CN115891010A - 一种具有高温耐受性的固体自润滑材料的制备方法 - Google Patents

一种具有高温耐受性的固体自润滑材料的制备方法 Download PDF

Info

Publication number
CN115891010A
CN115891010A CN202211344264.XA CN202211344264A CN115891010A CN 115891010 A CN115891010 A CN 115891010A CN 202211344264 A CN202211344264 A CN 202211344264A CN 115891010 A CN115891010 A CN 115891010A
Authority
CN
China
Prior art keywords
temperature
polyimide
lubricating
nano
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211344264.XA
Other languages
English (en)
Inventor
段海涛
万长鑫
詹胜鹏
贾丹
李健
章武林
杨田
李银华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Research Institute of Materials Protection
Original Assignee
Wuhan Research Institute of Materials Protection
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Research Institute of Materials Protection filed Critical Wuhan Research Institute of Materials Protection
Priority to CN202211344264.XA priority Critical patent/CN115891010A/zh
Priority to US18/079,614 priority patent/US20240158713A1/en
Publication of CN115891010A publication Critical patent/CN115891010A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/40Lubricating compositions characterised by the base-material being a macromolecular compound containing nitrogen
    • C10M107/44Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/041Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving a condensation reaction
    • C10M2217/0415Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving a condensation reaction used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种具有高温耐受性的固体自润滑材料的制备方法,首先将高分子基体树脂和纳米润滑填料组成并且混合均一的原料粉末;然后将原料粉末置于热压模腔中,在第一预压压力下逐步升温第一预压温度;在第一预压温度下保温90‑120min,同时将热压压力控制为第二预压压力;控制热压压力在第三预压压力下,逐步升温至材料类固相成型温度;热压温度达到材料类固相成型温度后,在成型压力下保温60‑180min,进行类固相成型;结束后,逐步降温至第一预压温度,之后卸掉压力,然后自然冷却至常温脱模,得到固体自润滑材料。本发明依据玻璃化温度漂移值调整热压成型温度,能够避免压塑成型过程中复合材料塑化不均、过热而引起的摩擦学和力学性能下降的问题。

Description

一种具有高温耐受性的固体自润滑材料的制备方法
技术领域
本发明属于材料领域,涉及一种自润滑材料,具体涉及一种具有高温耐受性的固体自润滑材料的制备方法。
背景技术
聚酰亚胺由于其分子主链和侧链中含有刚性苯环结构以及强极性酰胺键,使其具备优异的力学性能,特别是具有高玻璃化温度的聚酰亚胺材料,其能在200℃-280℃的高温环境中长期使用。基于聚酰亚胺极其优异的力学性能,通过加入减摩抗磨填料得到复合材料,使其具备自润滑性能,能够广泛应用于重载高速的工况中的减磨耐磨结构件,如轴承保持架、活塞环、滑动轴承等等。常见用于提高聚酰亚胺摩擦学性能的层状结构性材料如石墨基填料、二硫化钼及二硫化钨,软金属填料如银和铜,还有自润滑高分子填料如聚四氟乙烯等等。这些润滑填料使复合材料在与对摩件作用时,在摩擦界面上通过自身的润滑作用进而降低材料摩擦系数和磨损率。但这些宏观尺寸填料的加入,对于含刚性苯环和强极性酰亚胺骨架组成的聚酰亚胺基体树脂来说,无可避免的造成大分子链之间的微相物理隔绝,减弱有机基团之间的相互作用力,进而降低复合材料的力学性能。
纳米材料经过多年的理论分析和应用发展,已经广泛应用于各行各业。在固体润滑材料领域,同样受到了广泛的关注与重视。特别是作为润滑填料,纳米材料因其纳米级维度尺寸效应,与高分子基体树脂混合后得到的复合材料,除了摩擦学性能的提高,其力学性能非但不会下降,反而会实现进一步的提升。但纳米润滑填料的小尺寸效应,加入聚酰亚胺基体树脂后,会不可避免的造成复合材料玻璃化温度的漂移。例如无机填料石墨烯,加入高分子树脂材料后,其二维纳米级薄层状结构分散在树脂基体中,会起到一个无机微相“物理交联”作用,限制了分子链段的旋转,进而提高了玻璃化温度。而对于化学有机改性的无机纳米填料来说,其无机填料上的有机基团极易与高分子基团之间形成强极性键,进而限制链段运动,从而提高玻璃化温度。
聚酰亚胺类固相成型即成型温度在聚合物玻璃化温度以上,理论熔点以下温度的类固相非流动状态下,对聚合物施以高约束应力,得到的一种成型制品的方法。在类固相成型中,成型温度参数的控制显得尤为重要。成型温度过低,温度场给予的热能不足以使聚酰亚胺链段充分运动,得到的产品力学强度不够。而成型温度过高,则会产生过塑化现象,使产品脆而硬。由成型工艺控制的不好引起力学性能的下降,会极大影响摩擦学性能的展现。
发明内容
为克服上述缺陷,本发明提供一种具有高温耐受性的固体自润滑材料的制备方法,通过适当调整类固相成型温度,能够规避因玻璃化温度漂移造成的成型塑化不均的现象。
为达到以上目的,本发明采用的技术方案是:
一种具有高温耐受性的固体自润滑材料的制备方法,其特征在于,包括以下步骤:
步骤1、制备高分子基体树脂和纳米润滑填料组成并且混合均一的原料粉末;
步骤2、将原料粉末置于热压模腔中,在第一预压压力下逐步升温第一预压温度;
步骤3、在第一预压温度下保温90-120min,同时将热压压力控制为第二预压压力;
步骤4、控制热压压力在第三预压压力下,逐步升温至材料类固相成型温度,所述材料类固相成型温度高于该材料的玻璃化温度15–20℃;
步骤5、热压温度达到材料类固相成型温度后,在成型压力下保温保压60-180min,进行类固相成型;
步骤6、类固相成型结束后,逐步降温至第一预压温度,之后卸掉压力,然后自然冷却至常温脱模,得到具有高温耐受性的固体自润滑材料。
进一步地,成型参数如下:
步骤1中,所述第一预压压力为8-10MPa,第一预压温度为240-260℃,升温速率为2-5℃/min;
步骤2中,所述第二预压压力为13-15MPa;
步骤3中,所述第三预压压力为25-35MPa,升温速率为1–3℃/min;
步骤4中,所述成型压力为35–45MPa;
步骤5中,降温速率为1–2℃/min。
进一步地,步骤1的原料粉末中,高分子基体树脂和纳米润滑填料的重量比为100:(1-10)。
进一步地,步骤1中,所述高分子基体树脂为聚酰亚胺嵌段共聚物,玻璃化温度300-360℃,粉末平均粒径10μm。
进一步地,所述纳米润滑填料至少有一个维度为纳米尺度,即尺寸小于100nm以下。
进一步地,所述纳米润滑填料为无机纳米填料或者有机接枝改性的无机纳米填料,通过有机接枝改性,使其含有极性基团,进一步提高与聚合物基体树脂之间的相互作用力。
进一步地,所述无机纳米填料为石墨烯,碳纳米管,富勒烯,纳米石墨烯,纳米二硫化钼中的任意一种或几种。
进一步地,所述纳米润滑填料与聚酰亚胺复合后,造成复合材料玻璃化温度相对于纯聚酰亚胺来说,漂移5-30℃,因此需要调整材料类固相成型温度高于该材料的玻璃化温度15–20℃。
优选地,步骤1中,所述聚酰亚胺软硬段嵌段共聚物由聚酰亚胺硬段Ⅰ和聚酰亚胺软段Ⅱ通过共聚得到,反应方程式如下:
Figure BDA0003916623020000031
其中,x和y为5–15,n为1–200;
所述聚酰亚胺硬段Ⅰ由均苯四甲酸二酐(PMDA)和二氨基二苯醚(ODA)共聚并以二胺封端得到,反应方程式如下:
Figure BDA0003916623020000032
所述聚酰亚胺软段Ⅱ由二苯甲酮四羧酸二酐和二苯甲烷二异氰酸酯共聚并以二酐封端得到,反应方程式如下:
Figure BDA0003916623020000033
进一步地,所述聚酰亚胺和纳米润滑填料的混合方式有两种:
第一种,在聚酰亚胺嵌段Ⅰ与聚酰亚胺嵌段Ⅱ反应生成聚酰胺酸后,在酰亚胺化反应之前,将纳米润滑填料引入反应体系中;
第二种,由聚酰亚胺硬段Ⅰ和聚酰亚胺软段Ⅱ通过共聚得到聚酰亚胺粉料后,采用超声分散-球磨协同混合工艺,将聚酰亚胺粉末、纳米润滑填以及溶剂混合后,室温超声分散60-120min,然后加热回流提取溶剂得到共混料,将共混料用行星式球磨机共混100-140min,然后于110-130℃烘箱中干燥1-3h去除残留挥发份,即得到混合均一的原料粉。
进一步地,所述溶剂为乙醇、丙酮中的一种或几种。
进一步地,所述聚酰亚胺软硬段嵌段共聚物由制备方法如下:
步骤1.1、聚酰亚胺软段Ⅱ制备,在氮气气氛保护下,将二苯甲酮四羧酸二酐和N-甲基吡咯烷酮置于配置有搅拌和冷凝装置的三口烧瓶中,加热至固体反应物完全溶解;先加入1,4-二氮杂二环[2.2.2]辛烷,然后分批次加入二苯甲烷二异氰酸酯进行共聚反应,聚合期间产生的CO2经冷凝管排出,最后得到以二酐封端的BTDA-MDI软段共聚物溶液,冷却备用;
步骤1.2、聚酰亚胺硬段Ⅰ制备,将二氨基二苯醚溶解到N-甲基吡咯烷酮中,温度控制在18-22℃以下,再分批次加入均苯四甲酸二酐,得到以二胺封端的PMDA-ODA硬段共聚物溶液;
步骤1.3、将冷却备用的BTDA-MDI软段共聚物溶液定速加入PMDA-ODA硬段共聚物溶液中,保持反应温度18-22℃以下进行嵌段共聚反应,得到聚酰亚胺软硬段嵌段共聚物。
进一步地,步骤1.3中,得到聚酰亚胺软硬段嵌段共聚物后,将其经过喷雾干燥得到能用于热压模腔中热压的聚酰亚胺嵌段共聚物粉末。
进一步地,热压模腔根据所需制备产品形状进行相应形状设计。
聚酰亚胺嵌段共聚物玻璃化温度为300-360℃。纳米润滑填料的加入,会造成复合材料玻璃化温度数值的漂移,在不改变成型参数的情况下,会影响其力学性能和摩擦学性能,特别是材料的耐磨性。基于复合材料玻璃化温度数值的漂移情况,通过调整类固相成型温度值,进而得到综合性能优良的耐高温自润滑材料。本发明提供的类固相成型工艺,依据其玻璃化温度漂移值调整成型工艺,能够避免压塑成型过程中复合材料塑化不均、过热而引起的摩擦学和力学性能下降的问题。
本发明提供的纳米复合聚酰亚胺作为一种具有高温耐受性的固体自润滑材料,能够在200-280℃的高温环境长期应用,具备良好的减摩抗磨性能。同时,作为纳米复合材料,虽然加入了无机填料,但力学强度并没有降低,反而有一定程度的提升。
本发明提供的纳米复合聚酰亚胺,基于类固相成型工艺,基于纳米填料改性聚酰亚胺造成基体树脂玻璃化温度的漂移,适当调整类固相成型温度,能够规避复合材料塑化不良或过塑化的问题,进而减少对其摩擦学性能的影响。
附图说明
图1为本发明具有高温耐受性的固体自润滑材料的制备方法流程图。
图2为本发明实施例1-3中产品应力应变曲线图。
图3为本发明实施例1-3中产品拉伸强度、弹性模量和断裂伸长率示意图。
图4为本发明实施例1-3中产品摩擦曲线示意图。
图5为本发明实施例1-3中产品平均摩擦系数和磨损率示意图。
图6为本发明实施例1中具有高温耐受性的聚酰亚胺嵌段共聚物材料低倍断裂剖面图。
图7为本发明实施例2中具有高温耐受性的固体自润滑材料低倍断裂剖面图。
图8为本发明实施例3中具有高温耐受性的固体自润滑材料低倍断裂剖面图。
图9为本发明实施例2中具有高温耐受性的固体自润滑材料高倍断裂剖面图。
图10为本发明实施例3中具有高温耐受性的固体自润滑材料高倍断裂剖面图。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
实施例1
在氮气气氛保护下,将210.06g(0.65mol)BTDA和1000gNMP置于5L三口烧瓶中,烧瓶配置搅拌和冷凝装置。加热至80℃使固体反应物完全溶解,加入1g TED,然后分批次加入130.47g(0.52mol)MDI进行共聚反应,聚合期间产生的CO2经冷凝管排出,最后得到以二酐封端的BTDA-MDI软段共聚物溶液,冷却备用。将113.23g(0.57mol)ODA溶解到2000gNMP中,温度控制在20℃以下,再分批次加入89.97g(0.41mol)PMDA,得到以二胺封端的PMDA-ODA硬段共聚物溶液。将冷却备用的BTDA-MDI软段共聚物溶液定速加入PMDA-ODA硬段共聚物溶液中,保持反应温度20℃以下进行嵌段共聚反应,得到聚酰亚胺软硬段嵌段共聚物。最后经喷雾干燥得到平均粒径为8-15μm的聚酰亚胺嵌段共聚物粉末。经差示扫描量热法测试,所得聚酰亚胺产品玻璃化温度值为330℃。
采用类固相工艺制备成型体,将不加纳米润滑填料的聚酰亚胺嵌段共聚物粉末置于模腔中,以5℃/min升温速度升温至250℃,同时压力控制为10MPa;温度升至250℃后,保温120min,同时压力控制为15MPa;继续以1℃/min升温至350℃,同时压力控制为30MPa;温度到达350℃后,压力控制为40MPa,保温时间60min。保温完毕后,自然冷却至250℃,卸掉压力,然后冷却至常温脱模,得到具有高温耐受性的聚酰亚胺嵌段共聚物材料。
实施例2
聚酰亚胺嵌段共聚物粉末的制备,方法实施例1相同,区别在于:在PMDA-ODA嵌段与BTDA-MDI嵌段反应得到聚酰亚胺溶液后,将15.23g碳纳米管加入反应体系中,而后经过后续反应和喷雾造粒,得到碳纳米管改性的聚酰亚胺复合材料粉末。
将碳纳米管改性的聚酰亚胺复合材料粉末进行类固相成型,成型工艺与实施例1中的类固相成型工艺一致,得到具有高温耐受性的固体自润滑材料。
实施例3
聚酰亚胺嵌段共聚物粉末的制备,在与实施例1相同,得到碳纳米管改性的聚酰亚胺复合材料粉末。
将碳纳米管改性的聚酰亚胺复合材料粉末进行类固相成型,成型工艺与实施例1中的类固相成型工艺基本一致,区别在于:当材料处于类固相状态时,成型温度由350℃变为375℃,得到具有高温耐受性的固体自润滑材料。
实施例4
由实施例1中得到的聚酰亚胺粉末,采用超声分散-球磨协同混合工艺,将30g聚酰亚胺粉末、0.9g氧化石墨烯、丙酮混合后,室温超声分散60min,然后加热回流提取丙酮得到共混料,将共混料用行星式球磨机共混120min,然后于120℃烘箱中干燥2h去除残留挥发份,得到氧化石墨烯添加改性的聚酰亚胺复合材料粉末。
将氧化石墨烯添加改性的聚酰亚胺复合材料粉末进行类固相成型,成型工艺与实施例1中的类固相成型工艺一致,得到具有高温耐受性的固体自润滑材料。
实施例5
氧化石墨烯添加改性的聚酰亚胺复合材料粉末的制备方法与实施例4相同。
将氧化石墨烯添加改性的聚酰亚胺复合材料粉末进行类固相成型,成型工艺基本与实施例4相同,区别在于:将当材料处于类固相状态时,成型温度由350℃变为360℃。
表1为实施例1-5关键工艺参数及材料性能表征
Figure BDA0003916623020000061
Figure BDA0003916623020000071
表1中,摩擦磨损实验为Rtec球盘往复摩擦实验:GCr15轴承珠对偶件,直径6.4mm,往复频率8Hz,往复行程8mm,实验时间90min,法向压力100N。实施例1、2、3在纯水环境中进行摩擦实验,实施例4、5为干摩擦。
与熔融加工不同,基于类固相成型工艺的特点,其加工温度窗口较小,在当聚合物处于类固相高弹态时,存在着最佳的加工温度,温度过低导致自由体积不足致使分子链段运动受限,直接影响高分子颗粒之间的粘结。而过高的温度不但浪费能源,还会导致成品受氧化变色。从上表中可以看出,由于纳米润滑填料的加入,引起复合自润滑材料玻璃化温度的漂移,如果按照纯聚酰亚胺的生产工艺生产,则会导致力学性能和摩擦学性能的下降,特别是耐磨性造成了指数级的降低。如图6所示,实施例1断口形貌呈良好的塑化形貌,受拉应力作用后发生典型的脆性断裂。加入碳纳米管后,当成型工艺不变时,实施例2断口表面成型大量的孔洞制造缺陷(图7)。当放大5000倍后,如图9所示,碳纳米管在局部位置存在严重的团聚现象,这是因为没有足够的热能软化聚合物颗粒而导致纳米填料进入聚合物基体的存在障碍。根据玻璃化温度漂移值提高加工温度后,分子链段运动振幅才变得显著,此时的热能才能越过聚合物分子平动和旋转运动的势垒。因此,如图8和图10所示,实施例3不再出现空洞缺陷和团聚现象。因此,对于纳米润滑填料改性后得到的复合材料,应基于其玻璃化温度漂移值,对类固相成型工艺进行相应的调整。
以上实施方式仅用于说明本发明,而非对本发明的限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行各种组合、修改或者等同替换,都不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种具有高温耐受性的固体自润滑材料的制备方法,其特征在于,包括以下步骤:
步骤1、制备高分子基体树脂和纳米润滑填料组成并且混合均一的原料粉末;
步骤2、将原料粉末置于热压模腔中,在第一预压压力下逐步升温第一预压温度;
步骤3、在第一预压温度下保温90-120min,同时将热压压力控制为第二预压压力;
步骤4、控制热压压力在第三预压压力下,逐步升温至材料类固相成型温度,所述材料类固相成型温度高于该材料的玻璃化温度15–20℃;
步骤5、热压温度达到材料类固相成型温度后,在成型压力下保温保压60-180min,进行类固相成型;
步骤6、类固相成型结束后,逐步降温至第一预压温度,之后卸掉压力,然后自然冷却至常温脱模,得到具有高温耐受性的固体自润滑材料。
2.根据权利要求1所述固体自润滑材料的制备方法,其特征在于,成型参数如下:
步骤1中,所述第一预压压力为8-10MPa,第一预压温度为240-260℃,升温速率为2-5℃/min;
步骤2中,所述第二预压压力为13-15MPa;
步骤3中,所述第三预压压力为25-35MPa,升温速率为1–3℃/min;
步骤4中,所述成型压力为35–45MPa;
步骤5中,降温速率为1–2℃/min。
3.根据权利要求1所述固体自润滑材料的制备方法,其特征在于:步骤1的原料粉末中,高分子基体树脂和纳米润滑填料的重量比为100:(1-10)。
4.根据权利要求1所述固体自润滑材料的制备方法,其特征在于:步骤1中,所述高分子基体树脂为聚酰亚胺嵌段共聚物,玻璃化温度300-360℃,粉末平均粒径10μm。
5.根据权利要求1所述固体自润滑材料的制备方法,其特征在于:所述纳米润滑填料至少有一个维度为纳米尺度,即尺寸小于100nm。
6.根据权利要求1所述固体自润滑材料的制备方法,其特征在于:所述纳米润滑填料为无机纳米填料或者有机接枝改性的无机纳米填料。
7.根据权利要求6所述固体自润滑材料的制备方法,其特征在于:所述无机纳米填料为石墨烯,碳纳米管,富勒烯,纳米石墨烯,纳米二硫化钼中的任意一种或几种。
8.根据权利要求4所述固体自润滑材料的制备方法,其特征在于:步骤1中,所述聚酰亚胺为聚酰亚胺软硬段嵌段共聚物,由聚酰亚胺硬段Ⅰ和聚酰亚胺软段Ⅱ通过共聚得到,所述聚酰亚胺硬段Ⅰ由均苯四甲酸二酐和二氨基二苯醚共聚并以二胺封端得到;所述聚酰亚胺软段Ⅱ由二苯甲酮四羧酸二酐和二苯甲烷二异氰酸酯共聚并以二酐封端得到。
9.根据权利要求8所述固体自润滑材料的制备方法,其特征在于:所述聚酰亚胺和纳米润滑填料的混合方式有两种:
第一种,在聚酰亚胺嵌段Ⅰ与聚酰亚胺嵌段Ⅱ反应生成聚酰胺酸后,在酰亚胺化反应之前,将纳米润滑填料引入反应体系中;
第二种,由聚酰亚胺硬段Ⅰ和聚酰亚胺软段Ⅱ通过共聚得到聚酰亚胺粉料后,采用超声分散-球磨协同混合工艺,将聚酰亚胺粉末、纳米润滑填以及溶剂混合后,室温超声分散60-120min,然后加热回流提取溶剂得到共混料,将共混料用行星式球磨机共混100-140min,然后于110-130℃烘箱中干燥1-3h去除残留挥发份,即得到混合均一的原料粉。
10.根据权利要求8所述高性能塑料结构件的制备方法,其特征在于:所述聚酰亚胺软硬段嵌段共聚物由制备方法如下:
步骤1.1、聚酰亚胺软段Ⅱ制备,在氮气气氛保护下,将二苯甲酮四羧酸二酐和N-甲基吡咯烷酮置于配置有搅拌和冷凝装置的三口烧瓶中,加热至固体反应物完全溶解;先加入1,4-二氮杂二环[2.2.2]辛烷,然后分批次加入二苯甲烷二异氰酸酯进行共聚反应,聚合期间产生的CO2经冷凝管排出,最后得到以二酐封端的BTDA-MDI软段共聚物溶液,冷却备用;
步骤1.2、聚酰亚胺硬段Ⅰ制备,将二氨基二苯醚溶解到N-甲基吡咯烷酮中,温度控制在18-22℃以下,再分批次加入均苯四甲酸二酐,得到以二胺封端的PMDA-ODA硬段共聚物溶液;
步骤1.3、将冷却备用的BTDA-MDI软段共聚物溶液定速加入PMDA-ODA硬段共聚物溶液中,保持反应温度18-22℃以下进行嵌段共聚反应,得到聚酰亚胺软硬段嵌段共聚物。
CN202211344264.XA 2022-10-31 2022-10-31 一种具有高温耐受性的固体自润滑材料的制备方法 Pending CN115891010A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211344264.XA CN115891010A (zh) 2022-10-31 2022-10-31 一种具有高温耐受性的固体自润滑材料的制备方法
US18/079,614 US20240158713A1 (en) 2022-10-31 2022-12-12 Preparation method of solid self-lubricating material with high temperature resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211344264.XA CN115891010A (zh) 2022-10-31 2022-10-31 一种具有高温耐受性的固体自润滑材料的制备方法

Publications (1)

Publication Number Publication Date
CN115891010A true CN115891010A (zh) 2023-04-04

Family

ID=86471622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211344264.XA Pending CN115891010A (zh) 2022-10-31 2022-10-31 一种具有高温耐受性的固体自润滑材料的制备方法

Country Status (2)

Country Link
US (1) US20240158713A1 (zh)
CN (1) CN115891010A (zh)

Also Published As

Publication number Publication date
US20240158713A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP3352681B2 (ja) ブロー成形法及び組成物
CN109851989A (zh) 一种聚醚醚酮复合材料及其制备方法和应用
CN105001486B (zh) 高耐磨高强度超高分子量聚乙烯基人工关节材料及其制备方法
Zhang et al. Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly (lactic acid) nanocomposites
WO1996014977A1 (fr) Procede de moulage de resine de polyimide aromatique
CN111393775A (zh) 一种核主泵静压轴封用聚四氟乙烯密封材料及其制备方法
Shen et al. Macromolecular Engineering and Additive Manufacturing of Polyisobutylene‐Based Thermoplastic Elastomers. II. The Poly (styrene‐b‐isobutylene‐b‐styrene)/Poly (phenylene oxide) System
CN115891010A (zh) 一种具有高温耐受性的固体自润滑材料的制备方法
WO1994010246A1 (en) Polyphenylene sulfide resin composition and process for producing the same
CN111849099A (zh) 一种聚酰胺酰亚胺填充聚四氟乙烯自润滑复合材料及其制备方法
JPH05331314A (ja) 耐熱性樹脂摺動材
CN109370220A (zh) 一种石墨烯改性聚苯硫醚复合材料及其制备方法
Yuan et al. Study of a compatibilized ultra‐high‐molecular‐weight polyethylene and polyurethane blend
CN114409987A (zh) 一种耐高温超高分子量聚乙烯复合管材及其制备方法
CN111764156B (zh) 一种高性能聚酰亚胺纤维的制备方法
JPS61163937A (ja) ポリイミド成型品の製造方法
WO2020116658A1 (ja) 繊維強化ポリイミド樹脂成形前駆体及びその製造方法
Xu et al. Effects of polyamide 12 and chain extender on the properties of microcrystalline cellulose reinforced polyamide 11 composites
CN114539761B (zh) 一种高分子复合材料及其制备方法、应用
CN108948724B (zh) 一种高力学损耗因子热塑性聚氨酯泡沫的制备方法
CN111234527A (zh) 一种耐磨聚醚酰亚胺复合材料及其制备方法
KR102295504B1 (ko) 탄소나노로드를 포함하는 고분자 복합재 및 이의 제조방법
JPH02206638A (ja) 潤滑性樹脂組成物
CN116218219B (zh) 杂萘联苯聚芳醚树脂基耐磨自润滑复合材料及其制备方法
CN115286859B (zh) 一种高阻尼高耐磨隔震支座摩擦材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination