CN116082028B - 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途 - Google Patents

一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途 Download PDF

Info

Publication number
CN116082028B
CN116082028B CN202211499984.3A CN202211499984A CN116082028B CN 116082028 B CN116082028 B CN 116082028B CN 202211499984 A CN202211499984 A CN 202211499984A CN 116082028 B CN116082028 B CN 116082028B
Authority
CN
China
Prior art keywords
fuel cell
anode
bzcyb
ammonia
bcfzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211499984.3A
Other languages
English (en)
Other versions
CN116082028A (zh
Inventor
杨广明
刘左清
吴奕钰
薛依菲
冉然
周嵬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202211499984.3A priority Critical patent/CN116082028B/zh
Publication of CN116082028A publication Critical patent/CN116082028A/zh
Application granted granted Critical
Publication of CN116082028B publication Critical patent/CN116082028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/222Fuel cells in which the fuel is based on compounds containing nitrogen, e.g. hydrazine, ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途,属于燃料电池电极材料技术领域。该电池阴极材料组成分子式为BaCo0.4Fe0.4Zr0.1Y0.1O3‑δ(BCFZY),电解质材料组成分子式为BaZr0.1Ce0.7Y0.1Yb0.1O3‑δ(BZCYYb),阳极材料组成分子式为Ni‑Ba(Zr0.1Ce0.7Y0.1Yb0.1)1‑ 2xRuxFexO3‑δ(Ni‑BZCYYbRF),其中x表示Ru、Fe元素掺杂量,x=0.03,δ表示氧空位含量。通过在钙钛矿材料BaZr0.1Ce0.7Y0.1Yb0.1O3‑δ中掺杂一定含量的钌、铁元素提高氨燃料电池阳极的氨催化活性、电导率,降低材料的阻抗。所以,通过Ru、Fe的掺杂能够有效提高氨燃料电池的电化学性能,增加质子陶瓷氨燃料电池实用性,促进其商业化进展。

Description

一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃 料电池中的用途
技术领域
本发明涉及一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途,具体涉及到的钙钛矿材料Ba(Zr0.1Ce0.7Y0.1Yb0.1)1-2xRuxFexO3-δ(BZCYYbRF)和质子陶瓷氨燃料电池的复合阳极及其制备方法和应用,属于燃料电池电极材料技术领域。
背景技术
人类社会的发展与对自然界的开发利用之间的矛盾越来越突出。21世纪的严重的问题是如何节约有限的能源,以及如何降低二氧化碳和其它污染物的排放。为了减少总的能耗,建立起最先进的有效利用能源的体系,我们急需在发电和运输两个领域中开发高能源利用效率的高新技术。在过去的几十年当中,世界主要的发电方式还是以燃烧煤、石油、天然气等为主,这样的发电方式不仅效率低而且对环境的污染很大,不适应新形式下经济发展的需要。
因此,人们尝试研制新技术从而通过最高效,洁净的方式来获得能源。其中,燃料电池是继水电、火电、核电之后的第四代发电技术,与常规发电技术相比,燃料电池有发电效率高、环境友好等优点,因此受到了世界各国广泛的关注。燃料电池可以使用煤、天然气和生物质等各种类型的燃料,碳排放量低或接近零。同时氢能作为一种绿色能源也被给予厚望。不幸的是,H2体积密度低、液化温度低、运输成本高等问题严重阻碍了氢能的商业化实施可替代的、可持续的和清洁的燃料系统。与氢燃料相比,NH3作为一种无碳的氢载体具有更多重要的优势,如更高的容积能密度、成熟的量产技术、易于存储(室温液化和中等压力)和易于运输。近年来,氨燃料电池被认为是一种新的移动应用能源供应方式。
与传统的基于氧离子传导电解质的固体氧化物燃料电池(SOFC)相比,质子陶瓷燃料电池(PCFC)更有望用于氨燃料的使用。首先,质子比氧离子具有更高的迁移率,因此PCFC更适合于低温操作,这将带来成本降低、电池寿命延长、密封更加灵活等诸多好处。其次,PCFC中没有氨或氮与氧或水的混合,从而避免了氮氧化物的潜在形成。最后,由于氧化产物是在PCFC的阴极形成的,不会稀释燃料气体,大大提高了燃料效率。
在直接氨质子陶瓷燃料电池(DA-PCFC)阳极中,NH3首先进行分解产生N2和H2,然后H2再进行电化学氧化过程从而完成反应,因此阳极材料对于DA-PCFC的性能有着重要影响。开发具有高效NH3分解催化活性的新型阳极材料是解决现有阳极材料的NH3分解反应催化活性低的关键问题。镍作为一种重要的过渡金属,在H2的电催化氧化中表现出优异的导热性和导电性以及电催化活性,故在以H2为燃料的PCFC中被广泛应用。以一定比例的NiO直接与电解质粉体机械混合后充当阳极,阳极与电解质交界处基本不会发生相反应,并且阳极和电解质之间有着相匹配的热膨胀系数,不会产生过大的应力等问题。有趣的是,镍对NH3分解反应也表现出良好的催化活性。因此,传统的镍金属陶瓷阳极的PCFC也被直接应用于氨燃料上。不幸的是,镍在高氨气浓度下容易粗化,导致阳极微结构破坏,电池性能迅速衰退。因此,提高抗粗化能力是提高镍基阳极在直接氨燃料电池上运行耐久性的关键,而改进镍基阳极以提高氨气分解和氢气氧化催化活性是实现高功率输出的关键。所以急需对现有的PCFC阳极材料进行修饰。
发明内容
本发明所要解决的技术问题是:现有的镍基直接氨燃料电池正极材料存在着运行稳定性差的问题。本发明在阳极材料的制备过程中,将一定比例的RuFe掺杂进原有的镍基阳极,以结合这两种催化剂本身优异的催化特性和镍基在PCFC应用上具备的良好特征,并将其用于DA-PCFC阳极材料以提高氨气的催化活性。通过在目前传统钙钛矿材料BaZr0.1Ce0.7Y0.1Yb0.1O3-δ中掺杂一定含量的Ru、Fe元素,从而达到性能突破。本专利开发一种高性能的钙钛矿材料为Ba(Zr0.1Ce0.7Y0.1Yb0.1)1-2xRuxFexO3-δ和一种复合阳极材料NiO-Ba(Zr0.1Ce0.7Y0.1Yb0.1)1-2xRuxFexO3-δ及其制备方法和应用,提高了阳极材料对氨气的催化活性,降低了材料的阻抗和活化能。使得Ru、Fe元素掺杂的电池具有优异的电化学性能和良好的稳定性。
本发明的第一个方面,提供了:
一种钙钛矿材料,其特征在于,其组成通式为ABO3-δ,具体分子式为:Ba(Zr0.1Ce0.7Y0.1Yb0.1)1-2xRuxFexO3-δ,其中x代表Ru、Fe元素位掺杂量,δ为氧空位含量。
在一个实施方式中,0≤x≤0.03。
在一个实施方式中,x=0.03,所述钙钛矿材料的结构式为:Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ
本发明的第二个方面,提供了:
上述的钙钛矿材料的制备方法,包括如下步骤:
采用溶胶-凝胶法制备该材料,按照化学计量比依次将Ba(NO3)2、Zr(NO3)4·5H2O、Ce(NO3)3·6H2O、Y(NO3)3·6H2O、Yb(NO3)3·5H2O、RuCl3和Fe(NO3)3一同溶解在去离子水中进行加热搅拌均匀,将一定比例的乙二胺四乙酸、一水合柠檬酸和氨水倒入溶液中,调节pH为6-8左右,继续加热搅拌至溶液变为粘稠凝胶状态,干燥后煅烧得到粉体。
干燥条件是150-200℃下1-10h。
煅烧条件是:900-1100℃下1-10h,升温速度1-10℃/min。
乙二胺四乙酸:水合柠檬酸:总金属离子的摩尔比为1:1-3:0.5-1.5。
本发明的第三个方面,提供了:
上述的钙钛矿材料在用于质子陶瓷氨燃料电池阳极中的用途。
氨燃料电池是指直接氨燃料电池。
阳极采用NiO和Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ(BZCYYbRF)构成的复合阳极,淀粉作为造孔剂。
复合阳极中NiO和Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ以及淀粉的质量比为6.5:3.5:1。
所述的用途是指增加阳极整体稳定性。
所述的用途是提高阳极的氨催化活性。
所述的用途是指降低极化阻抗好和电化学反应的活化能。
本发明的第四个方面,提供了:
一种提高采用钙钛矿材料作为正极材料的质子陶瓷氨燃料电池的氨转化率的方法,步骤是:将正极材料在氨气中进行第一次NH3燃料的还原处理后,依次进行氧化和H2还原处理,再次进行对氨气的第二次NH3燃料还原处理,使氨转化率提高。
所述的氧化处理条件是使用含有O2的气体在500-1000℃下处理1-5h;所述的H2还原处理是在H2中于500-1000℃下处理1-5h。
有益效果
本发明涉及到的材料是Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ,用作直接氨质子陶瓷燃料电池阳极中的陶瓷相。还原的Ni-BZCYYbRF阳极对氨分解反应和氢气电化学氧化均具有出色的催化活性。经过测试,单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在650℃,600℃,550℃,500℃的H2气氛下最高功率密度分别达到900mW cm-2,625mW cm-2,430mW cm-2,300mWcm-2,在NH3气氛下最高功率密度分别达到660mW cm-2,465mW cm-2,351mW cm-2,201mW cm-2
附图说明
图1:其中a、b和c分别为本发明涉及的阳极材料BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)和Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ(BZCYYbRF)分别在室温25℃下的XRD谱图、阳极材料BZCYYb和BZCYYbRF分别经过1000℃煅烧100小时后,在室温25℃下的XRD谱图、单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在各温度煅烧后粉体的XRD谱图。
图2:本发明涉及的BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYbRF为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb@RF)的SEM谱图。
图3:其中a和b为本发明涉及到的阳极材料BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)和Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ(BZCYYbRF)在500-700℃下还原后的氨催化活性、阳极材料BZCYYbRF在500-700℃下二次还原后的氨催化活性对比图,以及阳极材料BZCYYbRF在600℃、NH3燃料下一次还原和二次还原的氨催化活性对比图。
图4:其中a、b、c和d为本发明涉及的在H2气氛下BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYbRF为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb@RF)以及BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYb为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb在500~650℃范围内各自测试得到的I-V-P曲线图和阻抗图。
图5:其中a、b、c和d为本发明涉及的在NH3气氛下BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYbRF为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb@RF)以及BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYb为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb在500~650℃范围内各自测试得到的I-V-P曲线图和阻抗图。
图6:为本发明涉及的BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYbRF为阳极支撑制备的单电池(BCFZY|BZCYYb|Ni-BZCYYb@RF)在600℃下,在电流密度为200mA cm-2的NH3燃料上工作的单电池的运行稳定性。
图7:为本发明涉及的阳极材料BZCYYb和BZCYYbRF在5vol%H2O-NH3、500℃时的EIS经过DRT拟合的反卷积峰图。
具体实施方式
本发明涉及一种质子陶瓷氨燃料电池的电池结构及其制备方法,该电池阴极材料组成分子式为BaCo0.4Fe0.4Zr0.1Y0.1O3-δ(BCFZY),电解质材料组成分子式为BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb),阳极材料组成分子式为NiO-Ba(Zr0.1Ce0.7Y0.1Yb0.1)1- 2xRuxFexO3-δ(Ni-BZCYYbRF),其中x表示Ru、Fe元素掺杂量,x=0.03,δ表示氧空位含量。
通过在传统的钙钛矿材料BaZr0.1Ce0.7Y0.1Yb0.1O3-δ中掺入一定量的Ru、Fe元素来提高质子陶瓷氨燃料电池的电化学性能。同时也使得该材料在质子导电性和NH3催化方面都有很大的提升,并且显著的降低了阻抗。在650℃下,单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在H2和NH3为燃料时最大输出功率分别为900mW cm-2和660mW cm-2;对应的没有Ru、Fe元素掺杂修饰的单电池BCFZY|BZCYYb|Ni-BZCYYb对应的最大输出功率分别仅为625mW cm-2和490mWcm-2,分别提升44%和35%。
实施例1:
本实施例提供一种钙钛矿材料Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ(BZCYYbRF)的制备方法,具体步骤如下:
(1)称取13.067g的硝酸钡、2.0178g的硝酸锆、14.2858g的硝酸铈、1.8001g的硝酸钇、2.1109g的硝酸镱、0.606g的硝酸铁和0.3111g的氯化钌,加少量去离子水溶解。按乙二胺四乙酸:水合柠檬酸:总金属离子为1:2:1的摩尔比称取29.224g的乙二胺四乙酸、42.028g水合柠檬酸作为络合剂溶于去离子水中。
(2)将溶有络合剂的溶液加入溶有金属离子溶液后,滴加适量的氨水致溶液pH达到7左右,随后在磁力搅拌的条件下搅致水分完全蒸发得到凝胶状物质。
(3)取出凝胶中转子,用铝箔纸封住烧杯杯口防止其溢出,接着将凝胶状物质放入鼓风干燥箱中,在180℃下恒温干燥5h后得到所需的泡沫状前驱体。
(4)将烧杯取出,待冷却后用刮刀将前驱体刮至各坩埚中,并将前驱体置于高温马弗炉中于1000℃温度下煅烧5h后得到所需的粉体。
实施例2:
本实施例提供一种质子陶瓷氨燃料电池阳极粉体NiO-Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ(Ni-BZCYYbRF)的制备方法,具体步骤如下:
(1)称取6.5g的NiO、3.5g实施例1中制得的BZCYYbRF粉体和1g可溶性淀粉,全部倒入球磨罐后加适量乙醇并球磨30min。
(2)将球磨好的阳极粉体溶液吸取至研钵中,用风扇对着研钵吹以加速无水乙醇的挥发,同时用研杵不断搅拌溶液,直至乙醇完全挥发。
(3)将研钵中的阳极粉体用刮刀刮出,放入65℃恒温干燥箱中干燥5h,最后得到所需要的Ni-BZCYYbRF阳极粉体。
实施例3:
本实施例提供一种BCFZY为阴极,BZCYYb为电解质,Ni-BZCYYbRF为阳极支撑的单电池(BCFZY|BZCYYb|Ni-BZCYYb@RF)的制备方法,具体步骤如下:
(1)称取0.35g实施例2中制得的粉体放入模具中,借助压片机压成直径约为15mm的片子,得到阳极生坯。
(2)称取0.015g BZCYYb粉体,通过漏网将其均匀铺在阳极生坯上方后,将模具放入压片机共压形成阳极-电解质双层生坯,将其在1400℃下烧结5h得到阳极支撑的电解质双层片。
(3)将阳极支撑的电解质双层片放置在加热台上,温度设置为150℃,待双层片均匀且充分受热后,用喷枪将BCFZY阴极浆料均匀的喷涂在电解质的任意一面。将喷涂好的阴极
|电解质|阳极三层膜置于高温电炉中热处理,煅烧温度为900-1100℃,升温速率为5℃
min-1,保温时间为2h,降温后取出即为所制备的单电池BCFZY|BZCYYb|Ni-BZCYYb@RF。
表征结果
1.相结构及微观形貌
图1的a是BZCYYb和BZCYYbRF的室温下的XRD图谱,从图中的峰高与峰宽可以判定配置的粉体成相,且都具有稳定的立方体结构,不含任何杂质峰,是目标钙钛矿结构。图1b是BZCYYb和BZCYYbRF经过1000℃煅烧100小时后的XRD图谱。对比图1的a和图1的b的XRD谱图,可以很明显的看出在1000℃下煅烧100小时的BZCYYb和BZCYYbRF粉体与未煅烧的BZCYYb和BZCYYbRF粉体的衍射峰几乎完全一致,并未发生偏移等变化,这表明BZCYYb和BZCYYbRF粉体具有很好的稳定性。图1的c为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在各温度煅烧后的XRD图谱。从整体上来看单电池在煅烧的过程的中并没有杂相产生,且衍射峰几乎完全一致,并未发生偏移等现象,这说明单电池相结构稳定。
图2是单电池BCFZY|BZCYYb|Ni-BZCYYb@RF的微观形貌分析图,从中可以看出电池表面具有独特的多孔形貌,可能具有更优的表面气体扩散能力。
2.阳极氨催化活性分析
图3的a为料BZCYYb和BZCYYbRF在500-700℃下还原后的氨催化活性、以及阳极材料BZCYYbRF在经过以此还原和氧化循环后二次被还原的氨催化活性对比图。从图中可以看出,还原后的BZCYYbRF的催化活性确实优于不含RuFe的BZCYYb。例如,以BZCYYbRF为催化剂时,700℃时NH3转化率约100%,而BZCYYb催化剂的NH3转化率仅约为30%。图3的b是BZCYYbRF在600℃、NH3燃料下一次还原和二次还原后的氨催化活性对比图。在600℃下,BZCYYbRF在NH3气氛下还原80h后的转化率约48%。随后,将催化剂置于800℃环境温度下,先在20% O2-N2扫气中氧化2小时,再在相同温度下转换为H2还原2小时。经重新氧化还原后的BZCYYbRF后的转化率可达到90%左右。由此得出结论,重新脱溶的RuFe纳米颗粒具有更优的催化活性,进一步证实BZCYYbRF对氨分解的优异活性。
3.单电池性能测试(H2气氛)
将制备好的单电池用银胶密封在石英管上,然后置于实验炉内。电池片的阴极暴露在空气气氛中,纯H2作为燃料通入电池的阳极一侧,控制燃料气的流速和电池的测试温度。分别比较BCFZY|BZCYYb|Ni-BZCYYb与BCFZY|BZCYYb|Ni-BZCYYb@RF的单电池在不同温度下的性能。图4的a和4的b为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在H2气氛下的I-V-P曲线以及单电池BCFZY|BZCYYb|Ni-BZCYYb在H2气氛下的I-V-P曲线图。图4的c和图4的d为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF的阻抗图以及单电池BCFZY|BZCYYb|Ni-BZCYYb的阻抗图。如图所示,在650、600、550和500℃时,其OCV值均大于1,这说明电解质致密,电池密封良好。
单电池BCFZY|BZCYYb|Ni-BZCYYb在650、600、550和500℃的最高输出功率分别为625、498、352和203mW cm-2,对应的极化阻抗分别为0.15、0.24、0.60和1.89Ωcm2。而单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在650、600、550和500℃的最高输出功率分别为900、625、430和300mW cm2,对应的极化阻抗分别为0.11、0.20、0.38和1.01Ωcm2。很明显,Ru、Fe掺杂的BZCYYbRF在作为阳极陶瓷相可以显著提高以H2为燃料的单电池输出性能,且BZCYYbRF阳极提供了更好的H2分解活性以及快速的离子扩散和电导率。同时,随着温度的升高,电池反应中的物质转移和电荷转移过程都加快了,说明温度越高,电极材料的催化活性越高,动力学反应越活跃,从而极化阻抗越低。
4.单电池性能测试(NH3气氛)
将制备好的单电池用银胶密封在石英管上,然后置于实验炉内。电池片的阴极暴露在空气气氛中,纯NH3作为燃料通入电池的阳极一侧,控制燃料气的流速和电池的测试温度。分别比较BCFZY|BZCYYb|Ni-BZCYYb与BCFZY|BZCYYb|Ni-BZCYYb@RF的单电池在不同温度下的性能。图5的a和5的b为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在NH3气氛下的I-V-P曲线图以及单电池BCFZY|BZCYYb|Ni-BZCYYb在NH3气氛下的I-V-P曲线图。图5的c和图5的d为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF的阻抗图以及单电池BCFZY|BZCYYb|Ni-BZCYYb的阻抗图。如图所示,在650、600、550和500℃时,其OCV值均大于1,这说明电解质致密,电池密封良好。
单电池BCFZY|BZCYYb|Ni-BZCYYb在650、600、550和500℃的最高输出功率分别为490、345、243和152mW cm-2,对应的极化阻抗分别为0.28、0.33、0.80和1.59Ωcm2。而单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在650、600、550和500℃的最高输出功率分别为660、465、351和201mW cm-2,对应的极化阻抗分别为0.16、0.29、0.44和1.23Ωcm2。很明显,Ru、Fe掺杂的BZCYYbRF在作为阳极陶瓷相可以显著提高以NH3为燃料的单电池输出性能。
5.EIS表征
图7显示了BZCYYbRF和BZCYYb样品在5%水分压500℃时的EIS经过DRT拟合的反卷积峰。根据频率范围将其划分为高频区域(P1)、中频区域(P2)和低频区域(P3),分别反映电荷转移,离子传输或表面交换,以及表面氧扩散。总的来说,中频区域所代表的离子传输或表面交换是影响电化学反应的主要限制步骤。对比可知,BZCYYbRF在P1,P2,P3峰面积小于BZCYYb,表明其具有更快的离子扩散和表面交换速率。
6.单电池稳定性表征
对于一个电池而言,稳定性测试是其商业化前的必要测试之一。本次稳定性测试是在600℃且外加电流密度为200mA cm-2下进行测试的。图6为单电池BCFZY|BZCYYb|Ni-BZCYYb@RF在600℃、NH3为燃料条件下的电压随时间变化曲线。从图中可以看出,电池在经过100小时的连续放电之后,电池的电压基本保持稳定,这说明该电池具有良好的稳定性。

Claims (2)

1.钙钛矿材料在质子陶瓷直接氨燃料电池阳极中的用途,其特征在于:所述的钙钛矿材料的化学通式是Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.94Ru0.03Fe0.03O3-δ,δ是氧空位含量,所述的钙钛矿材料的制备方法包括如下步骤:
按照化学计量比依次将Ba(NO3)2、Zr(NO3)4·5H2O、Ce(NO3)3·6H2O、Y(NO3)3·6H2O、Yb(NO3)3·5H2O、RuCl3和Fe(NO3)3一同溶解在去离子水中进行加热搅拌均匀,将一定比例的乙二胺四乙酸、一水合柠檬酸和氨水倒入溶液中,调节pH为6-8,继续加热搅拌至溶液变为粘稠凝胶状态,干燥后煅烧得到粉体;
干燥条件是150-200℃下1-10h;
煅烧条件是:900-1100℃下1-10h,升温速度是1-10℃/min;
质子陶瓷直接氨燃料电池中阳极采用由NiO和所述的钙钛矿材料构成的复合阳极,并采用淀粉作为造孔剂;
复合阳极中NiO和钙钛矿材料以及淀粉的质量比为6.5:3.5:1。
2.根据权利要求1所述的用途,其特征在于,乙二胺四乙酸:一水合柠檬酸:总金属离子的摩尔比为1:1-3:0.5-1.5。
CN202211499984.3A 2022-11-28 2022-11-28 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途 Active CN116082028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211499984.3A CN116082028B (zh) 2022-11-28 2022-11-28 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211499984.3A CN116082028B (zh) 2022-11-28 2022-11-28 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途

Publications (2)

Publication Number Publication Date
CN116082028A CN116082028A (zh) 2023-05-09
CN116082028B true CN116082028B (zh) 2023-10-24

Family

ID=86198162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211499984.3A Active CN116082028B (zh) 2022-11-28 2022-11-28 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途

Country Status (1)

Country Link
CN (1) CN116082028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751058A (zh) * 2023-06-20 2023-09-15 广东电网有限责任公司广州供电局 钙钛矿型混合导体材料、钙钛矿型混合导体透氢膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359739A (zh) * 2008-09-28 2009-02-04 南京工业大学 一种固体氧化物燃料电池阴极材料及其制备方法
CN104078687A (zh) * 2013-03-25 2014-10-01 中国科学院物理研究所 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途
CN108654592A (zh) * 2018-04-29 2018-10-16 华中科技大学 一种钙钛矿催化剂及其制备方法和原位测试方法
CN110429288A (zh) * 2019-08-08 2019-11-08 南京工业大学 一种b位缺陷的质子导体燃料电池阴极材料、电解质及其制备方法
CN113233518A (zh) * 2020-12-25 2021-08-10 南京工业大学 一种具有多碳燃料催化制氢功能的固体氧化物燃料电池阳极催化材料及其制备方法
CN113968596A (zh) * 2021-10-11 2022-01-25 西安交通大学 一种铁基双钙钛矿型电极粉末材料及制备方法、基于其的燃料电池电极材料及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581085B2 (en) * 2016-12-20 2020-03-03 Wisconsin Alumni Research Foundation Perovskite compounds for stable, high activity solid oxide fuel cell cathodes and other applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359739A (zh) * 2008-09-28 2009-02-04 南京工业大学 一种固体氧化物燃料电池阴极材料及其制备方法
CN104078687A (zh) * 2013-03-25 2014-10-01 中国科学院物理研究所 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途
CN108654592A (zh) * 2018-04-29 2018-10-16 华中科技大学 一种钙钛矿催化剂及其制备方法和原位测试方法
CN110429288A (zh) * 2019-08-08 2019-11-08 南京工业大学 一种b位缺陷的质子导体燃料电池阴极材料、电解质及其制备方法
CN113233518A (zh) * 2020-12-25 2021-08-10 南京工业大学 一种具有多碳燃料催化制氢功能的固体氧化物燃料电池阳极催化材料及其制备方法
CN113968596A (zh) * 2021-10-11 2022-01-25 西安交通大学 一种铁基双钙钛矿型电极粉末材料及制备方法、基于其的燃料电池电极材料及制备方法

Also Published As

Publication number Publication date
CN116082028A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN110797542B (zh) 一种对称固体氧化物燃料电池电极材料及其制备方法
CN101599546A (zh) 一种固体氧化物燃料电池阴极材料及应用
CN113839054B (zh) 一种可逆质子陶瓷电池电极材料及其制备方法和用途
CN111430734B (zh) (Pr0.5Sr0.5)xFe1-yRuyO3-δ钙钛矿材料及其制备方法与应用
CN109742414A (zh) 一种中温固体氧化物燃料电池阴极材料及其制备方法与应用
Tongyun et al. NdFeO3 as anode material for S/O2 solid oxide fuel cells
CN113149092B (zh) 一种b位掺杂的质子导体燃料电池的电解质材料、制备方法以及直接氨燃料电池中的应用
CN116082028B (zh) 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途
CN112408490B (zh) 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法
CN112687929A (zh) 一种锂氧化物电极微熔盐陶瓷燃料电池及其制备方法
CN109818021B (zh) 一种基于氧化铈/四氧化三铁复合材料的低温固体氧化物燃料电池
CN113488665A (zh) 一种可逆固体氧化物电池空气电极材料及制备方法和应用
CN111883789A (zh) 一种固体氧化物燃料电池的电极材料及其制备方法与应用
CN115180936B (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN109687006B (zh) 一种基于氧化铈/氧化镍复合材料的低温固体氧化物燃料电池
CN115020717B (zh) 一种直接氨燃料的质子型陶瓷燃料电池及其制备方法
CN115528259B (zh) 一种铋离子修饰铁酸镨基固体氧化物燃料电池阳极材料及其制备方法
CN115241471A (zh) 一种固体氧化物燃料电池阴极材料及其制法与应用
CN112952171B (zh) 一种基于铈酸钡基质子导体一体化全对称固体氧化物燃料电池电极材料及其制备和应用
CN115650312A (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN112928314A (zh) 一种固体氧化物燃料电池的制备方法
CN113871637A (zh) 一种高性能固体氧化物燃料电池阴极材料及其制备方法
KR20140120170A (ko) 고체산화물 연료전지 금속분리판 보호막용 세라믹 분말의 제조방법 및 그 보호막
CN112670525A (zh) 一种固体氧化物燃料电池电极材料
CN114843564B (zh) 一种阴阳离子共掺杂的固体氧化物电池氧电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant