CN113233890A - 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷 - Google Patents

一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷 Download PDF

Info

Publication number
CN113233890A
CN113233890A CN202110520158.1A CN202110520158A CN113233890A CN 113233890 A CN113233890 A CN 113233890A CN 202110520158 A CN202110520158 A CN 202110520158A CN 113233890 A CN113233890 A CN 113233890A
Authority
CN
China
Prior art keywords
tio
ceramic material
sintering
bismuth titanate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110520158.1A
Other languages
English (en)
Inventor
蒲永平
金格
张倩雯
李润
杜欣怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202110520158.1A priority Critical patent/CN113233890A/zh
Publication of CN113233890A publication Critical patent/CN113233890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高电卡效应的钛酸铋钠基陶瓷材料,化学式为(1‑x)Na0.5Bi0.5TiO3‑x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)‑TiO3,x的取值范围为0‑0.3。通过分别合成NBT和NBBSC陶瓷粉体并分别进行预烧,再按化学式(1‑x)Na0.5Bi0.5TiO3‑x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3(x=0‑0.3)配比取料,球磨烘干再次预烧后,经二次球磨烘干。本发明的陶瓷材料可用于制作制冷材料。本发明制备工艺简单,原料价格低廉,制作成本低,用于其制作的铁电制冷材料能够长期使用无需更换,易于小型微型化,满足当前制冷需求。

Description

一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及 陶瓷
技术领域
本发明涉及材料制备技术领域,具体涉及一种高电卡效应的高熵组分改性钛酸铋钠基陶瓷材料、制备方法及应用;还涉及应用该陶瓷材料制作的陶瓷。
背景技术
社会和经济的高速发展不可避免地会带来环境的破坏及能源的衰竭。尤其是当全球变暖的情况不断在扩大,环保型制冷技术的提高迫在眉睫。在制冷技术领域,传统的气体压缩制冷使用氟利昂作为制冷剂,气体压缩技术的能量转换效率低,而且会对臭氧层产生破坏,违背了保护环境、节约能源的原则。我们应当以研究新的物理效应为基础,寻找新的材料,研发出高效、可持续的新型制冷技术,开发新型、环保型的制冷器。其中,铁电制冷作为一种绿色节能、高效冷却技术,有可能替代传统的蒸汽-压缩制冷,得到人们的广泛关注。铁电制冷利用的是铁电材料中存在的电卡效应,通过对极性材料施加及撤去电场,材料中的电偶极子在有序无序之间转换,材料熵值也随之改变,产生温度的变化,实现制冷。铁电制冷材料能够长期使用无需更换,且通常使用陶瓷或薄膜材料,易于小型微型化,满足当前制冷需求。如何制备高电卡效应的铁电材料则是目前需解决的难题。
发明内容
Na0.5Bi0.5TiO3(简称NBT)基陶瓷作为铁电材料已经得到广泛研究。其具备高的极化强度,极性大的材料与极性小的相比随温度改变拥有更高的变化率,即更易获得高的电卡效应。此外,Na0.5Bi0.5TiO3陶瓷具有复杂的相变,多相转换的铁电体在大电场下可以获得较大的电卡效应,虽然居里温度(320℃)较高,但其在远低于居里峰的退极化温度Td附近也能发生较大的极化转变。选取的(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3(简称NBBSC)高熵陶瓷组分,具有高的Pm,低的Pr,弛豫行为明显,且居里温度接近室温,将其作为高熵添加剂引入Na0.5Bi0.5TiO3铁电陶瓷材料中,诱导其在室温附近获得宽温区的大电卡效应。
本发明的目的在于提供一种高电卡效应的高熵组分改性钛酸铋钠基陶瓷材料,在NBT基体中,通过添加NBBSC高熵组分以期提高陶瓷材料的极化熵从而改善其电卡性能。
为达成上述所提到的性能,本发明采用如下技术方案一种高电卡效应的钛酸铋钠基陶瓷材料,化学式为 (1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)-TiO3,x的取值范围为 0-0.3。
本发明还提供了高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1、分别将Na0.5Bi0.5TiO3粉体、(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体按比例配料后第一次预烧;
步骤2、将两种经预烧后的粉体按照化学式进行配料后混匀,化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3;然后进行第一次球磨烘干后进行第二次预烧;
步骤3、将经第二次预烧后物料进行第二次球磨后烘干,得到高电卡效应的高熵组分改性钛酸铋钠基陶瓷材料。
所述步骤1)中,Na0.5Bi0.5TiO3粉体、(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体分别由Na2CO3、Bi2O3、BaCO3、SrCO3、CaCO3和TiO2配制而成。
所述步骤1)中,所述第一次预烧温度800~950℃。
所述步骤2)中,所述第二次预烧温度800~950℃。
所诉步骤1)和步骤2)所述第一次预烧和第二次预烧的预烧条件为以5℃/min升温至预烧温度,保温2小时;再以5℃/min降温至500℃后,随炉冷却到室温。
所述步骤2)经第二次预烧后的物料粉碎后再进行第二次球磨。
所述步骤1)和步骤2)中的第一次球磨和第二次球磨条件:以锆球石进行球磨,球磨时间为4~6小时。
本发明的高电卡效应的钛酸铋钠基陶瓷材料用于制作制冷材料的用途。采用本发明的陶瓷材料制作的铁电制冷材料,具有温区宽、高电卡效应等特点,可长期使用无需更换,且易于小型微型化。
本发明还提供了一种陶瓷,其陶瓷基体采用权利要求1所述的钛酸铋钠基陶瓷材料经成型烧结而成,其烧结温度1150-1200℃。其成型采用冷等静压成型。
本发明的原理在于:Na0.5Bi0.5TiO3陶瓷作为铁电材料已经得到广泛研究。其具备高的极化强度,极性大的材料与极性小的相比随温度改变拥有更高的变化率,即更易获得高的电卡效应。此外,Na0.5Bi0.5TiO3陶瓷具有复杂的相变,多相转换的铁电体在大电场下可以获得较大的电卡效应,虽然居里温度(320℃)较高,但其在远低于居里峰的退极化温度Td附近也能发生较大的极化转变。选取的 (Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3高熵陶瓷组分,具有高的最大极化强度 Pm,低的剩余极化强度Pr,弛豫行为明显,且居里温度接近室温,将其作为高熵添加剂引入Na0.5Bi0.5TiO3铁电陶瓷材料中,诱导其在室温附近获得宽温区的大电卡效应。
与现有的技术相比,本发明具有的有益结果:本发明利用 (Na0.21Bi0.21Ba0.21Sr0.18 5Ca0.185)TiO3高熵组分中离子高度无序产生的弛豫特性以及经元素摩尔比调控获得的高极化强度,将其引入高剩余极化的 NBT体系中,(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3的加入使铁电畴数量增加,极化强度增大,在外加电场作用下,有更多的数量的电偶极子翻转,提高体系中的绝热熵变,对应于电卡性能的提高。由于反铁电相中反向平行偶极子的存在,使其呈现负电卡特性,其中,在x=0.1的体系中获得了最大的负电卡,在60kV/cm电场下绝热温变达到-1.55K,ΔT/ΔE 为0.026,且绝热温变的峰值宽化,工作温区拓宽。
因此,本发明的陶瓷材料可作为铁电制冷材料,由本发明的陶瓷材料制作的制冷产品,能够长期使用无需更换,易于小型微型化,满足当前制冷需求。
在本发明制备的陶瓷材料使用的原料常见且成本低,不含铅等重金属元素,对环境友好,且制备过程简单,可实现大规模生产。
采用本发明制备的陶瓷材料制作的陶瓷产品,当采用了更加先进的冷等静压成型技术,避免了原料的浪费和粘结剂的加入,节省了制作的成本,加快了生产周期并且避免了粘结剂对产品污染的可能性,在后续步骤之中,减少了排除粘结剂的步骤,减少了资源的浪费和制作时间的浪费。
附图说明
图1为采用实施例1至4制备的陶瓷材料制作的陶瓷样品的XRD 图谱。
图2为采用实施例1至4制备的陶瓷材料制作的陶瓷样品的变温电滞回线。
图3为采用实施例1至4制备的陶瓷材料制作的陶瓷样品在不同电场下的绝热温变。
具体实施方式
本发明的高电卡效应的钛酸铋钠基陶瓷材料,化学式为 (1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)-TiO3,x的取值范围为0 ≤x≤0.3,其中x表示摩尔百分比。
本发明的高电卡效应的钛酸铋钠基陶瓷材料制备方法包括:步骤 1、分别将Na0.5Bi0.5TiO3粉体、(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体按比例配料后在800~950℃温度下第一次预烧;
步骤2、将两种经预烧后的粉体按照化学式进行配料后混匀,化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3;然后进行第一次球磨烘干后进行在800~950℃温度下第二次预烧;
步骤3、将经第二次预烧后物料进行第二次球磨后烘干,得到高电卡效应的高熵组分改性钛酸铋钠基陶瓷材料。
本发明的原料涉及Na2CO3、Bi2O3、BaCO3、SrCO3、CaCO3和TiO2,均为分析纯级。
下面结合附图及实施例对本发明进行详细说明,但是本发明不局限于以下实施例。
实施例1
按化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,其中x表示摩尔百分比,且x=0进行陶瓷材料配料制备,制备方法包括以下步骤:
(1)按照化学式Na0.5Bi0.5TiO3,将Na2CO3、Bi2O3和TiO2混合均匀后进行第一次预烧:以5℃/min升温至850℃,保温2小时,之后,以5℃/min降温至500℃,随炉冷却到室温,制得NBT粉体;
(2)将NBT粉体及去离子水混合,以锆球石为球磨介质进行第一次球磨,球磨时间6小时;然后烘干、过筛,再进行第二次预烧:以5℃ /min升温至800℃,保温2小时,之后,以5℃/min降温至500℃,随炉冷却到室温,得到块状固体;
(3)将块状固体粉碎后,加入去离子水以锆球石为球磨介质进行第二次球磨,球磨时间5小时;然后烘干过200-300目筛得到尺寸均匀的 Na0.5Bi0.5TiO3粉体。
对制得的Na0.5Bi0.5TiO3粉体进行性能测试:
(4)将得到的Na0.5Bi0.5TiO3粉体,以每份质量0.35-0.40g进行称量,然后倒入模具当中,施加600N的力,将成型好的圆片进行脱模,得到圆片样品;
(5)将圆片样品放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
(6)将圆片样品从胶套中取出后于箱式炉中1150℃烧结2小时成瓷;
(7)打磨、清洗步骤(6)中一次烧结好的样品后,在样品的正反两面均匀涂覆银电极浆料,在725℃进行热处理25min,得到 Na0.5Bi0.5TiO3陶瓷样品。
对制得的Na0.5Bi0.5TiO3陶瓷样品进行XRD图谱、变温电滞回线分析、绝热温变测试。
实施例2
按化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,其中x表示摩尔百分比,且x=0.1,进行陶瓷材料配料制备,制备方法包括以下步骤:
(1)按照化学式Na0.5Bi0.5TiO3,将Na2CO3、Bi2O3和TiO2混合均匀后进行第一次预烧:以5℃/min升温至950℃,保温2小时,之后,以5℃/min降温至500℃,制得NBT粉体;
按照化学式(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,将Na2CO3、Bi2O3、 BaCO3、SrCO3、CaCO3和TiO2混合均匀后进行第一次预烧:以5℃/min 升温至850℃,保温2小时,之后,以5℃/min降温至500℃,制得 NBBSC粉体;
(2)将NBBSC粉体和NBT粉体按照化学式(1-x)Na0.5Bi0.5TiO3- x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,x=0.1配制,然后进行第一次球磨:通过加入去离子水,以锆球石球磨,球磨时间5小时;然后烘干过筛,再经第二次预烧:以5℃/min升温至850℃,保温2小时,之后,以5℃ /min降温至500℃,随炉冷却到室温。得到块状固体;
(3)将块状固体粉碎后,再次进行第二次球磨:通过加入去离子水,以锆球石球磨,球磨时间5小时;然后烘干过200-300目筛,得到尺寸均匀的0.9Na0.5Bi0.5TiO3-0.1(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体;
对制得的0.9Na0.5Bi0.5TiO3-0.1(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体进行性能测试:
(4)将得到的0.9Na0.5Bi0.5TiO3-0.1(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)- TiO3粉体,以每份质量0.35-0.40g进行称量,然后倒入模具当中,施加 600N的力,将成型好的圆片进行脱模,得到形状完好的样品;
(5)将圆片放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
(6)将得到的样品从胶套中取出后于箱式炉中1150℃烧结2小时成瓷;
(7)打磨、清洗步骤(6)中一次烧结好的样品后,在样品的正反两面均匀涂覆银电极浆料,在725℃进行热处理25min,得到 0.9Na0.5Bi0.5TiO3-0.1(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品。
对制得的0.9Na0.5Bi0.5TiO3-0.1(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品进行XRD图谱、变温电滞回线分析、在不同电场下的绝热温变测试。
实施例3
按化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,其中x表示摩尔百分比,且x=0.2,进行陶瓷材料配料制备,制备方法包括以下步骤:
(1)按照化学式Na0.5Bi0.5TiO3,将Na2CO3、Bi2O3和TiO2混合均匀后进行第一次预烧:以5℃/min升温至800℃,保温2小时,之后,以5℃/min降温至500℃,制得NBT粉体;
按照化学式(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,将Na2CO3、Bi2O3、 BaCO3、SrCO3、CaCO3和TiO2混合均匀后进行第一次预烧:以5℃/min 升温至850℃,保温2小时,之后,以5℃/min降温至500℃,制得 NBBSC粉体;
(2)将NBBSC粉体和NBT粉体按照化学式(1-x)Na0.5Bi0.5TiO3- x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,x=0.2配制,然后进行第一次球磨:通过加入去离子水,以锆球石球磨,球磨时间4小时;然后烘干过筛,再经第二次预烧:以5℃/min升温至900℃,保温2小时,之后,以5℃ /min降温至500℃,随炉冷却到室温。得到块状固体;
(3)将块状固体粉碎后,再次进行第二次球磨:通过加入去离子水,以锆球石球磨,球磨时间6小时;然后烘干过200-300目筛,得到0.8 Na0.5Bi0.5TiO3-0.2(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3尺寸均匀的粉体;
对制得的0.8Na0.5Bi0.5TiO3-0.2(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体进行性能测试:
(4)将得到的0.8Na0.5Bi0.5TiO3-0.2(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)- TiO3粉体,以每份质量0.35-0.40g进行称量,然后倒入模具当中,施加 600N的力,将成型好的圆片进行脱模,得到形状完好的样品;
(5)将圆片放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
(6)将得到的样品从胶套中取出后于箱式炉中1175℃烧结2小时成瓷;
(7)打磨、清洗步骤(6)中一次烧结好的样品后,在样品的正反两面均匀涂覆银电极浆料,在725℃进行热处理25min,得到 0.8Na0.5Bi0.5TiO3-0.2(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品。
对制得的0.8Na0.5Bi0.5TiO3-0.2(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品进行XRD图谱、变温电滞回线分析、在不同电场下的绝热温变测试。
实施例4
按化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,其中x表示摩尔百分比,且x=0.3,进行陶瓷材料配料制备,制备方法包括以下步骤:
(1)按照化学式Na0.5Bi0.5TiO3,将Na2CO3、Bi2O3和TiO2混合均匀后进行第一次预烧:以5℃/min升温至900℃,保温2小时,之后,以5℃/min降温至500℃,制得NBT粉体;
按照化学式(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,将Na2CO3、Bi2O3、 BaCO3、SrCO3、CaCO3和TiO2混合均匀后进行第一次预烧:以5℃/min 升温至950℃,保温2小时,之后,以5℃/min降温至500℃,制得 NBBSC粉体;
(2)将NBBSC粉体和NBT粉体按照化学式(1-x)Na0.5Bi0.5TiO3- x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3,x=0.3配制,然后进行第一次球磨:通过加入去离子水,以锆球石球磨,球磨时间6小时;然后烘干过筛,再经第二次预烧:以5℃/min升温至800℃,保温2小时,之后,以5℃ /min降温至500℃,随炉冷却到室温。得到块状固体;
(3)将块状固体粉碎后,再次进行第二次球磨:通过加入去离子水,以锆球石球磨,球磨时间6小时;然后烘干过200-300目筛,得到0.7 Na0.5Bi0.5TiO3-0.3(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3尺寸均匀的粉体;
对制得的0.7Na0.5Bi0.5TiO3-0.3(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体进行性能测试:
(4)将得到的0.7Na0.5Bi0.5TiO3-0.3(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)- TiO3粉体,以每份质量0.35-0.40g进行称量,然后倒入模具当中,施加 600N的力,将成型好的圆片进行脱模,得到形状完好的样品;
(5)将圆片放置于胶套当中,利用抽真空设备将胶套的空气排出,密封胶套口,放入冷等静压成型,在200Mpa的压力下保压300s;
(6)将得到的样品从胶套中取出后于箱式炉中1200℃烧结2小时成瓷;
(7)打磨、清洗步骤(6)中一次烧结好的样品后,在样品的正反两面均匀涂覆银电极浆料,在725℃进行热处理25min,得到0.7Na0.5Bi0.5TiO3-0.3(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品。
对制得的0.7Na0.5Bi0.5TiO3-0.3(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品进行XRD图谱、变温电滞回线分析、在不同电场下的绝热温变测试。
参照图1,图1为采用各实施例中制备陶瓷材料制作的陶瓷样品的 XRD曲线,由图1中可以看出,当x=0-0.3时, (1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21-Ba0.21Sr0.185Ca0.185)TiO3陶瓷样品均为单相钙钛矿结构,没有第二相的形成,这说明在制备过程中NBBSC成功进入了NBT的晶格中,形成了单相固溶体。
参照图2,图2(a-d)为采用各实施例中制备的陶瓷材料制作的陶瓷样品的变温电滞回线,实验测试温度范围30-120℃,外加电场60 kV/cm。通过采用本发明的陶瓷材料制备的陶瓷样品的极化强度随x含量的增加而增大。当x<0.3时,低温处存在相转变(三方-四方),相分界点附近的极化取向种类较多,随温度升高极化取向在两种结构之间跳跃,使饱和极化强度升高,电滞回线呈现出纵向拉伸的行为;当x=0.3 时,电滞回线随温度升高转为细长状,电滞回线所包围的面积减小,矫顽场随温度的升高从19.87kV/cm降低到6.74kV/cm;剩余极化强度则从15.96μC/cm2逐步降低到120℃时的6.01μC/cm2,与前几个组分的变化趋势相反,此时铁电体的长程有序受到破坏,电滞回线变细。
参照图3,图3(a-d)为采用各实施例中制备陶瓷材料制作的陶瓷样品的在不同电场下的绝热温变。当x=0时,在纯的NBT陶瓷中最大的负制冷为-0.76K;当x=0.1时,在室温到120℃的温度范围内,ΔT减小后增大,在90℃附近谷值出现,最大负制冷得到显著提高,此时电卡值达到-1.55K;x=0.2时,高温处ΔT升高转为正值,正电卡出现,体系中正负电卡共存,可以通过电场的调控实现正负电卡连续制冷,提高制冷效率,此时的绝热温度为正负峰值绝对值的总和;x=0.3时,体系由负电卡完全转向正电卡,此时ΔT为1.09K。从图中可以看出随电场强度的增加,ΔT也随之提高,因此某一特定电场下计算的ΔT并不能很好的说明制冷效果,引入电卡参数ΔT/ΔE更直观的说明电卡效应的强弱, 0.9NBT-0.1NBBSC陶瓷样品ΔT/ΔE达到最大值0.026。高熵成分的引入使体系的偶极子数量增加,极化强度提高,随温度有更高的变化率,同时成分起伏相变加剧所带来弛豫特性增强,使体系中高制冷温度区域范围扩大,实现宽工作温区的大电卡制冷。
由以上实验可知,本发明的钛酸铋钠基陶瓷材料具有高电卡效应,工作温区宽,可用于制作制冷材料。

Claims (10)

1.一种高电卡效应的钛酸铋钠基陶瓷材料,其特征在于,化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)-TiO3,x的取值范围为0-0.3。
2.根据权利要求1所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1、分别将Na0.5Bi0.5TiO3粉体、(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体按比例配料后第一次预烧;
步骤2、将两种经预烧后的粉体按照化学式进行配料后混匀,化学式为(1-x)Na0.5Bi0.5TiO3-x(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3;然后进行第一次球磨烘干后进行第二次预烧;
步骤3、将经第二次预烧后物料进行第二次球磨后烘干,得到高电卡效应的高熵组分改性钛酸铋钠基陶瓷材料。
3.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于所述步骤1)中,Na0.5Bi0.5TiO3粉体、(Na0.21Bi0.21Ba0.21Sr0.185Ca0.185)TiO3粉体分别由Na2CO3、Bi2O3、BaCO3、SrCO3、CaCO3和TiO2配制而成。
4.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于所述步骤1)中,所述第一次预烧温度800~950℃。
5.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于所述步骤2)中,所述第二次预烧温度800~950℃。
6.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于步骤1)和步骤2)所述第一次预烧和第二次预烧的预烧条件为以5℃/min升温至预烧温度,保温2小时;再以5℃/min降温至500℃后,随炉冷却到室温。
7.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于步骤2)经第二次预烧后的物料粉碎后再进行第二次球磨。
8.根据权利要求2所述的高电卡效应的钛酸铋钠基陶瓷材料的制备方法,其特征在于步骤1)和步骤2)中的第一次球磨和第二次球磨条件:以锆球石进行球磨,球磨时间为4~6小时。
9.权利要求1所述的高电卡效应的钛酸铋钠基陶瓷材料用于制作制冷材料的用途。
10.一种陶瓷,其特征在于其陶瓷基体采用权利要求1所述的钛酸铋钠基陶瓷材料经成型烧结而成,其烧结温度1150-1200℃。
CN202110520158.1A 2021-05-13 2021-05-13 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷 Pending CN113233890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110520158.1A CN113233890A (zh) 2021-05-13 2021-05-13 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110520158.1A CN113233890A (zh) 2021-05-13 2021-05-13 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷

Publications (1)

Publication Number Publication Date
CN113233890A true CN113233890A (zh) 2021-08-10

Family

ID=77133945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110520158.1A Pending CN113233890A (zh) 2021-05-13 2021-05-13 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷

Country Status (1)

Country Link
CN (1) CN113233890A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082034A (zh) * 2023-01-09 2023-05-09 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541979A (zh) * 2003-11-07 2004-11-03 四川大学 钛酸铋钠钡锶钙系无铅压电陶瓷
CN101172850A (zh) * 2007-10-26 2008-05-07 同济大学 一种介电可调的复相陶瓷质材料
CN101462875A (zh) * 2009-01-15 2009-06-24 西安科技大学 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
CN101921108A (zh) * 2010-09-11 2010-12-22 天津大学 一种钛酸锶钡基超细粉体及制备方法
CN104446450A (zh) * 2014-11-28 2015-03-25 宁波大学 无铅铁电制冷材料及制备方法和用途
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN106938929A (zh) * 2017-03-23 2017-07-11 同济大学 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541979A (zh) * 2003-11-07 2004-11-03 四川大学 钛酸铋钠钡锶钙系无铅压电陶瓷
CN101172850A (zh) * 2007-10-26 2008-05-07 同济大学 一种介电可调的复相陶瓷质材料
CN101462875A (zh) * 2009-01-15 2009-06-24 西安科技大学 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
CN101921108A (zh) * 2010-09-11 2010-12-22 天津大学 一种钛酸锶钡基超细粉体及制备方法
CN104446450A (zh) * 2014-11-28 2015-03-25 宁波大学 无铅铁电制冷材料及制备方法和用途
CN104987064A (zh) * 2015-08-13 2015-10-21 内蒙古科技大学 一种负电卡效应的钛酸铋钠基无铅陶瓷及其制备方法
CN106938929A (zh) * 2017-03-23 2017-07-11 同济大学 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082034A (zh) * 2023-01-09 2023-05-09 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN116082034B (zh) * 2023-01-09 2023-11-10 国科大杭州高等研究院 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111039672A (zh) 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
Jiao et al. Energy storage performance of 0.55 Bi0. 5Na0. 5TiO3-0.45 SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route
CN112225559A (zh) 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN114716248B (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN113716956A (zh) 一种锆钛酸锶固溶改性钛酸铋钠基陶瓷材料及其制备方法
CN115536390B (zh) 一种透明介质储能陶瓷材料及制备方法与应用
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN114085079A (zh) 一种高储能的非等摩尔比高熵钙钛矿氧化物陶瓷材料及其制备方法
CN113233890A (zh) 一种高电卡效应的钛酸铋钠基陶瓷材料、制备方法、用途及陶瓷
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
CN106699173A (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN110981478B (zh) 一种Zr掺杂铌酸钡钠高击穿强度钨青铜结构陶瓷材料及其制备方法
CN109111222B (zh) 一种Co掺杂的具有奥里维里斯结构的多铁性陶瓷及其制备方法
CN103951405A (zh) 三元高居里温度压电陶瓷材料及其制备方法
Wang et al. Properties of spark plasma sintered pseudocubic BiFeO3–BaTiO3 ceramics
CN102910913B (zh) YMnO3电介质陶瓷的制备工艺及YMnO3电介质陶瓷电容器
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
Chen et al. Dielectric properties of Bi 4 Ti 3 O 12 ceramics by impedance spectroscopic method
CN108675784B (zh) 新型Fe掺杂的SrBi2Nb2O9具有奥里维里斯结构的多铁性陶瓷材料及其制备方法
CN107840659A (zh) 一种钨青铜纯相室温多铁性陶瓷及其制备方法
Cheng et al. Grain‐orientation‐engineered PMN‐10PT ceramics for electrocaloric applications
CN116813335B (zh) 具有宽温区高电卡效应的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法和应用
CN109704760B (zh) 一种具有奥里维里斯结构非化学计量比的单相多铁性陶瓷及其制备方法
CN116425537B (zh) Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210810

WD01 Invention patent application deemed withdrawn after publication