CN116143513A - 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用 - Google Patents

一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN116143513A
CN116143513A CN202310019110.1A CN202310019110A CN116143513A CN 116143513 A CN116143513 A CN 116143513A CN 202310019110 A CN202310019110 A CN 202310019110A CN 116143513 A CN116143513 A CN 116143513A
Authority
CN
China
Prior art keywords
ceramic material
batio
temperature
preparation
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310019110.1A
Other languages
English (en)
Inventor
李欣
张齐
陈哲民
张旭晴
刘嘉乐
郭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202310019110.1A priority Critical patent/CN116143513A/zh
Publication of CN116143513A publication Critical patent/CN116143513A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及温度稳定型陶瓷制备的技术领域,尤其涉及一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用。温度稳定型陶瓷材料的化学式为(BaTiO3‑0.01Nb2O5‑0.01MgO)‑xBi2O3,其中0<x≤0.02,x为摩尔百分比。本发明一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料具有较高的介电常数、低的介电损耗、良好温度稳定性的优点。

Description

一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法 和应用
技术领域
本发明涉及温度稳定型陶瓷制备的技术领域,尤其涉及一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用。
背景技术
为了满足电动汽车和多层陶瓷电容器(MLCC)发展的需要,先进的温度稳定型陶瓷研究受到了世界各国的广泛关注。钛酸钡(BaTiO3)具有高介电常数、低烧结温度并且便宜的优点,被广泛用作具有高容量陶瓷电容器的主体材料。
但现有BaTiO3基X8R陶瓷材料温度稳定性有待提高,不利于后续陶瓷产品的生产,因此亟需提供一种具有较高介电常数、低的介电损耗、良好温度稳定性的BaTiO3基X8R陶瓷材料,以替代污染较大的铅基陶瓷材料成为多层陶瓷电容器在技术和经济上兼优的重要候选材料。
发明内容
针对现有技术存在的不足,本发明的目在于提供一种具有较高的介电常数、低的介电损耗、良好温度稳定性的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用。
为了实现上述目的,本发明具体采用以下技术方案予以实现:
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料,陶瓷材料的化学式为(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3,其中0<x≤0.02,x为摩尔百分比。
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(0<x≤0.02)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合得到混合物,将混合物球磨、在75℃~85℃干燥后升温至1195℃~1205℃并保温1.5h~2.5h后,以5℃/min的速度降温到480℃~520℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,球磨、烘干后过120目筛得到陶瓷材料。
进一步的,所述步骤1)中升温速度为5℃/min。
进一步的,所述步骤1)、步骤2)中球磨步骤中添加的辅料为氧化锆球和水。
进一步的,其特征在于,所述步骤1)中球磨步骤具体为:按照质量比1:5:1取混合物、氧化锆球和水混合后球磨8h~12h得到混合料。
进一步的,所述步骤1)中干燥时间为32h~40h。
进一步的,所述步骤2)中球磨步骤具体为:按照质量比1:5:1取粉碎后的块状固体、氧化锆球和水混合后球磨8h~12h。
进一步的,所述步骤2)中烘干时间为32h~40h。
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料在陶瓷产品中的应用,制作陶瓷产品时采用闪烧工艺,闪烧过程中添加电场,电场强度300V/mm、电流密度30mA/mm2,烧结温度800~1100℃。
进一步的,制作陶瓷产品时,闪烧之前采用冷等静压成型。
本发明与现有技术相比,具有如下技术效果:
本发明陶瓷材料将Bi2O3掺杂进BaTiO3-0.01Nb2O5-0.01MgO基体材料中,Bi2O3的加入能够有效地降低试样的铁电特性,提高样品的温度稳定性,展宽温度范围,这是由于Bi2O3的掺杂可以削弱BaTiO3-0.01Nb2O5-0.01MgO陶瓷的铁电性,同时起到压峰的作用,从而获得良好的温度稳定性能。
且本发明在烧结制备陶瓷产品,利用闪烧工艺能够使得陶瓷产品中的三价Bi离子在BaTiO3-0.01Nb2O5-0.01MgO的A位取代四价Ba离子。此外,传统固相烧结中由于升温保温时间较长,并且Bi元素在烧结过程中较易挥发,所以无法确定Bi元素的掺杂含量,不利于对性能的研究,而闪烧法具有烧结温度低、烧结实际时间短的优势,使Bi元素在烧结过程中来不及挥发、BaTiO3-0.01Nb2O5-0.01MgO陶瓷材料中的载流子增多,进而提高了介电常数,最终展宽了BaTiO3-0.01Nb2O5-0.01MgO陶瓷的温度稳定性;Bi2O3掺杂够降低铁电性和引入更多的载流子。
并且,本发明中采用闪烧法制备陶瓷产品,快速地降低了陶瓷烧结温度,并且相较传统固相法该样品采用闪烧法所制备的陶瓷样品能够获得更高介电常数、更低介电损耗和更宽泛的温度稳定性。通过与之前的类似配方进行改性的材料进行对比,本发明利用闪烧法所制备的陶瓷材料的温度稳定性能更加优异,并且相对其他烧结方法烧结时间短,生产效率高,烧结温度低,节能环保。
在制备陶瓷产品过程当中,采用了更加先进的冷等静压成型技术,避免了试样的浪费和粘结剂的加入,节省了制作的成本,加快了生产周期并且避免了粘结剂对试样污染的可能性,在后续步骤之中,减少了排除粘结剂的步骤,减少了资源的浪费和制作时间的浪费,除此之外,由于冷等静压成型技术是利用液体进行压力的传递,与传统单项加压的压制相比,冷等静压成型会让试样从各个方向受到压力,并且压力相比较更大,制备的生坯更加的致密,为下一步优异实验结果奠定了基础。
另外,随着人们的环保意识的加强,材料的生产要规避对环境的影响,本发明所采用的原材料中由于不含铅等重金属元素,对环境友好,在制备陶瓷材料以及陶瓷产品的过程中不会破坏环境。本发明制备陶瓷产品所采用的烧结工艺高效节能,降低时间成本,降低功耗,符合碳中和主旨。本发明陶瓷材料制备得到的陶瓷产品致密性良好,无明显的气孔存在,晶粒尺寸均匀,所以本发明能够保证Bi2O3掺杂的BaTiO3-0.01Nb2O5-0.01MgO陶瓷材料以及该材料制成的陶瓷产品具有较好的温度稳定性能。
进几年来,闪烧技术作为一种低温快速致密化的烧结技术,具有烧结温度低、保温时间短等优点。与传统固相法相比,采用闪烧技术制备的陶瓷能够大大的降低能源的损耗,并且不损失过多的性能。一般来说采用传统固相法所制备出的陶瓷性能要优于闪烧法所制备出的性能,而本发明利用闪烧法制备的Bi2O3掺杂BaTiO3基氧化物陶瓷材料的原因是闪烧法可以有效的降低Bi元素的挥发,使得材料的温度稳定性要优于传统固相法。
附图说明
图1为本发明对比例1和实施例1-4中陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0、0.0025、0.005、0.010、0.015)的XRD图谱;
图2为本发明实施例1中陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3的介电常数和介电损耗随温度变化图谱;
图3本发明实施例2中陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3的介电常数和介电损耗随温度变化图谱;
图4本发明实施例3中陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3的介电常数和介电损耗随温度变化图谱;
图5本发明实施例4中陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3的介电常数和介电损耗随温度变化图谱;
图6本发明实施例1中(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3陶瓷产品的陶瓷温度系数随温度的变化曲线;
图7本发明实施例2中(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3陶瓷产品的陶瓷温度系数随温度的变化曲线;
图8本发明实施例3中(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3陶瓷产品的陶瓷温度系数随温度的变化曲线;
图9本发明实施例4中(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3陶瓷产品的陶瓷温度系数随温度的变化曲线;
图10为本发明对比例1中BaTiO3-0.01Nb2O5-0.01MgO陶瓷产品的扫描电子显微镜(SEM)图;
图11为本发明实施例1中(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3陶瓷产品的扫描电子显微镜(SEM)图;
图12为本发明实施例2中(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3陶瓷产品的扫描电子显微镜(SEM)图;
图13为本发明实施例3中(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3陶瓷产品的扫描电子显微镜(SEM)图;
图14为本发明实施例4中(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3陶瓷产品的扫描电子显微镜(SEM)图;
图15为本发明实施例5中(BaTiO3-0.01Nb2O5-0.01MgO)-0.020Bi2O3陶瓷产品的扫描电子显微镜(SEM)图。
具体实施方式
以下结合实施例对本发明的具体内容做进一步详细解释说明。
实施例
实施例1
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0.0025)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨10h、在80℃干燥32h后,以5℃/min的速度升温至1200℃,保温1.5h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨10h,在电热鼓风干燥箱中烘干32h后,过120目筛得到尺寸均匀的(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3粉体,以每份质量0.80g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,970℃烧结60s成瓷,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在550℃进行热处理25min,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.0025Bi2O3陶瓷产品。
实施例2
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式((BaTiO3-0.01Nb2O5-0.01MgO)
-xBi2O3(x=0.005)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨10h、在80℃干燥36h后,以5℃/min的速度升温至1200℃,保温1.5h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨12h,在电热鼓风干燥箱中烘干32h后,过120目筛得到尺寸均匀的(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3粉体,以每份质量0.8g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压320s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,950℃烧结60s成瓷,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在550℃进行热处理25min,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.005Bi2O3陶瓷产品。
实施例3
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0.010)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨8h、在80℃干燥36h后,以5℃/min的速度升温至1200℃,保温1.5h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨8h,在电热鼓风干燥箱中烘干36h后,过120目筛得到尺寸均匀的(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3粉体,以每份质量0.80g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,930℃烧结60s成瓷,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在550℃进行热处理25min,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.010Bi2O3陶瓷产品。
实施例4
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0.015)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨8h、在80℃干燥36h后,以5℃/min的速度升温至1200℃,保温2h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨8h,在电热鼓风干燥箱中烘干36h后,过120目筛得到尺寸均匀的(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3粉体,以每份质量0.80g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,890℃烧结60s成瓷,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在550℃进行热处理25min,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.015Bi2O3陶瓷产品。
实施例5
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0.020)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨8h、在80℃干燥36h后,以5℃/min的速度升温至1200℃,保温2h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨8h,在电热鼓风干燥箱中烘干36h后,过120目筛得到尺寸均匀的(BaTiO3-0.01Nb2O5-0.01MgO)-0.020Bi2O3粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的(BaTiO3-0.01Nb2O5-0.01MgO)-0.020Bi2O粉体,以每份质量0.80g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,850℃烧结60s成瓷,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.020Bi2O3电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在550℃进行热处理25min,得到(BaTiO3-0.01Nb2O5-0.01MgO)-0.020Bi2O3陶瓷产品。
实施例6
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,按照实施例1中方法进行,不同之处在于:
步骤1)中球磨时间为12h、干燥温度为75℃,干燥时间为40h;之后以5℃/min的速度升温至1195℃,再降温到480℃;
步骤2)中烘干时间为40h;
测试用陶瓷试样制备的步骤3)中,烧结温度为800℃。
实施例7
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,按照实施例1中方法进行,不同之处在于,步骤1)中球磨时间为12h、干燥温度为85℃;之后以5℃/min的速度升温至1205℃,再降温到520℃;
测试用陶瓷试样制备的步骤3)中,烧结温度为1100℃。
对比例
对比例1
一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合合得到混合物,按照1:5:1的质量比取混合物、氧化锆球和去离子水混合后球磨8h、在80℃干燥36h后,以5℃/min的速度升温至1200℃,保温2h后,以5℃/min的速度降温到500℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,按照1:5:1的质量比取粉碎后的块状固体、氧化锆球和水,混合后球磨8h,在电热鼓风干燥箱中烘干36h后,过120目筛得到尺寸均匀的BaTiO3-0.01Nb2O5-0.01MgO粉体,即陶瓷材料。
测试用陶瓷试样制备
1)将得到的BaTiO3-0.01Nb2O5-0.01MgO粉体,以每份质量0.78g进行称量,然后倒入“狗骨”模具当中,施加600N的力,将成型好的“狗骨”进行脱模,得到形状完好的试样;
2)将“狗骨”放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压280s;
3)将得到的试样从胶套中取出后于闪烧管式炉中施加300V、30mA的电场,1000℃烧结50s成瓷,得到BaTiO3-0.01Nb2O5-0.01MgO电介质陶瓷材料试样;
4)用切割机将3)中一次烧结好的陶瓷试样切成小片,打磨、清洗步骤3)中一次烧结好的陶瓷试样后,在陶瓷试样的正反两面均匀涂覆银电极浆料,在540℃进行热处理20min,得到BaTiO3-0.01Nb2O5-0.01MgO陶瓷产品。
性能检测
对实施例1-5以及对比例1中测试试样进行测试,具体结果如图1-15所示。
参照图1,图1为对比例1以及实施例1-4制备试样的XRD曲线,由图1可以看出陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0,0.0025,0.005,0.010,0.015,0.020)在不同的掺杂量下,均合成了纯相钙钛矿晶体结构的陶瓷材料,未产生第二相,并且随着掺杂含量的增加,峰位发生向左偏移在x=0.010处向右偏移,这与介温曲线的规律吻合。
参照图2-5,分别为实施例1-4制备试样的介电常数和介电损耗随着温度变化的曲线,四者对比可以看出陶瓷材料随着Bi3+离子掺杂含量的上升,介电常数先增加后减少,拐点在掺杂量为x=0.010。
参照图6-9,分别为实施例1-4制备试样的温度系数随温度的变化曲线,图中箭头指向方向从左到右依次是1kHz到1000kHz。四者对比可以看出x=0.10组分的曲线在-55℃至150℃的温度范围内表现出良好的介电常数稳定性,符合X8R标准。
参照图10-15,分别为对比例1和实施例1-5制备试样的SEM图片,可以看出陶瓷材料(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(x=0,0.0025,0.005,0.010,0.015,0.020)均有良好的致密性,随着掺杂量的增加,气孔明显减少,晶粒尺寸先减小后增大,在0.010处为明显的尺寸变化拐点。

Claims (10)

1.一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料,其特征在于:陶瓷材料的化学式为(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3,其中0<x≤0.02,x为摩尔百分比。
2.一种如权利要求1所述的低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,包括以下步骤:
1)预烧制备块状固体:按照陶瓷材料化学式(BaTiO3-0.01Nb2O5-0.01MgO)-xBi2O3(0<x≤0.02)中摩尔百分比,取Nb2O5、MgO、BaCO3、TiO2和Bi2O3混合得到混合物,将混合物球磨、在75℃~85℃干燥后升温至1195℃~1205℃并保温1.5h~2.5h后,以5℃/min的速度降温到480℃~520℃,之后冷却至室温后得到块状固体;
2)制备陶瓷材料:将块状固体粉碎后,球磨、烘干后过120目筛得到陶瓷材料。
3.如权利要求2所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤1)中升温速度为5℃/min。
4.如权利要求2所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤1)、步骤2)中球磨步骤中添加的辅料为氧化锆球和水。
5.如权利要求2或4所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤1)中球磨步骤具体为:按照质量比1:5:1取混合物、氧化锆球和水混合后球磨8~12h得到混合料。
6.如权利要求2所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤1)中干燥时间为32~40h。
7.如权利要求2或4所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤2)中球磨步骤具体为:按照质量比1:5:1取粉碎后的块状固体、氧化锆球和水混合后球磨8~12h。
8.如权利要求2所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料的制备方法,其特征在于,所述步骤2)中烘干时间为32~40h。
9.一种如权利要求1所述的低温烧结BaTiO3基X8R温度稳定型陶瓷材料在陶瓷产品中的应用,其特征在于,制作陶瓷产品时采用闪烧工艺,闪烧过程中添加电场,电场强度300V/mm、电流密度30mA/mm2,烧结温度800~1100℃。
10.如权利要求9所述的一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料在陶瓷产品的应用,其特征在于,制作陶瓷产品时,闪烧之前采用冷等静压成型。
CN202310019110.1A 2023-01-06 2023-01-06 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用 Pending CN116143513A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310019110.1A CN116143513A (zh) 2023-01-06 2023-01-06 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310019110.1A CN116143513A (zh) 2023-01-06 2023-01-06 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116143513A true CN116143513A (zh) 2023-05-23

Family

ID=86372923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310019110.1A Pending CN116143513A (zh) 2023-01-06 2023-01-06 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116143513A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765626A (ja) * 1993-08-30 1995-03-10 Taiyo Yuden Co Ltd 誘電体磁器組成物
CN105036734A (zh) * 2015-06-25 2015-11-11 武汉理工大学 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN108610042A (zh) * 2018-04-27 2018-10-02 天津大学 具有巨介电常数高绝缘特性的介质材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765626A (ja) * 1993-08-30 1995-03-10 Taiyo Yuden Co Ltd 誘電体磁器組成物
CN105036734A (zh) * 2015-06-25 2015-11-11 武汉理工大学 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN108610042A (zh) * 2018-04-27 2018-10-02 天津大学 具有巨介电常数高绝缘特性的介质材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINGXIA LI: "Colossal permittivity (Nb, Mg) co-doped BaTiO3 ceramics with excellent temperature stability and high insulation resistivity", 《CERAMICS INTERNATIONAL》, vol. 47, no. 4, pages 10072 - 10078, XP086501603, DOI: 10.1016/j.ceramint.2020.12.154 *
WU SHUNHUA: "Effect of Bi2O3 Additive on the Microstructure and Dielectric Properties of BaTiO3-Based Ceramics Sintered at Lower Temperature", 《JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY》, vol. 26, no. 5, pages 472 - 476 *
伍健: "钛酸钡基陶瓷的高温电场烧结研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 2019, pages 015 - 776 *

Similar Documents

Publication Publication Date Title
CN111039672B (zh) 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN112225559A (zh) 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
US10759704B2 (en) Large-size, high-dielectric breakdown strength titanium oxide based dielectric ceramic materials, preparation method and application thereof
CN113526950A (zh) 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN109694247B (zh) 一种高效率的储能线性电介质陶瓷材料及其制备方法
CN102992756A (zh) 一种高介电常数x8r型电容器陶瓷材料及其制备方法
CN110981478B (zh) 一种Zr掺杂铌酸钡钠高击穿强度钨青铜结构陶瓷材料及其制备方法
CN108975913A (zh) 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN116143513A (zh) 一种低温烧结BaTiO3基X8R温度稳定型陶瓷材料及其制备方法和应用
CN101357848A (zh) 激光烧结复合制备电子陶瓷的方法
CN106045500A (zh) 一种nbt基高温度低损耗陶瓷电容器的制备方法
CN1130897A (zh) 磁性介电陶瓷合成材料,其生产及使用方法,以及多功能元件
CN103641477B (zh) 一种反铁电储能陶瓷材料及其制备方法
CN113233890A (zh) 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN116477938B (zh) 钛酸钡基无铅压电陶瓷及其制备方法
CN107586060A (zh) 一种高储能密度介质材料及其制备方法
CN115849895B (zh) 一种钽镁镧改性铁酸铋基电介质储能材料及制备方法
CN116375465A (zh) 一种X7R型MLCC用Bi2O3掺杂BaTiO3基陶瓷材料及其制备方法
CN115159977B (zh) 一种宽温低损耗介质陶瓷材料及其制备方法
CN111499374B (zh) 一种电容器用陶瓷介电材料及其制备方法
CN116768617B (zh) 稀土改性钛酸铋钠基电容器储能材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination