CN115911081A - 层叠结构体、半导体装置及结晶性氧化物膜的成膜方法 - Google Patents

层叠结构体、半导体装置及结晶性氧化物膜的成膜方法 Download PDF

Info

Publication number
CN115911081A
CN115911081A CN202211156828.7A CN202211156828A CN115911081A CN 115911081 A CN115911081 A CN 115911081A CN 202211156828 A CN202211156828 A CN 202211156828A CN 115911081 A CN115911081 A CN 115911081A
Authority
CN
China
Prior art keywords
oxide film
crystalline oxide
film
base substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211156828.7A
Other languages
English (en)
Inventor
渡部武纪
桥上洋
坂爪崇寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN115911081A publication Critical patent/CN115911081A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Bipolar Transistors (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明涉及一种层叠结构体、半导体装置及结晶性氧化物膜的成膜方法。一种层叠结构体,其为至少包括基底基板及以氧化镓为主成分的结晶性氧化物膜的层叠结构体,且所述层叠结构体的所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。由此,可提供一种具有以氧化镓为主成分的结晶性氧化物膜的层叠结构体,所述结晶性氧化物膜的结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异。

Description

层叠结构体、半导体装置及结晶性氧化物膜的成膜方法
技术领域
本发明涉及一种层叠结构体、半导体装置及结晶性氧化物膜的成膜方法,所述层叠结构体包括基底基板及以氧化镓为主成分的结晶性氧化物膜。
背景技术
近年来,氧化镓(Ga2O3)作为半导体用材料而受到关注。已知有氧化镓具有α、β、γ、δ及ε此五种结晶型,其中,为亚稳相的α-Ga2O3的带隙为5.3eV而非常大,作为功率半导体用材料而备受期待。
例如,在专利文献1中公开了一种包括具有刚玉(corundum)型结晶结构的基底基板、具有刚玉型结晶结构的半导体层及具有刚玉型结晶结构的绝缘膜的半导体装置,且记载有在蓝宝石基板上形成α-Ga2O3膜作为半导体层的例子。另外,在专利文献2中公开了一种半导体装置,其包括:n型半导体层,以主成分的形式包含具有刚玉结构的结晶性氧化物半导体;p型半导体层,以具有六方晶的结晶结构的无机化合物为主成分;及电极。在专利文献2的实施例中公开了:在c面蓝宝石基板上形成为亚稳相的具有刚玉结构的α-Ga2O3膜作为n型半导体层并形成具有六方晶的结晶结构的α-Rh2O3膜作为p型半导体层,来制作二极管。
然而,α-Ga2O3为亚稳相,因此单晶基板尚未实用化,通常是通过在蓝宝石基板等上进行异质外延生长而形成。在此种情况下,因与蓝宝石的晶格常数差而在半导体膜中施加应力,有时形成大量的结晶缺陷或使半导体膜产生翘曲。
为了减少α-Ga2O3中的结晶缺陷,报告有在蓝宝石与α-Ga2O3层间形成缓冲层的方法。例如,在非专利文献1中示出了如下例子:通过在蓝宝石与α-Ga2O3层间导入(Alx,Ga1-x)2O3层(x=0.2~0.9)作为缓冲层,从而使刃型位错与螺旋位错分别为3×108/cm2及6×108/cm2
[现有技术文献]
[专利文献]
[专利文献1]日本专利特开2014-72533号公报
[专利文献2]日本专利特开2016-25256号公报
[专利文献3]日本专利特开2016-157878号公报
[非专利文献]
[非专利文献1]神乃里衣奈等人(Riena Jinno et al.),具有准梯度α-(Al,Ga)2O3缓冲层的蓝宝石基板上的刚玉结构式α-Ga2O3层中的刃型位错密度降低(Reduction INedge dislocation density IN corundum-structuredα-Ga2O3 layers on sapphiresubstrates with quasi-gradedα-(Al,Ga)2O3 buffer layers),应用物理学快报(AppliedPhysics Express),日本(Japan),日本应用物理学会(tHE Japan Society of AppliedPhysics),2016年6月1日(June 1,2016),第9期(vol.9),第071101-1页至第071101-4页(pages 071101-1to 071101-4)
发明内容
[发明所要解决的问题]
然而,在将α-Ga2O3膜等以氧化镓为主成分的结晶性氧化物膜用于要求高耐压的功率半导体等的情况下,绝缘击穿电场特性受到结晶缺陷的多少的影响,因此期望进一步减少结晶缺陷。另外,α-Ga2O3膜有时成为存在倾斜(生长方位的结晶轴的倾斜)或扭转(表面面内的结晶轴的旋转)稍有不同的区域(晶畴(domain))的所谓镶嵌结晶。认为其原因之一是因α-Ga2O3层为亚稳相而成膜温度相对低。但是,在用于功率半导体等的情况下,有因晶畴间存在粒界而绝缘击穿电场特性降低的担忧,因此也期望抑制晶畴的形成。专利文献3中公开了通过设置量子阱结构的缓冲层,可减少α-Ga2O3膜的旋转晶畴,从而改善结晶性,但效果并不充分。
本发明是为了解决所述问题而成,其目的在于提供一种包括以氧化镓为主成分的结晶性氧化物膜的层叠结构体及半导体装置、以及所述结晶性氧化物膜的成膜方法,所述结晶性氧化物膜的结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异。
[解决问题的技术手段]
本发明是为了达成所述目的而成,且提供一种层叠结构体,其为至少包括基底基板及以氧化镓为主成分的结晶性氧化物膜的层叠结构体,且所述层叠结构体的所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。
构成此种层叠结构体的结晶性氧化物膜的结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异。
此时,可制成所述基底基板为单晶且所述结晶性氧化物膜为单晶或进行了单轴取向的膜的层叠结构体。
由此,成为具有结晶性更优异的结晶性氧化物膜的层叠结构体。
此时,可制成所述基底基板为蓝宝石基板、钽酸锂基板或铌酸锂基板中的任一种的层叠结构体。
由此,成为工业上廉价且具有结晶性优异的结晶性氧化物膜的层叠结构体。
此时,可制成所述结晶性氧化物膜具有刚玉结构的层叠结构体。
本发明的层叠结构体对于此种具有刚玉结构的结晶性氧化物膜而言适宜。
此时,可制成具有所述刚玉结构的所述结晶性氧化物膜的(006)面的X射线摆动曲线(rocking curve)半值宽度为5秒~20秒的层叠结构体。
如此,本发明的以氧化镓为主成分的结晶性氧化物膜为具有结晶性更优异的结晶性氧化物膜。
此时,可制成所述基底基板的具有所述结晶性氧化物膜的面的面积为100mm2以上或直径为2英寸(50mm)以上的层叠结构体。
由此,成为具有面积大且结晶性优异的结晶性氧化物膜的层叠结构体。
另外,本发明提供一种结晶性氧化物膜的成膜方法,其中,从喷嘴向设置于成膜室内的基底基板供给包含液雾的载气,并通过液雾化学气相沉积(Chemical VaporDeposition,CVD)法来形成以氧化镓为主成分的结晶性氧化物膜,且所述方法中,在使喷嘴或成膜室的内壁温度高于室温的状态下进行成膜。
由此,可获得结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异的结晶性氧化物膜。
此时,可将喷嘴的温度设为50℃~250℃。
由此,可获得结晶性更优异的结晶性氧化物膜。
另外,本发明提供一种半导体装置,其以绝缘性薄膜或导电性薄膜的形式包括以氧化镓为主成分的结晶性氧化物膜,且所述半导体装置中,所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。
此种结晶性氧化物膜的结晶缺陷显著少且结晶性优异,从而成为绝缘击穿电压高等半导体特性优异的半导体装置。
[发明的效果]
如上所述,根据本发明的层叠结构体,成为具有如下结晶性氧化物膜的层叠结构体,所述结晶性氧化物膜的结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异。另外,根据本发明的结晶性氧化物膜的成膜方法,可获得结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异的结晶性氧化物膜。进而,根据本发明的半导体装置,成为绝缘击穿电压高等半导体特性优异的半导体装置。
附图说明
图1是表示实施例1及比较例1的层叠结构体的反射率光谱的一例的图。
图2是表示实施例2的层叠结构体的反射率光谱的一例的图。
图3是表示实施例3的层叠结构体的反射率光谱的一例的图。
图4是表示使用本发明的层叠结构体的半导体装置的一例的概略结构图。
图5是表示本发明的层叠结构体的成膜中适宜使用的成膜装置(液雾CVD装置)的一例的概略结构图。
图6是对本发明中所使用的雾化部的一例进行说明的图。
图7是表示实施例4的层叠结构体的反射率光谱的一例的图。
图8是表示实施例5的层叠结构体的反射率光谱的一例的图。
图9是表示比较例2的层叠结构体的反射率光谱的一例的图。
[符号的说明]
100:半导体装置
101、210:基底基板
103:结晶性氧化物膜
103a:绝缘性薄膜
103b:导电性薄膜
103c:结晶性氧化物膜侧的面
105:栅极绝缘膜
107:栅极电极
109:源极/漏极电极
110:层叠结构体
201:成膜装置
202a:载气源
202b:稀释用载气源
203a、203b:流量调节阀
204:液雾产生源
204a:原料溶液
205:容器
205a:水
206:超声波振子
207:成膜室
208:加热器
209:供给管
212:排气口
216:振荡器
220:雾化部
230:载气供给部
具体实施方式
以下,对本发明进行详细说明,但本发明并不限定于这些。
如上所述,谋求一种包括以氧化镓为主成分的结晶性氧化物膜的层叠结构体及半导体装置、以及所述结晶性氧化物膜的成膜方法,所述结晶性氧化物膜的结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异。
本发明人们对所述课题反复进行了努力研究,结果发现,通过如下层叠结构体,而成为具有结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异的结晶性氧化物膜的结构体,所述层叠结构体至少包括基底基板及以氧化镓为主成分的结晶性氧化物膜,且所述层叠结构体的所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上,从而完成了本发明。
另外,本发明人们发现通过如下结晶性氧化物膜的成膜方法,而可获得结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异的结晶性氧化物膜,所述方法中,从喷嘴向设置于成膜室内的基底基板供给包含液雾的载气,并通过液雾CVD法来形成以氧化镓为主成分的结晶性氧化物膜,且在使喷嘴或成膜室的内壁温度高于室温的状态下进行成膜,从而完成了本发明
进而,本发明人们发现通过如下半导体装置,而成为绝缘击穿电压高等半导体特性优异的半导体装置,所述半导体装置以绝缘性薄膜或导电性薄膜的形式包括以氧化镓为主成分的结晶性氧化物膜且所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上,从而完成了本发明。
以下,参照附图来进行说明。
(层叠结构体)
图4示出使用本发明的层叠结构体110的半导体装置100的适宜例。如图4所示,本发明的层叠结构体110包括基底基板101及至少以氧化镓为主成分的结晶性氧化物膜103。而且,结晶性氧化物膜侧的面103c中波长400nm~800nm的光的反射率的平均值为16%以上。
由此,成为结晶缺陷显著少、结晶性优异且在应用于半导体装置时半导体特性优异的结晶性氧化物膜。认为反射率反映了所生成的结晶性氧化物膜的折射率。在反应不完全的情况下,羟基等残留于膜中而折射率变低,结果反射率降低。相反,在发生了理想的反应的情况下,不想要的羟基不再存在于膜中,膜的折射率变高而层叠结构体的反射率变高。此情形是指:与去除膜而仅有基板时的反射率相比,层叠结构体的反射率高。
此处,对本发明的层叠结构体中由光的反射率规定的方面进行说明。反射光的波长400nm~800nm的范围为光谱的变化相对缓慢的范围,通过采用此种反射光的波长范围的平均值,能够稳定且精度良好地评价膜的结晶性。发生了理想的反应时的氧化镓的折射率为2.0左右,因此推测反射率的上限为19%左右。相反,反应不完全时的氧化镓的折射率低于2.0,反射率也相应地降低。反射率为16%以下的情况相当于折射率为1.9以下的情况,结晶性差,无法获得所期待的氧化镓的特性。如此,波长400nm~800nm的光的反射率的平均值高表示:可抑制膜中的羟基等残留物,结晶缺陷显著少且结晶性优异,并进行了理想的膜生成反应。
此外,反射率的上限也依赖于后述的基底基板。在基底基板为蓝宝石的情况下,如上所述,反射率的上限为19%左右,但在基底基板为钽酸锂的情况下,反射率的上限为35%左右。
反射率例如可根据利用分光光度计对反射率光谱进行测定所得的结果来计算而获得。反射率有镜面反射率与扩散反射率,以及将它们组合测定的全反射率。可使用任一种,但理想的是利用全反射率进行评价。原因在于:不易受到表面凹凸等由成膜条件不同而导致的表面状态的影响。
分光光度计至少具有用于对从试样反射来的光进行检测的积分球。全反射率是对试料以约10度以下的入射角照射光,不仅利用积分球测定扩散反射光,而且也利用积分球测定镜面反射光。在测定时,最初进行基线测定。在将硫酸钡等标准白板安装于积分球上的状态下测定反射率,将其设为基线。获取基线后,取下标准白板,并安装试样,由此可测定反射率光谱。
在基板与结晶性氧化物膜之间也可介隔存在另一层。所谓另一层为组成与基板以及作为最表层的结晶性氧化物膜不同的层,也被称为缓冲层。缓冲层可为半导体膜、绝缘膜、金属膜等中的任一种,作为材料,例如可适宜地使用Al2O3、Ga2O3、Cr2O3、Fe2O3、In2O3、Rh2O3、V2O3、Ti2O3、Ir2O3等。作为缓冲层的厚度,优选为0.1μm~2μm。
(基底基板)
本发明的层叠结构体中的基底基板只要成为所述结晶性氧化物膜的支撑体,则并无特别限定。材料并无特别限定,可使用公知的基板,可为有机化合物,也可为无机化合物。例如可列举:聚砜、聚醚砜、聚苯硫醚、聚醚醚酮、聚酰亚胺、聚醚酰亚胺、氟树脂、铁或铝、不锈钢、金等金属、石英、玻璃、碳酸钙、氧化镓、ZnO等。除这些以外,还可列举硅、蓝宝石或钽酸锂、铌酸锂、SiC、GaN、氧化铁、氧化铬等的单晶基板。在本发明的层叠结构体中,理想的是如上所述的单晶基板。由此,可获得更优质的结晶性氧化物膜。特别是,蓝宝石基板、钽酸锂基板、铌酸锂基板相对廉价,在工业上有利。
基底基板的厚度优选为100μm~5000μm。若为此种范围,则容易操作(handling),且在成膜时,可抑制热阻,因此容易获得优质的膜。
基底基板的大小并无特别限制,若基底基板中的供结晶性氧化物膜形成的表面的面积为100mm2以上或直径为2英寸(50mm)以上,则可获得结晶性良好且面积大的膜而优选。基底基板的面积的上限并无特别限定,可设为100000mm2以下。
(结晶性氧化物膜)
本发明的层叠结构体中的结晶性氧化物膜为以氧化镓为主成分的结晶性氧化物膜。通常而言,氧化物膜包含金属与氧,在本发明的层叠结构体中的结晶性氧化物膜中,只要将作为金属的镓设为主成分即可。此外,在本发明中,所谓“以镓为主成分”,是指金属成分中的50%~100%为镓。作为镓以外的金属成分,例如也可包含从铁、铟、铝、钒、钛、铬、铑、铱、镍及钴中选择的一种或两种以上的金属。
在结晶性氧化物膜中也可包含掺杂剂元素。例如可列举锡、锗、硅、钛、锆、钒或铌等n型掺杂剂或者铜、银、铱、铑、镁等p型掺杂剂等,并无特别限定。掺杂剂的浓度例如可为约1×1016/cm3~1×1022/cm3,可设为约1×1017/cm3以下的低浓度,也可设为约1×1020/cm3以上的高浓度。
结晶性氧化物膜的结晶结构并无特别限定,可为β镓(β-Gallia)结构,也可为刚玉结构,还可为立方晶。可混合存在多个结晶结构,也可为多晶,优选为单晶或进行了单轴取向的膜。为单晶或进行了单轴取向的膜这一情况可利用X射线衍射装置或电子束衍射装置等来确认。当对膜照射X射线或电子束时,可获得与结晶结构相应的衍射像,当进行了单轴取向时,仅出现特定的波峰。由此,可判断为进行了单轴取向。另外,本发明的结晶性氧化物膜优选为具有刚玉结构,在所述情况下,可制成X射线衍射摆动曲线的(006)面的半值宽度为5秒~20秒的结晶性氧化物膜。
结晶性氧化物膜的膜厚并无特别限定,优选为1μm以上。上限值并无特别限定。例如可为100μm以下,优选为50μm以下,更优选为可设为20μm以下。
(半导体装置)
本发明的半导体装置以绝缘性薄膜或导电性薄膜的形式包括以氧化镓为主成分的结晶性氧化物膜。而且,结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。此种结晶性氧化物膜的结晶缺陷显著少且结晶性优异,从而成为绝缘击穿电压高等半导体特性优异的半导体装置。
(半导体装置的结构例)
图4所示的半导体装置100的例子中,在基底基板101上形成有结晶性氧化物膜103。结晶性氧化物膜103是从基底基板101侧依次层叠绝缘性薄膜103a与导电性薄膜103b而构成。在导电性薄膜103b上形成有栅极绝缘膜105。在栅极绝缘膜105上形成有栅极电极107。另外,在导电性薄膜103b上以夹着栅极电极107的方式形成有源极/漏极电极109。根据此种结构,通过对栅极电极107施加的栅极电压,而能够对形成于导电性薄膜103b上的耗尽层进行控制,从而能够使晶体管(场效应晶体管(Field Effect Transistor,FET)器件)运行。
作为使用本发明的层叠结构体而形成的半导体装置,可列举:金属绝缘层半导体(Metal-Insulator-Semiconductor,MIS)或高电子迁移率晶体管(High ElectronMobility Transition,HEMT)、绝缘栅双极型晶体管(Insulated Gate BipolarTransistor,IGBT)等晶体管或薄膜晶体管(Thin Film Transistor,TFT)、利用半导体-金属接合的肖特基势垒二极管(Schottky barrier diode)、与其他P层组合而成的PN或PIN二极管、光接收/发光元件。本发明的层叠结构体有效用于提高这些器件的特性。
如上所述的层叠结构体能够利用蒸镀法、分子束外延(Molecular Beam Epitaxy,MBE)法、溅射法、CVD法、液雾CVD法、液相外延等公知的方法来形成。
以下,以液雾CVD法为例,对本发明的层叠结构体的制造方法进行说明。此处,本发明中所述的液雾是指分散于气体中的液体的微粒子的总称,包含被称作雾、液滴等的微粒子。
(成膜装置)
首先,对适合于制造本发明的层叠结构体的液雾CVD法中使用的成膜装置(液雾CVD装置)进行说明。在图5中示出液雾CVD法中使用的成膜装置201的一例。成膜装置201至少具有:雾化部220,使原料溶液204a雾化而产生液雾;载气供给部230,供给用于搬送液雾的载气;供给管209,将雾化部220与成膜室207连接,通过载气来搬送液雾;以及成膜室207,对从供给管209与载气一起供给的液雾进行热处理,而在基底基板210上进行成膜。
(雾化部)
雾化部220中,使原料溶液204a雾化而产生液雾。雾化部件只要可使原料溶液204a雾化,则并无特别限定,可为公知的雾化部件,优选使用借助超声波振动的雾化部件。原因在于:可更稳定地进行雾化。
将此种雾化部220的一例示于图6中。雾化部220可包含:液雾产生源204,用于收容原料溶液204a;容器205,盛入有能够传递超声波振动的介质例如水205a;以及超声波振子206,安装于容器205的底面。详细而言,包含收容有原料溶液204a的容器的液雾产生源204可使用支撑体(未图示)而收纳于收容有水205a的容器205内。超声波振子206也可配设于容器205的底部,还可将超声波振子206与振荡器216连接。而且,可构成为,当使振荡器216工作时,超声波振子206振动,超声波在液雾产生源204内经由水205a来传播,从而使原料溶液204a雾化。
(原料溶液)
原料溶液204a只要包含镓且能够雾化,则溶液中所含的材料并无特别限定,可为无机材料,也可为有机材料。作为镓以外的物质中所含的材料,可适宜地使用金属或金属化合物,例如也可使用包含从铁、铟、铝、钒、钛、铬、铑、镍及钴中选择的一种或两种以上的金属的材料。作为如上所述的原料溶液,可适宜地使用使金属以络合物或盐的形态溶解或分散于有机溶媒或水中所得的溶液。作为盐的形态,例如可列举氯化金属盐、溴化金属盐、碘化金属盐之类的卤化盐等。另外,将所述金属溶解于氢溴酸、盐酸、氢碘酸之类的卤化氢等中所得的溶液也可用作盐溶液。作为络合物的形态,例如可列举乙酰丙酮络合物、羰基络合物、氨络合物、氢化络合物等。通过将乙酰丙酮混合于前述的盐溶液中,也可形成乙酰丙酮络合物。原料溶液204a中的金属浓度并无特别限定,可设为0.005mol/L~1mol/L等。混合、溶解时的温度优选为20℃以上。
在原料溶液中也可混合氢卤酸或氧化剂等添加剂。作为氢卤酸,例如可列举氢溴酸、盐酸、氢碘酸等,其中,优选为氢溴酸或氢碘酸。作为氧化剂,例如可列举过氧化氢(H2O2)、过氧化钠(Na2O2)、过氧化钡(BaO2)、过氧化苯甲酰((C6H5CO)2O2)等过氧化物、次氯酸(HClO)、高氯酸、硝酸、臭氧水、过乙酸或硝基苯等有机过氧化物等。
在原料溶液中也可包含掺杂剂。掺杂剂并无特别限定。例如可列举锡、锗、硅、钛、锆、钒或铌等n型掺杂剂或者铜、银、铱、铑、镁等p型掺杂剂等。
(载气供给部)
如图5所示,载气供给部230具有用于供给载气的载气源202a。此时,也可包括用于对从载气源202a送出的载气的流量进行调节的流量调节阀203a。另外,视需要也可包括用于供给稀释用载气的稀释用载气源202b、或用于对从稀释用载气源202b送出的稀释用载气的流量进行调节的流量调节阀203b。
载气的种类并无特别限定,能够根据成膜物来适当选择。例如可列举氧、臭氧、氮或氩等惰性气体、或者氢气或混合气体等还原气体等。另外,载气的种类可为一种,也可为两种以上。例如,作为第二载气,也可进一步使用如下稀释气体等,即将与第一载气相同的气体用除此以外的气体加以稀释(例如稀释为10倍)所得的稀释气体等,也可使用空气。载气的流量并无特别限定。例如当在直径为2英寸(约50mm)的基板上进行成膜时,载气的流量优选为设为0.05L/分钟~50L/分钟,更优选为设为5L/分钟~20L/分钟。
(供给管)
成膜装置201具有将雾化部220与成膜室207连接的供给管209。在所述情况下,液雾从雾化部220的液雾产生源204经由供给管209而由载气搬送,并供给至成膜室207内。供给管209例如可使用石英管或玻璃管、树脂制的管等。
(成膜室)
在成膜室207内设置有基底基板210,可包括用于对所述基底基板210进行加热的加热器208。加热器208可如图5所示那样设置于成膜室207的外部,也可设置于成膜室207的内部。从供给管209供给的液雾在成膜室207内的配管中通过,从喷嘴与载气一起朝向基底基板210喷出。另外,在成膜室207,也可在不会对液雾向基底基板210的供给造成影响的位置设置废气的排气口212。另外,可将基底基板210设置于成膜室207的上表面等而设为面朝下(face down),也可将基底基板210设置于成膜室207的底面而设为面朝上(face up)。
(成膜方法)
其次,一边参照图5、图6,一边对本发明的层叠结构体的制造方法的一例进行说明。液雾CVD法概略包括:液雾产生工序,在雾化部中,使包含镓的原料溶液雾化而产生液雾;载气供给工序,将用于搬送所述液雾的载气供给至所述雾化部;搬送工序,经由将所述雾化部与成膜室连接的供给管,并通过所述载气而将所述液雾从所述雾化部搬送至所述成膜室;以及成膜工序,对所述搬送来的液雾进行热处理而在基底基板上进行成膜。
将以所述方式混合所得的原料溶液204a收容于液雾产生源204内,将基底基板210载置于成膜室207内,使加热器208工作。其次,打开流量调节阀203a、流量调节阀203b,从载气源202a、载气源202b向成膜室207内供给载气,利用载气将成膜室207的环境充分置换后,分别调节载气的流量与稀释用载气的流量。
其次,作为液雾产生工序,使超声波振子206振动,使所述振动经由水205a而传播至原料溶液204a,由此使原料溶液204a雾化而产生液雾。
其次,作为载气供给工序,将用于搬送液雾的载气供给至雾化部220。
其次,作为搬送工序,经由将雾化部220与成膜室207连接的供给管209,并通过载气而将液雾从雾化部220搬送至成膜室207。
其次,作为成膜工序,对被搬送至成膜室207的液雾进行加热而使其产生热反应,从而在基底基板210的表面的一部分或全部进行成膜。
热反应需要通过加热来进行液雾中所含的镓等的反应。因此,需要将反应时的基板表面的温度设为至少400℃以上。液雾CVD法不同于其他CVD法,需要使原料以液雾状液体的状态到达基板表面。因此,基板表面的温度会大幅降低。因此,反应时的基板表面的温度与装置的设定温度不同。优选为在反应时也对基板表面的温度进行测定并加以控制,但在难以进行所述操作的情况下,可仅导入载气或导入不含溶质的水雾等,模拟地形成反应的情形并测定温度来代替使用。
进而,热反应也依赖于基板周围的环境温度。因此,在从喷嘴向设置于成膜室内的基底基板供给包含液雾的载气,并通过液雾CVD法来形成以氧化镓为主成分的结晶性氧化物膜的情况下,在使喷嘴或成膜室的内壁温度高于室温的状态下进行成膜。原因在于:所述热反应稳定。例如,喷嘴温度优选为设为50℃~250℃。由此,可获得结晶性更优异的结晶性氧化物膜。
此外,热反应可在真空下、非氧气环境下、还原气体环境下、空气环境下及氧气环境下的任一环境下进行,只要根据成膜物来适当设定即可。另外,关于反应压力,可在大气压下、加压下或减压下的任一条件下进行,但若为在大气压下进行成膜,则可简化装置结构,因此优选。
(缓冲层的形成)
如上所述,也可在基板与结晶性氧化物膜之间适当设置缓冲层。缓冲层的形成方法并无特别限定,可通过溅射法、蒸镀法等公知的方法来成膜,在使用如上所述的液雾CVD法的情况下,仅适当变更原料溶液便可形成,从而简便。具体而言,可将使从铝、镓、铬、铁、铟、铑、钒、钛、铱中选择的一种或两种以上的金属以络合物或盐的形态溶解或分散于水中所得的溶液适宜地用作原料水溶液。作为络合物的形态,例如可列举乙酰丙酮络合物、羰基络合物、氨络合物、氢化络合物等。作为盐的形态,例如可列举氯化金属盐、溴化金属盐、碘化金属盐等。另外,将所述金属溶解于氢溴酸、盐酸、氢碘酸等中所得的溶液也可用作盐的水溶液。在所述情况下,溶质浓度优选为0.005mol/L~1mol/L,溶解温度优选为设为20℃以上。关于其他条件,也设为与所述相同,由此能够形成缓冲层。在使缓冲层以规定的厚度成膜后,通过所述方法来进行成膜。
作为缓冲层形成方法的特殊情况,有使用与结晶性氧化物膜相同的材料的情况。此时,可使缓冲层的成膜温度高于结晶性氧化物膜的成膜温度。例如,可将缓冲层的成膜温度设为450℃,将结晶性氧化物膜的成膜温度设为400℃,也可将缓冲层设为500℃,将结晶性氧化物膜设为450℃等。由此,结晶性氧化物膜的结晶性进一步提高。
(热处理)
另外,也可对本发明的层叠结构体在200℃~600℃下进行热处理。由此,可进一步去除膜中的未反应物种等,从而可获得品质更高的层叠结构体。热处理可在空气中、氧气环境中进行,也可在氮气或氩气等惰性气体环境下进行。热处理时间可适当决定,例如可设为5分钟~240分钟。
(剥离)
在本发明的层叠结构体中,可将结晶性氧化物膜从基底基板剥离。剥离方式并无特别限定,可为公知的方式。作为剥离方式的方法,例如可列举:给予机械冲击来剥离的方式、施加热而利用热应力来剥离的方式、施加超声波等的振动来剥离的方式、进行蚀刻来剥离的方式等。通过此种剥离,可以自支撑膜的形式获得结晶性氧化物膜。
(其他制造方法)
以上,以液雾CVD法为例,对本发明的层叠结构体的制造方法进行了说明,在液雾CVD法以外的方法的情况下,也可通过对结晶性氧化物膜的成膜时的温度、特别是基板表面的温度进行控制,来制造本发明的层叠结构体。在难以准确测定基板等的温度等的情况下,制作放弃了温度条件的多个层叠结构体的样品,并测定反射率光谱来筛选具有所期望的特性的层叠结构体,由此也能够获得本发明的层叠结构体。
[实施例]
以下,列举实施例来对本发明进行具体说明,但其并不限定本发明。
[实施例1]
一边参照图5,一边对本实施例中使用的成膜装置201进行说明。成膜装置201包括:载气源202a,用于供给载气;流量调节阀203a,用于对从载气源202a送出的载气的流量进行调节;稀释用载气源202b,用于供给稀释用载气;流量调节阀203b,用于对从稀释用载气源202b送出的稀释用载气的流量进行调节;液雾产生源204,用于收容原料溶液204a;容器205,收容有水205a;超声波振子206,安装于容器205的底面;成膜室207,包含加热器208;以及石英制的供给管209,从液雾产生源204连接至成膜室207为止。
(预先温度测定)
首先,利用虚拟基板与水雾来模拟地再现成膜条件,并对基板表面的温度进行测定。具体而言,原料溶液204a设为纯水,虚拟基板设为直径为4英寸(100mm)的c面蓝宝石基板。将所述基板载置于成膜室207内,将加热器208设定为450℃,进行升温,并放置30分钟而使成膜室内的温度稳定化。继而,打开流量调节阀203a、流量调节阀203b,从载气源202a、载气源202b向成膜室207内供给载气,利用载气将成膜室207的环境充分置换后,将载气的流量调节为2L/分钟,将稀释用载气的流量调节为6L/分钟。作为载气,使用压缩空气。其次,使超声波振子206以2.4MHz进行振动,使所述振动经由水205a而传播至原料溶液204a(纯水),由此使纯水雾化而生成液雾。通过载气并经由供给管209而将所述液雾导入至成膜室207内。使用热电偶对此时的成膜室内各处的温度进行测定。其结果,基板表面的温度为424℃,喷嘴前端部的温度为146℃,成膜室壁面的温度为43℃。
(氧化镓膜的成膜)
继而,进行氧化镓膜的成膜。作为基底基板210,准备4英寸(100mm)的c面蓝宝石基板。将所述基板载置于成膜室207内,将加热器208设定为450℃,进行升温,并放置30分钟而使包含喷嘴在内的成膜室内的温度稳定化。
原料溶液204a中,使用超纯水作为溶媒,并使用溴化镓作为溶质。原料溶液中的镓浓度设为0.1mol/L。将所述原料溶液204a收容于液雾产生源204内。继而,打开流量调节阀203a、流量调节阀203b,从载气源202a、载气源202b向成膜室207内供给载气,利用载气将成膜室207的环境充分置换后,将载气的流量调节为2L/分钟,将稀释用载气的流量调节为6L/分钟。作为载气,使用氮气。
其次,使超声波振子206以2.4MHz进行振动,使所述振动经由水205a而传播至原料溶液204a,由此使原料溶液204a雾化而生成液雾。通过载气,并经由供给管209而将所述液雾导入至成膜室207内,在基底基板210上使液雾产生热反应,从而在基底基板210上形成氧化镓的薄膜。成膜时间设为30分钟。推测此时的成膜室内各处的温度为通过所述预先温度测定而获得的温度。
(评价)
针对形成于基底基板210上的薄膜,通过X射线衍射而确认到形成有α-Ga2O3。对α-Ga2O3的(006)面的摆动曲线进行测定,结果半值宽度为6秒,结晶性极其良好。此外,在摆动曲线测定时,通过使用将两个槽切式结晶组合而成的四结晶单色仪来提高X射线的单色性,从而以更高精度进行测定。继而,使用日本分光公司制造的分光光度计V-770,对所获得的层叠结构体的成膜面侧的反射率光谱进行测定。在测定时,将试样安装于积分球上后,将测定光对于试样的入射角设为约5度,并对全反射率进行测定。另外,为了获取基线而使用硫酸钡的标准白板。将结果示于图1中。对400nm~800nm的反射率的平均值进行计算,结果为17.1%。另外,利用光干涉式膜厚计对膜厚进行测定,结果膜厚为179nm。
[比较例1]
在与实施例1同样地进行氧化镓膜的成膜时,将加热器208设定为500℃,不进行升温后的温度稳定化地实施成膜。除此以外,在与实施例1相同的条件下进行成膜、评价。其结果,α-Ga2O3的(006)面的摆动曲线半值宽度为102秒,结晶性恶化。反射率光谱与实施例1一起示于图1中。确认到反射率降低,400nm~800nm的反射率的平均值为11.6%。
[实施例2]
形成AlGaO膜作为缓冲层,另外,将氧化镓的膜厚设为3μm,除此以外,与实施例1同样地进行成膜、评价。摆动曲线半值宽度为15秒而良好。将反射率光谱示于图2中。400nm~800nm的反射率的平均值为17.1%。
[实施例3]
将氧化镓的膜厚设为6μm,除此以外,与实施例2同样地进行成膜、评价。摆动曲线半值宽度为18秒而良好。将反射率光谱示于图3中。400nm~800nm的反射率的平均值为17.0%。
[实施例4]
在与实施例1同样地进行氧化镓膜的成膜时,将加热器208设定为430℃,除此以外,在与实施例1相同的条件下进行成膜、评价。摆动曲线半值宽度为9秒而良好。将反射率光谱示于图7中。400nm~800nm的反射率的平均值为16.4%。
[实施例5]
在与实施例1同样地进行氧化镓膜的成膜时,将加热器208设定为550℃,除此以外,在与实施例1相同的条件下进行成膜、评价。摆动曲线半值宽度为6秒而良好。将反射率光谱示于图8中。400nm~800nm的反射率的平均值为18.3%。
[比较例2]
在与实施例1同样地进行氧化镓膜的成膜时,将加热器208设定为550℃,不进行升温后的温度稳定化地实施成膜。除此以外,在与实施例1相同的条件下进行成膜、评价。其结果,摆动曲线半值宽度为88秒,结晶性恶化。将反射率光谱示于图9中。400nm~800nm的反射率的平均值为15.1%。
如以上所述,当所获得的层叠结构体的400nm~800nm的平均反射率高时,所获得的膜的结晶性良好。若使用本发明的层叠结构体来形成半导体装置,则有效用于提高半导体装置的特性。
此外,本发明并不限定于所述实施方式。所述实施方式为示例,且具有与本发明的权利要求中所记载的技术思想实质上相同的结构,起到相同的作用效果的任何实施方式均包含在本发明的技术范围内。

Claims (12)

1.一种层叠结构体,其特征在于,其为至少包括基底基板及以氧化镓为主成分的结晶性氧化物膜的层叠结构体,且
所述层叠结构体的所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。
2.根据权利要求1所述的层叠结构体,其特征在于,所述基底基板为单晶,所述结晶性氧化物膜为单晶或进行了单轴取向的膜。
3.根据权利要求1所述的层叠结构体,其特征在于,所述基底基板为蓝宝石基板、钽酸锂基板或铌酸锂基板中的任一种。
4.根据权利要求2所述的层叠结构体,其特征在于,所述基底基板为蓝宝石基板、钽酸锂基板或铌酸锂基板中的任一种。
5.根据权利要求1至4中任一项所述的层叠结构体,其特征在于,所述结晶性氧化物膜具有刚玉结构。
6.根据权利要求5所述的层叠结构体,其特征在于,具有所述刚玉结构的所述结晶性氧化物膜的(006)面的X射线摆动曲线半值宽度为5秒~20秒。
7.根据权利要求1至4中任一项所述的层叠结构体,其特征在于,所述基底基板的具有所述结晶性氧化物膜的面的面积为100mm2以上或直径为2英寸以上。
8.根据权利要求5所述的层叠结构体,其特征在于,所述基底基板的具有所述结晶性氧化物膜的面的面积为100mm2以上或直径为2英寸以上。
9.根据权利要求6所述的层叠结构体,其特征在于,所述基底基板的具有所述结晶性氧化物膜的面的面积为100mm2以上或直径为2英寸以上。
10.一种结晶性氧化物膜的成膜方法,从喷嘴向设置于成膜室内的基底基板供给包含液雾的载气,并通过液雾化学气相沉积法来形成以氧化镓为主成分的结晶性氧化物膜,且所述方法的特征在于,
在使喷嘴或成膜室的内壁温度高于室温的状态下进行成膜。
11.根据权利要求10所述的结晶性氧化物膜的成膜方法,其特征在于,将所述喷嘴的温度设为50℃~250℃。
12.一种半导体装置,其特征在于,以绝缘性薄膜或导电性薄膜的形式包括以氧化镓为主成分的结晶性氧化物膜,且
所述结晶性氧化物膜侧的面中波长400nm~800nm的光的反射率的平均值为16%以上。
CN202211156828.7A 2021-09-30 2022-09-22 层叠结构体、半导体装置及结晶性氧化物膜的成膜方法 Pending CN115911081A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160824 2021-09-30
JP2021160824 2021-09-30

Publications (1)

Publication Number Publication Date
CN115911081A true CN115911081A (zh) 2023-04-04

Family

ID=85750510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211156828.7A Pending CN115911081A (zh) 2021-09-30 2022-09-22 层叠结构体、半导体装置及结晶性氧化物膜的成膜方法

Country Status (7)

Country Link
US (1) US20240250185A1 (zh)
EP (1) EP4411021A1 (zh)
JP (1) JPWO2023053817A1 (zh)
KR (1) KR20240087704A (zh)
CN (1) CN115911081A (zh)
TW (2) TW202316584A (zh)
WO (1) WO2023053817A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841338B2 (ja) * 2005-07-14 2011-12-21 株式会社野田スクリーン 成膜方法、および装置
JP6152548B2 (ja) * 2012-08-06 2017-06-28 並木精密宝石株式会社 酸化ガリウム基板及びその製造方法
JP6067532B2 (ja) 2013-10-10 2017-01-25 株式会社Flosfia 半導体装置
JP6349592B2 (ja) 2014-07-22 2018-07-04 株式会社Flosfia 半導体装置
JP6876895B2 (ja) 2015-02-25 2021-05-26 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP7080115B2 (ja) * 2018-06-28 2022-06-03 信越化学工業株式会社 成膜装置及び成膜方法
JP7105703B2 (ja) * 2019-01-08 2022-07-25 信越化学工業株式会社 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
JP6941208B2 (ja) * 2020-02-06 2021-09-29 信越化学工業株式会社 酸化ガリウム膜の製造方法および縦型半導体装置の製造方法

Also Published As

Publication number Publication date
KR20240087704A (ko) 2024-06-19
WO2023053817A1 (ja) 2023-04-06
JPWO2023053817A1 (zh) 2023-04-06
US20240250185A1 (en) 2024-07-25
TW202316584A (zh) 2023-04-16
EP4411021A1 (en) 2024-08-07
TWM643175U (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
CN107068773B (zh) 半导体装置
JP7168827B2 (ja) 結晶性酸化物膜
JP6945121B2 (ja) 結晶性半導体膜および半導体装置
JP2016066756A (ja) 結晶性積層構造体の製造方法および半導体装置
JP7105703B2 (ja) 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
CN115911081A (zh) 层叠结构体、半导体装置及结晶性氧化物膜的成膜方法
JP6941208B2 (ja) 酸化ガリウム膜の製造方法および縦型半導体装置の製造方法
JP7045014B2 (ja) 積層構造体の製造方法
WO2023149180A1 (ja) 結晶性酸化物膜、積層構造体、半導体装置、及び結晶性酸化物膜の製造方法
EP4407660A1 (en) Film-forming method, film-forming device, and crystalline oxide film
CN221421215U (zh) 层叠结构体、半导体装置以及层叠结构体的制造系统
JP7254131B2 (ja) 酸化ガリウム膜の製造方法および縦型半導体装置の製造方法
JP2023156732A (ja) 結晶性積層構造体、半導体装置及び結晶性積層構造体の製造方法
KR20240140918A (ko) 결정성 산화물막, 적층 구조체, 반도체 장치, 및 결정성 산화물막의 제조 방법
JP7306640B2 (ja) 結晶性酸化物膜
WO2024043049A1 (ja) 成膜方法、成膜装置、及びα-Ga2O3膜
US20230313369A1 (en) Film-forming method and raw material solution
JP6774593B2 (ja) 結晶性酸化物膜
JP2023133551A (ja) 積層構造体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination