150℃下烘干2-24小时,制得整装铁基氨分解催化剂前驱体;
S3、将步骤S2制备得到的整装铁基氨分解催化剂前驱体在空气气氛下于300-800℃焙烧0.5-12小时,最后在氢氮混合气气氛下于200-900℃还原0.5-6小时,即得整装铁基氨分解催化剂。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤S1的具体过程为:
S1.1、将金属载体置于丙酮溶液中超声,取出后用蒸馏水清洗并烘干备用;
S1.2、将步骤S1.1洗净的金属载体置于0.01-1摩尔每升的草酸溶液中,在50-250℃下于高压反应釜中反应2-48小时,冷却后取出用去离子水洗涤并烘干,从而得到草酸铁负载于金属载体的材料,完成金属载体的原位催化功能化。
4.根据权利要求1或2所述的制备方法,其特征在于,步骤S1中,所述金属载体骨架的材质为含铁合金。
5.根据权利要求4所述的制备方法,其特征在于,所述含铁合金为铁、铁镍、铁铬铝、铁钨、铁硅、铁锰、铁钼中的任意一种。
6.根据权利要求1或2所述的制备方法,其特征在于,所述金属载体骨架的形态结构选自泡沫、纤维、纤维毡、丝网、圆管、圆片、颗粒中的任意一种。
7.根据权利要求2所述的制备方法,其特征在于,步骤S2中,所述助剂为钼酸铵、硝酸钴、硝酸钾、硝酸镍、硝酸铈、硝酸钌的任意一种或多种。
8.根据权利要求1或2所述的制备方法,其特征在于,所述整装铁基氨分解催化剂中,活性组分为铁,以质量百分比计,铁占催化剂的1~40%,助剂占催化剂的0~10%,余量为金属载体骨架。
9.一种权利要求1-8任一所述制备方法制得的整装铁基氨分解催化剂。
10.一种权利要求1-8任一所述制备方法制得的整装铁基氨分解催化剂在氨分解反应中的应用。
CN202310296973.3A 2023-03-24 2023-03-24 一种整装铁基氨分解催化剂及其制备方法和应用 Pending CN116273053A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310296973.3A CN116273053A (zh) 2023-03-24 2023-03-24 一种整装铁基氨分解催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310296973.3A CN116273053A (zh) 2023-03-24 2023-03-24 一种整装铁基氨分解催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116273053A true CN116273053A (zh) 2023-06-23

Family

ID=86779531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310296973.3A Pending CN116273053A (zh) 2023-03-24 2023-03-24 一种整装铁基氨分解催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116273053A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060809A1 (en) * 2005-03-30 2009-03-05 Sued-Chemie Catalysts Japan, Inc. Ammonia Decomposition Catalyst and Process for Decomposition of Ammonia Using the Catalyst
CN107597133A (zh) * 2017-10-15 2018-01-19 华东师范大学 一种自支撑氧化镍基催化剂及其制备方法和应用
CN109772339A (zh) * 2019-02-20 2019-05-21 浙江工业大学 一种氨分解制氢催化剂及其制备方法和应用
CN110270341A (zh) * 2019-06-19 2019-09-24 福州大学 一种催化剂及其制备方法和应用
CN113198476A (zh) * 2021-04-09 2021-08-03 东南大学 一种掺杂过渡金属氨分解催化剂及其制备方法和应用
CN115646500A (zh) * 2022-10-31 2023-01-31 上海簇睿低碳能源技术有限公司 一种氨分解制氢催化剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060809A1 (en) * 2005-03-30 2009-03-05 Sued-Chemie Catalysts Japan, Inc. Ammonia Decomposition Catalyst and Process for Decomposition of Ammonia Using the Catalyst
CN107597133A (zh) * 2017-10-15 2018-01-19 华东师范大学 一种自支撑氧化镍基催化剂及其制备方法和应用
CN109772339A (zh) * 2019-02-20 2019-05-21 浙江工业大学 一种氨分解制氢催化剂及其制备方法和应用
CN110270341A (zh) * 2019-06-19 2019-09-24 福州大学 一种催化剂及其制备方法和应用
CN113198476A (zh) * 2021-04-09 2021-08-03 东南大学 一种掺杂过渡金属氨分解催化剂及其制备方法和应用
CN115646500A (zh) * 2022-10-31 2023-01-31 上海簇睿低碳能源技术有限公司 一种氨分解制氢催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN113289693B (zh) 一种氨分解催化剂及其制备方法和应用
CN109759064B (zh) 一种Co@C/生物质催化剂及其制备方法和应用
CN110433838B (zh) 一种负载过渡金属的整体式氮掺杂介孔碳原子级活性位点催化剂的制备方法
CN113181957A (zh) 一种低温起活高效氨分解催化剂
CN111939907A (zh) 一种低温氨分解制氢催化剂及其制备方法和应用
CN111604045A (zh) 一种镍基氧空位载体催化剂及其制备方法和应用
CN114768859A (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN118142545A (zh) 一种Ru基低温高效氨解催化剂及其制备方法和应用
CN111111676B (zh) 一种包裹型镍基催化剂及其制备方法
CN105170156B (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法
CN115646500B (zh) 一种氨分解制氢催化剂及其制备方法与应用
CN116273053A (zh) 一种整装铁基氨分解催化剂及其制备方法和应用
CN116474811A (zh) 一种高效双金属催化剂及其在氨硼烷醇解制氢中的应用
CN106140169B (zh) 一种二甲醚水蒸气重整制氢结构化催化剂及其制备方法和应用
CN114534736A (zh) 一种用于氨分解的钙钛矿型催化剂及其制备方法和应用
CN114260016A (zh) 一种将Pd/ZnFexAl2-xO4催化剂用于甲醇重整制氢的方法
CN113559836A (zh) 一种高效负载型双金属催化剂及制备方法和应用
CN115301279B (zh) 一种低温氨分解催化剂及其制备方法与应用
CN110893347A (zh) 低温高活性镍基双金属甲烷化催化剂及其制备方法与应用
CN115364890B (zh) 一种负载型甲烷热催化裂解催化剂及其制备方法与应用
CN113117675B (zh) 一种铑铒复合金属光热催化剂及其制备方法和应用
CN115501899B (zh) 一种制备介孔碳负载的金属氮化物的方法及应用
CN109364919B (zh) 一种基于cnt-三氧化二铝/硅胶复合载体的加氢催化剂及其制备方法和应用
US11850574B2 (en) Catalyst for preparing a synthesis gas, a method for preparing the same, and a method for preparing a synthesis gas using the same
CN116272982B (zh) 一种稀土基塑料加氢裂解催化剂、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230623