CN116045822A - 一种椭偏仪微光斑校准方法 - Google Patents

一种椭偏仪微光斑校准方法 Download PDF

Info

Publication number
CN116045822A
CN116045822A CN202211601692.6A CN202211601692A CN116045822A CN 116045822 A CN116045822 A CN 116045822A CN 202211601692 A CN202211601692 A CN 202211601692A CN 116045822 A CN116045822 A CN 116045822A
Authority
CN
China
Prior art keywords
micro
wave band
ellipsometer
speckle
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211601692.6A
Other languages
English (en)
Inventor
石雅婷
薛小汝
李伟奇
郭春付
何勇
张传维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Eoptics Technology Co ltd
Original Assignee
Wuhan Eoptics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Eoptics Technology Co ltd filed Critical Wuhan Eoptics Technology Co ltd
Priority to CN202211601692.6A priority Critical patent/CN116045822A/zh
Publication of CN116045822A publication Critical patent/CN116045822A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种椭偏仪微光斑效应校准方法,包括:S1,选利用椭偏仪测量获得选定的标准测量样件的周期性光强信号;S2,在全波段内选取某一段作为分析波段,基于椭偏仪系统模型,调整微光斑相位差,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点;S3,将椭偏仪系统模型中的微光斑相位差固定在所述曲线最低点对应的微光斑相位差,在分析波段内对所有系统参数和标准测量样件膜厚进行逐波长校准,计算分析波段内膜厚和入射角的均值;S4,将椭偏仪系统模型中的膜厚和入射角固定在计算得到的分析波段内膜厚和入射角的均值,在全波段逐波长校准所有系统参数。通过本发明方法能够对椭偏仪进行精确地系统校准。

Description

一种椭偏仪微光斑校准方法
技术领域
本发明涉及光学散射测量领域,具体涉及一种椭偏仪微光斑校准方法。
背景技术
椭偏测量技术相较于扫描电子显微镜、原子力显微镜等微观形貌测量方法,具有速度快、成本低、无接触、非破坏等优点,因而在先进工艺在线监测领域获得了广泛应用。椭偏仪的测量过程可概括为:光源发出的光经起偏臂中的偏振片和波片调制相位后,投射到待测样品表面并反射,携带有待测样件信息的反射光经检偏臂中的波片和偏振片进行相位解调后,由光强探测器接收。容易理解,最终探测器接收的光强不仅与待测样品本身相关,而且与椭偏仪系统参数(包括入射角、所用偏振片和波片等偏振器件本身的特征参数与放置方位角)相关。因此,要从接收到的光强中准确获得样件信息,必须对椭偏仪进行精确地系统校准。
随着半导体技术节点的不断减小,半导体器件也不断朝着微型化方向发展,晶圆上芯片加工区域尺寸已减小至数十微米。为了满足微区测量需求,椭偏仪必须配备由多个镜片组成的微光斑组件,将探测光斑尺寸从数毫米减小指数十微米。然而,微光斑组件中镜片通常存在应力双折射效应,从而表现出一定的相位延迟作用,会对最终接收的光强产生影响,进而影响最终待测样件的测量。因此,为了待测样件信息的精确测量,在系统校准过程中必须对微光斑效应进行精确标定。
发明内容
本发明针对现有技术中存在的技术问题,提供一种椭偏仪微光斑效应校准方法,包括以下步骤:
S1,选利用椭偏仪测量获得选定的标准测量样件的周期性光强信号;
S2,在全波段内选取某一段作为分析波段,基于椭偏仪系统模型,调整微光斑相位差,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点;
S3,将椭偏仪系统模型中的微光斑相位差固定在所述曲线最低点对应的微光斑相位差,在分析波段内对所有系统参数和标准测量样件膜厚进行逐波长校准,计算分析波段内膜厚和入射角的均值;
S4,将椭偏仪系统模型中的膜厚和入射角固定在计算得到的分析波段内膜厚和入射角的均值,在全波段逐波长校准所有系统参数。
进一步的,步骤S2,包括:
S201,在全波段内选取某一段作为分析波段,将微光斑相位差固定在某一确定值,在分析波段内对所有系统参数和标样膜厚进行逐波长校准,并计算膜厚和入射角校准值在分析波段内的方差;
S202,调整微光斑相位差,并重复执行步骤S201,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点。
进一步的,所述分析波段在可见光范围内进行选择。
进一步的,所述系统参数的校准方法,包括:
将椭偏仪实际测量所得周期性光强转化为傅里叶系数;
构建系统模型函数,其输入为系统参数,输出为系统模型模拟输出光强的傅里叶系数;
调整系统模型函数的输入参数值,使得输出的模拟傅里叶系数与实测傅里叶系数相吻合。
通过本发明方法能够对椭偏仪进行精确地系统校准。
附图说明
图1为典型的双旋转波片椭偏仪原理图。
附图中,各标号所代表的部件列表如下:
1、光源,2、起偏器,3、第一旋转波片,4、第一微光斑组件,5、样品台,6、样件,7、第二微光斑组件,8、第二旋转波片,9、检偏器,10、探测器。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明实施例提供一种椭偏仪微光斑效应校准方法,包括以下步骤:
S1,选利用椭偏仪测量获得选定的标准测量样件的周期性光强信号。
典型的双旋转波片椭偏仪的原理如图1所示,其核心部件包括光源1、起偏臂(主要由起偏器2、第一旋转波片3、第一微光斑组件4组成)、样品台5、检偏臂(主要由检偏器9、第二旋转波片8、第二微光斑组件7组成)和探测器10。具体地,椭偏仪的系统模型可由下式表示:
Figure BDA0003997497030000031
其中,t表示时间,Sin为光源发射光的斯托克斯向量,Iout表示系统输出的光强;P、A、C1、C2分别为起偏臂偏振片方位角、检偏臂偏振片方位角、第一旋转波片初始方位角、第二旋转波片初始方位角;δ1和δ2分别为第一旋转波片和第二旋转波片的相位延迟量;μ1和μ2分别为第一微光斑组件和第二微光斑组件的相位延迟量,Δoffset为微光斑相位差;MA和MP为偏振片特征穆勒矩阵,MC为相位延迟器特征穆勒矩阵,R为旋转矩阵;Ms为样件特征穆勒矩阵,
Figure BDA0003997497030000033
和Δs为样件椭偏参数,二者取决于样件膜厚THK与入射角AOI,即
Figure BDA0003997497030000032
ΔS=ΔS(AOI,THK),ω1和ω2分别为第一旋转波片和第二旋转波片的角频率,二者比值为一定值,因此探测器接收到的光强为一周期信号。
将标准样件放置在椭偏仪样品台上,探测器即可接收到由样件反射的周期性光强信号,用于后续分析。
S2,在全波段内选取某一段作为分析波段,基于椭偏仪系统模型,调整微光斑相位差,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点。
具体的,步骤S2,包括以下子步骤:
S201,在全波段内选取某一段作为分析波段,将微光斑相位差固定在某一确定值,在分析波段内对所有系统参数和标样膜厚进行逐波长校准,并计算膜厚和入射角校准值在分析波段内的方差。
样件椭偏参数
Figure BDA0003997497030000041
和Δs取决于膜厚和入射角,因此从系统模型公式中容易发现微光斑相位差Δoffset与膜厚和入射角存在极强的耦合性。如果同时校准入射角、样件膜厚和微光斑相位差Δoffset,则通常难以获得正确的结果。为了实现参数之间的解耦,可以将微光斑相位差Δoffset固定在某一定值,在选定分析波段内逐波长校准系统模型中其他所有参数,并计算分析波段内膜厚和入射角的方差。
优选地,分析波段可在可见光范围内进行选择,因为一般情况下可见光范围内光强比较强、噪声比较弱,使得分析结果更为准确。
优选地,系统参数校准可以通过如下方式实现:首先将椭偏仪实际测量所得周期性光强转化为傅里叶系数;然后编写一个系统模型函数,其输入为系统参数,输出为系统模型模拟输出光强的傅里叶系数;最后,通过非线性拟合等算法调整系统模型函数的输入参数值,使得输出的模拟傅里叶系数与实测傅里叶系数相吻合。关于校准方式的相关资料较多,此处不再展开赘述。
S202,调整微光斑相位差,并重复执行步骤S201,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点。
根据S201中分析可知,微光斑相位差Δoffset与膜厚和入射角存在极强的耦合性。因此,微光斑相位差Δoffset固定在不同数值校准所得膜厚和入射角存在显著差异。原理上,当微光斑相位差Δoffset固定真值附近时,分析波段内膜厚和入射角也更接近真值,对应的方差应该更小。因此本发明提出,可以遍历微光斑相位差,并重复步骤S201,得到膜厚和入射角方差随微光斑相位差变化的曲线;进一步地,可以利用二次函数对曲线进行拟合,并找到曲线最低点对应的微光斑相位差,作为该分析波段内微光斑相位差的真值。
S3,将椭偏仪系统模型中的微光斑相位差固定在所述曲线最低点对应的微光斑相位差,在分析波段内对所有系统参数和标准测量样件膜厚进行逐波长校准,计算分析波段内膜厚和入射角的均值。
在分析波段内,将微光斑相位差固定在步骤S202得到的真值,逐波长校准系统模型中其他所有参数,并计算出膜厚和入射角的均值。
S4,将椭偏仪系统模型中的膜厚和入射角固定在计算得到的分析波段内膜厚和入射角的均值,在全波段逐波长校准所有系统参数。
步骤S3中,将微光斑相位差固定在其真值,因此校准所得膜厚和入射角结果也较为精确。为了进一步消除噪声等因素的影响,可将膜厚和入射角固定在选定分析波段内的均值,并在全波段内逐波长校准除二者之外的所有系统参数。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (4)

1.一种椭偏仪微光斑校准方法,其特征在于,包括:
S1,选利用椭偏仪测量获得选定的标准测量样件的周期性光强信号;
S2,在全波段内选取某一段作为分析波段,基于椭偏仪系统模型,调整微光斑相位差,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点;
S3,将椭偏仪系统模型中的微光斑相位差固定在所述曲线最低点对应的微光斑相位差,在分析波段内对所有系统参数和标准测量样件膜厚进行逐波长校准,计算分析波段内膜厚和入射角的均值;
S4,将椭偏仪系统模型中的膜厚和入射角固定在计算得到的分析波段内膜厚和入射角的均值,在全波段逐波长校准所有系统参数。
2.根据权利要求1所述的方法,其特征在于,步骤S2,包括:
S201,在全波段内选取某一段作为分析波段,将微光斑相位差固定在某一确定值,在分析波段内对所有系统参数和标样膜厚进行逐波长校准,并计算膜厚和入射角校准值在分析波段内的方差;
S202,调整微光斑相位差,并重复执行步骤S201,获得膜厚和入射角方差随微光斑相位差变化的曲线,以二次函数拟合曲线并找到曲线最低点。
3.根据权利要求1或2所述的方法,其特征在于,所述分析波段在可见光范围内进行选择。
4.根据权利要求1或2所述的方法,其特征在于,所述系统参数的校准方法,包括:
将椭偏仪实际测量所得周期性光强转化为傅里叶系数;
构建系统模型函数,其输入为系统参数,输出为系统模型模拟输出光强的傅里叶系数;
调整系统模型函数的输入参数值,使得输出的模拟傅里叶系数与实测傅里叶系数相吻合。
CN202211601692.6A 2022-12-13 2022-12-13 一种椭偏仪微光斑校准方法 Pending CN116045822A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211601692.6A CN116045822A (zh) 2022-12-13 2022-12-13 一种椭偏仪微光斑校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211601692.6A CN116045822A (zh) 2022-12-13 2022-12-13 一种椭偏仪微光斑校准方法

Publications (1)

Publication Number Publication Date
CN116045822A true CN116045822A (zh) 2023-05-02

Family

ID=86124562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211601692.6A Pending CN116045822A (zh) 2022-12-13 2022-12-13 一种椭偏仪微光斑校准方法

Country Status (1)

Country Link
CN (1) CN116045822A (zh)

Similar Documents

Publication Publication Date Title
CN111122460B (zh) 单旋转补偿器型光谱椭偏仪参数校准方法和装置
CN109470154B (zh) 一种适用于光谱椭偏仪的薄膜厚度初值测量方法
CN107490547B (zh) 一种Mueller矩阵型椭偏仪椭偏参数测量的优化方法
CN112629421B (zh) 一种基于快速傅里叶变换的薄膜厚度测量方法
EP3052908A1 (en) Method and apparatus for measuring parameters of optical anisotropy
CN106595501A (zh) 测量光学薄膜厚度或均匀性的方法
CN112345464A (zh) 一种椭偏仪优化校准方法
WO2016173399A1 (zh) 宽波段消色差复合波片的定标方法和装置及相应测量系统
CN111207677B (zh) 一种介质薄膜厚度及折射率的测量方法
CN116106232B (zh) 一种半导体器件参数的测量方法、装置及存储介质
CN116045822A (zh) 一种椭偏仪微光斑校准方法
CN111122458A (zh) 一种单旋转补偿器型椭偏仪随机误差评估方法
CN115060658B (zh) 一种双涡旋波片穆勒矩阵椭偏仪及其测量方法
CN115468744A (zh) 一种光学测量仪器的系统参数优化配置方法及装置
CN115752265A (zh) 一种非理想椭偏系统的校准方法
CN116067292A (zh) 一种椭偏仪微光斑校准方法
CN112345463B (zh) 一种基于椭偏仪的待测样件参数测量方法
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
CN112179851B (zh) 一种快照式穆勒矩阵椭偏仪器件的方位角误差校准方法
CN114384017A (zh) 一种基于椭偏仪的光谱匹配校准方法
CN114264632A (zh) 一种角分辨式散射仪中物镜偏振效应的原位校准方法
CN103968783B (zh) 一种测量双片波片补偿器中光轴偏差角的方法
CN112880832A (zh) 椭偏仪中延迟器偏差角度及延迟相位量的定标方法
CN112880574B (zh) 一种薄膜厚度测量方法
JP3537732B2 (ja) 電圧制御液晶リターダーを用いるエリプソメーター

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination