CN115849995A - 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 - Google Patents

一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 Download PDF

Info

Publication number
CN115849995A
CN115849995A CN202211637579.3A CN202211637579A CN115849995A CN 115849995 A CN115849995 A CN 115849995A CN 202211637579 A CN202211637579 A CN 202211637579A CN 115849995 A CN115849995 A CN 115849995A
Authority
CN
China
Prior art keywords
adhesive
coating
alh
reaction
coumarin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211637579.3A
Other languages
English (en)
Other versions
CN115849995B (zh
Inventor
谭博军
刘宁
卢先明
杨雄
秦明娜
段秉蕙
窦金康
莫洪昌
张倩
徐明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Modern Chemistry Research Institute
Original Assignee
Xian Modern Chemistry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Modern Chemistry Research Institute filed Critical Xian Modern Chemistry Research Institute
Priority to CN202211637579.3A priority Critical patent/CN115849995B/zh
Publication of CN115849995A publication Critical patent/CN115849995A/zh
Application granted granted Critical
Publication of CN115849995B publication Critical patent/CN115849995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明提供了一种对氢化铝兼具双重功能的粘合剂、制备方法及应用,该粘合剂的结构式如下所示:
Figure DDA0004003603470000011
本发明的粘合剂为兼具双重功能的新型粘合剂材料,一方面在添加量为0.5wt.%的条件下对α‑AlH3具有较为优异的包覆效果,使α‑AlH3的静电感度下降80%以上,使α‑AlH3的吸湿性能大大下降;另一方面,本发明的具备双重功能的新型粘合剂材料具有包覆均匀度直观的效果,可实时监测反应进程,大大提升了α‑AlH3包覆实验的效率。

Description

一种对氢化铝兼具双重功能的粘合剂、制备方法及应用
技术领域
本发明属于含能材料技术领域,涉及粘合剂,具体涉及一种对氢化铝兼具双重功能的粘合剂、制备方法及应用。
背景技术
固体火箭发动机是各种先进战略、战术导弹的动力系统,固体推进剂技术是固体火箭发动机的核心技术和支撑技术,对提高导弹的投送能力及小型化能力具有重要意义。在固体推进剂的各项性能中,高能量性能一直是研究者追求的目标,也是推动固体推进剂更新换代的原动力。为提高固体推进剂的能量性能,研究者们一直致力于含能粘合剂与增塑剂、高能量密度氧化剂和新型燃料的研制与使用。其中,在新型燃料研制方面,1947年,Finhollt利用LiH和AlCl3在乙醚溶液中反应首次制得AlH3,目前共发现七种晶型,其中α-AlH3最为稳定,其标准摩尔生成焓为-11.8kJ/mol,绝对熵为30.0kJ·mol-1·℃,标准生成摩尔吉布斯自由能为45.4kJ/mol,相对分子质量为30.0,密度为1.489g/cm3,氢含量为10.08%,储氢密度为148g/L,是液氢的两倍。因α-AlH3含氢量高、燃烧产物分子量小、热分解温度相对较高,自首次合成以来就被视为新一代固体推进剂的理想燃料,用以提高固体推进剂能量性能。基于α-AlH3组分制备固体推进剂,相较于Al基推进剂,α-AlH3基推进剂燃烧性能显著提高,其中燃烧热提升至Al基推进剂的1.5倍,最高燃烧温度提高了约200℃,当固体推进剂其他组分含量一定时,随α-AlH3取代Al粉量的增加,推进剂的理论比冲升高。每当1%质量分数的Al粉被AlH3取代,推进剂的理论比冲升高约0.64s,当α-AlH3全部取代18%的Al后,推进剂的理论比冲达到281.72s,比全Al推进剂的理论比冲提高了11.31s。因此,α-AlH3已被视为最有发展潜力的高能燃料,在推进剂领域被寄予厚望。其作为固体推进剂高能燃烧组分能够有效提高推进剂的理论比冲,已成为下一代固体推进剂的优选组分之一。
但是α-AlH3存在着易氧化、化学稳定性和热稳定性差、生产储存危险、易失效等问题。研究发现:α-AlH3在常温储存14天后表面会逐渐形成鳞片状氧化层,发生氢气解析,同时湿度会加速α-AlH3的分解,导致推进剂内部存在氢压、空隙和褶皱,燃速不佳。此外,α-AlH3加速分解时作为一种还原剂,会影响到固体推进剂的其它组分,导致与固体推进剂主要组分的相容性较差,严重限制了α-AlH3在固体推进剂中的使用。关于α-AlH3的分解机理,SinkeG.进行了理论计算,计算发现298K时,α-AlH3的平均生成焓为-11.4±0.8kJ/mol,绝对值熵为30.0±0.4kJ/mol,生成吉布斯能为45.4±1.0kJ/mol,这表明α-AlH3热力学状态不稳定,可自发分解为Al和H2。据报道α-AlH3的等温热分解曲线呈S型,主要分为三个阶段:诱导期(该时期释氢缓慢,为铝核的生长期,是限速步骤)、加速期(释氢速率提高,释氢达到60%,可观察到晶体内部出现大量空腔)、消退期(内部释氢至α-AlH3完全分解为铝)。因此,可以得出结论:抑制α-AlH3分解的关键在于如何抑制诱导期的出现。
上述研究表明提高α-AlH3的稳定性对推进剂领域的发展具有重要的意义。目前,增强α-AlH3稳定性的主要方法是进行表面处理、包覆、低温储存等。其中包覆无疑是一种能有效提升α-AlH3稳定性的方法,并能避免α-AlH3与固体推进剂其它组分直接接触,完全符合设想的“抑制诱导期”的策略。对于含能材料的包覆是近年来研究比较热门的领域,2011年,Qiu H.等采用喷雾干燥法策略,使用质量分数为17%的PVAc和VMCC对RDX进行了包覆,使RDX的撞击感度明显降低(Qiu H.,et al.J.Hazard.Mater.,2011,185,489-493)。2016年,WangJ.等采用水悬浮策略,使用质量分数为25%石墨烯及其他包覆试剂对HMX进行了包覆,可使HMX的摩擦感度大幅降低(WangJ.,et al.J.Energ.Mater.,2016,34,235-245)。2019年,Zhou X.等采用气相沉积法策略,使用54%CuO对RDX进行包覆,可得到较为优异的包覆效果(Zhou X.,et al.Propellants Explos.Pyrotech.,2019,44,1368-1374)。Cai X.等以氟橡胶FE26作包覆剂,以液态CO2作为抗溶剂和分散介质,利用超临界流体技术,成功实现α-AlH3的物理包覆,发现包覆后样品生成焓增加,热稳定性提高,电火花感度降低,且表面更光滑(Cai X.,et al.Propellants,Explosives,Pyrotechnics,2015,40(6),914-919)。李磊等人发现采用氧化石墨烯溶剂-反溶剂法包覆α-AlH3,能有效降低了α-AlH3的机械撞击感度(李磊,顾健,黄丹椿,等.固体火箭技术,2019,42(1),66-71)。研究发现,α-AlH3的摩擦感度和撞击感度略低于或低于HMX,但静电感度很高,这极大地限制了其在推进剂领域中的应用研究。针对上述问题,秦明娜等采用溶剂-反溶剂法,使用硬脂酸包覆AlH3,有效降低了AlH3的静电感度(秦明娜,等.含能材料,2017,25(1),59-62)。
但是上述文献报道的AlH3包覆策略存在着以下三个方面的问题:
①包覆方法:上述文献中采取的喷雾干燥、水悬浮、气相沉积法、溶剂-反溶剂等策略虽然对所包覆的含能材料都能取得较为优异的包覆效果,但是依然存在着反应步骤繁琐的缺点,且对实验设备的要求较高;②包覆材料的用量较大:所采用的包覆材料存在着用量较大的缺陷。虽然在对含能材料包覆完成以后在一定程度上降低了含能材料的感度,但是也对包覆完成后含能样品的能量性能产生了极大的影响;③包覆产物的均匀度检测方法:上述文献对含能材料包覆完成后的包覆均匀度检测需要仍然采用扫描电镜,这无疑耗时耗力,且只能在反应完成后进行样品的均匀度检测,不能直观的实时监测包覆反应进程。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种对氢化铝兼具双重功能的粘合剂和制备方法及应用,解决现有技术中难以实现通过一种粘合剂同时解决防吸湿和包覆均匀度直观检测双重功能的技术问题。
为了解决上述技术问题,本发明采用如下技术方案予以实现:
一种粘合剂,该粘合剂的结构式如下所示:
Figure BDA0004003603450000041
式中:X为5至20的整数。
优选的,所述的X为6至10的整数。
本发明还具有如下技术特征:
本发明还保护一种如上所述的粘合剂的制备方法,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取7-羟基全碳香豆素和MOF-808加入至盛有甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗,将得到的MOF808@7-羟基全碳香豆素在室温下晾干。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在THF中,然后在反应液中加入稀盐酸,接着逐渐升温至80℃下搅拌,反应完成后浓缩得到含3个热固化基团粘合剂分子。
步骤三,将固态荧光探针引入粘合剂分子中:
称取含3个热固化基团粘合剂分子将其溶解在1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加二月硅酸二丁基锡,在室温下搅拌,制得粘合剂。
所述的含3个热固化基团粘合剂分子与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
优选的,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在100mLTHF中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子。
步骤三,将固态荧光探针引入粘合剂分子中:
称取5.0g含3个热固化基团粘合剂分子将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴二月硅酸二丁基锡,在室温下搅拌6.0h,制得粘合剂。
本发明还保护如上所述的粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
优选的,所述的粘合剂的添加量为氢化铝用量的0.5wt.%。
优选的,所述的粘合剂采用原位聚合的包覆方法对氢化铝进行包覆,得到包覆产物。
优选的,所述的包覆产物的接触角为88°。
进一步具体的,所述的包覆的具体过程为:
步骤1,将PET溶解在1,2-二氯乙烷中,制成PET溶液。
步骤2,将粘合剂先用1,2-二氯乙烷溶剂进行稀释,接着将称取的α-AlH3加入反应液中,再将步骤1制备好的PET溶液加入反应液中,最后再滴加二月硅酸二丁基锡,在室温下搅拌,用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤,晾干,即可得到包覆产物。
进一步优选的,所述的包覆的具体过程为:
步骤1,将5.0gPET溶解在50.0mL1,2-二氯乙烷中,制成PET溶液。
步骤2,将10.0mL粘合剂先用20.0mL1,2-二氯乙烷溶剂进行稀释,接着将称取的200.0gα-AlH3加入反应液中,再将步骤1制备好的10.0mLPET溶液加入反应液中,最后再滴加1滴二月硅酸二丁基锡,在室温下搅拌3.0h,用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤3-5次,晾干,即可得到包覆产物。
本发明与现有技术相比,具有如下技术效果:
(Ⅰ)本发明的粘合剂为兼具双重功能的新型粘合剂材料,一方面在添加量为0.5wt.%的条件下对α-AlH3具有较为优异的包覆效果,使α-AlH3的静电感度下降80%以上,使α-AlH3的吸湿性能大大下降;另一方面,本发明的具备双重功能的新型粘合剂材料具有包覆均匀度直观的效果,可实时监测反应进程,大大提升了α-AlH3包覆实验的效率。
(Ⅱ)本发明的粘合剂中含有三个热固化基团,当一个基团被固态荧光探针取代之后对其固化交联速度和交联密度影响不大。以本发明的粘合剂为原料制备的聚氨酯弹性体最大拉伸强度为4.23MPa,断裂伸长率为355%。
(Ⅲ)本发明的粘合剂含有固态荧光基团,在365nm紫外灯照射条件下可直观观察到粘合剂的分布区域,可进行包覆均匀度的直观检测,也可实时检测包覆反应历程。
(Ⅳ)本发明中,0.5wt.%的包覆量即可对α-AlH3产生较为优异的包覆效果(无论是直观检测还是扫描电镜验证),几乎消解了α-AlH3的静电火花感度影响。
(Ⅴ)本发明的粘合剂采用原位聚合的包覆方法对α-AlH3进行包覆,在包覆完成后可使α-AlH3的接触角由包覆前的18°(吸湿性较强)上升至88°(接近90°,近乎疏水),这一特性有利于α-AlH3的长期储存和应用。
(Ⅵ)本发明的粘合剂在制成弹性体后,其拉伸强度4.23MPa,延伸率为355%,具有较为优异的力学性能。
(Ⅶ)本发明的α-AlH3在包覆完成后,其热分解峰温升高了约4.1℃,进一步提高了α-AlH3的耐热性能。
附图说明
图1为实施例1中的粘合剂的DSC谱图。
图2为实施例2中的α-AlH3包覆前后的接触角图。
图3为实施例2中的室温下不同湿度条件下α-AlH3包覆前后的吸湿性能图。
图4为实施例2中的室温下在75%的湿度下α-AlH3包覆前后的吸湿性能图。
图5为实施例2中的α-AlH3包覆完成后的Mapping图。
图6为实施例2中的α-AlH3包覆后的均匀度直观检测图。
图7为实施例2中的α-AlH3包覆前后的扫描电镜图。
图8为实施例2中的α-AlH3包覆前后的DSC比对图。
图9为对比例1中的α-AlH3包覆后的一副扫描电镜图。
图10为对比例1中的α-AlH3包覆后的另一副扫描电镜图。
图11为对比例2中的α-AlH3包覆后的一副扫描电镜图。
图12为对比例2中的α-AlH3包覆后的另一副扫描电镜图。
以下结合实施例对本发明的具体内容作进一步详细解释说明。
具体实施方式
需要说明的是,本发明中的所有原料,如无特殊说明,全部均采用现有技术中已知的商业化原料。
氢化铝优选α-AlH3
THF指的是四氢呋喃。
PET指的是聚对苯二甲酸乙二醇酯,作为一种优选,其数均分子量为3800。
7-羟基全碳香豆素采用已知的7-羟基全碳香豆素,例如Dyes Pigment,2019,163,55-61.中公开的7-羟基全碳香豆素。
MOF-808指的是配位金属Zr金属簇,为MOF-808(Zr)的简称,分子式为C24H16O32Zr6,CAS:1579984-19-2。
本发明中的MOF808@香豆素指的即是MOF808@7-羟基全碳香豆素。
本发明的测试仪器:
(1)红外光谱采用美国Nicolet公司的Nexus 870型傅里叶变换红外光谱仪测试。
(2)核磁采用德国Bruker公司的AVANCE AV500型核磁共振仪测试。
(3)数均分子量采用英国PL公司GPC-50型凝胶渗透色谱仪测试。
(4)弹性体力学性能采用美国Instron公司Instron 4505型万能材料试验机测试。
(5)JGY-50Ⅲ(J)型静电感度测试仪。
(6)固态荧光量子产率通过爱丁堡FLS980仪器测试。
(7)美国X射线光电子能谱分析(Thermo SCIENTIFIC K-Alpha,XPS)。
(8)粘度由德国Bruker公司的锥板粘度计测定。
(9)DSC通过美国TA公司的DSC-2910型差热分析扫描仪测试。
本发明的技术构思是:
第一,本发明选用原位聚合法对α-AlH3进行包覆。原位聚合法将预聚物作为壳层材料,聚合物在保持物质自身性质的同时,可增强粒子的稳定性和相容性,接枝功能官能团。在众多聚合物包覆方法中,原位聚合法通过在纳米颗粒与聚合单体的混合溶液中引发聚合制备聚合物复合材料,其制备工艺简单,分散性好,可实现对包覆层厚度的有效控制,是聚合物改性复合材料的研究热点。
第二,将固态荧光基团通过化学键引入至粘合剂分子中,且固态荧光基团的荧光量子产率要在80%以上(越高越好),因其在粘合剂分子中充当定位基团的作用,是包覆降感均匀度直观检测的定位来源。
第三,所选择的粘合剂分子至少有三个相同的固化基团,通过调控物料比例,使粘合剂分子中任意一个基团与固态荧光基团进行反应偶联,另两个基团保持游离,使此粘合剂在后续包覆含能材料的过程中起到固化交联速度快和包覆交联完成后力学强度较好的特点。
第四,所使用的粘合剂在包覆过程中的用量要尽可能的少。
为了解决α-AlH3在包覆过程中的粘合剂用量较大、固化速度较慢,包覆均匀度直观检测过程费事费力,且不能直观的检测包覆反应进程的问题,本发明的设想:
①固态荧光基团的选择。我们首先考虑到了香豆素类化合物,它是一类非常重要的天然产物,其骨架广泛存在于药物分子、化妆品及食品添加剂中。此外,由于其具有良好的生物相容性、较大的Stokes位移、强而稳定的荧光发射等优点,常常被应用于小分子荧光探针。2019年,华东理工大学的杨友军教授课题组报道了首例7-羟基全碳香豆素,它与传统的7-位氧香豆素相比具有较为优异的光谱学性质:无论是紫外吸收还是荧光发射的最大波长都有大幅度的红移,但是其结构不够刚性,导致其荧光量子产率较低,极大的限制了其使用范围。于是,我们考虑转换策略,找到一种方法既能使7-羟基全碳香豆素的荧光量子产率大幅度提升,又能将液态荧光转变为更加有用的固态荧光。我们的策略是将7-羟基螺环香豆素装入MOF笼中,限制螺环香豆素分子内的转动和振动,使非辐射跃迁的能量损失降低,辐射跃迁的能量升高,进而提高其荧光量子产率。我们的选用孔径大小与7-羟基螺环香豆素匹配的MOF808作为MOF笼进行尝试。令人非常惊喜的是,将7-羟基螺环香豆素装入MOF808以后,固态荧光量子产率上升至96%,这进一步验证了我们的猜想。
②粘合剂的选择和固态荧光探针的引入。所选择的粘合剂和固态荧光探针的引入应具备以下2个方面的特点:(1)粘合剂分子中的官能能应至少在三个及以上,这样在粘合剂分子中的官能团被少数取代以后,仍然在包覆过程中可以快速的完成包覆反应历程,且不影响热力学性能。(2)此粘合剂分子中的官能团应易与MOF808进行反应,这样可在温和的条件将MOF808引入至粘合剂分子中,且不会对粘合剂的性能造成太大影响。
③我们拟采用原位聚合包覆的思路对α-AlH3进行包覆。原位聚合法相比于喷雾干燥、水悬浮、气相沉积法、溶剂-反溶剂等包覆策略具有包覆效果好、包覆量少和包覆强度高等优点。
因此,我们拟选择含热固化基团(-NCO)的化合物作为粘合剂,选用含羟基基团的PET作为固化剂,其对α-AlH3进行包覆固化成型。粘合剂固化和包覆机理如下所示。
Figure BDA0004003603450000111
本发明的对氢化铝兼具双重功能的粘合剂的结构式如下所示:
Figure BDA0004003603450000121
本发明的对氢化铝兼具双重功能的粘合剂的制备方法的具体合成路线如下所示:
Figure BDA0004003603450000122
该制备方法的具体合成路线包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
Figure BDA0004003603450000131
步骤二,含3个热固化基团粘合剂分子的合成:
Figure BDA0004003603450000132
步骤三,将固态荧光探针引入粘合剂分子中:
Figure BDA0004003603450000141
注:不用处理反应,现配现用,即得到对氢化铝兼具双重功能的粘合剂,产率86%。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
本实施例给出一种粘合剂的制备方法,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天。反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干,产率91%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲(化合物1)溶解在100mLTHF中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子(化合物2),产率83%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
步骤三,将固态荧光探针引入粘合剂分子中:
称取5.0g含3个热固化基团粘合剂分子(化合物2)将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴(约0.6mL)二月硅酸二丁基锡(DBTDL),在室温下搅拌6.0h,制得粘合剂。
本步骤中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
注:不用后处理反应,现配现用。产率86%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
结构鉴定:
IR(KBr,cm-1):3276(-NH,伸缩振动),2933(-CH2,反对称伸缩振动),2852(-CH2,对称伸缩振动),2258cm-1(–NCO的伸缩振动峰),1639(C=O,伸缩振动),1493(-NH,弯曲振动)968(=CH,面外变形振动),720(-CH2,面内摇摆振动)。
1H NMR:需要说明的是,本实施例中制备的目标粘合剂分子由于极性过大,不溶于核磁共振表征过程中常用的氘代试剂,因此无法获取准确的1H NMR数据。
分子量及分布:Mn=2830,Mw=3394,Mw/Mn=1.20。
以上结构鉴定数据证实所合成的化合物为本发明的目标粘合剂,即兼具防吸湿和包覆均匀度直观检测双重功能的粘合剂。
粘合剂的性能分析测试:
(1)弹性体的力学性能:
以本发明数均分子量为2830的粘合剂作为原料,与固化剂三官能度的PET混合加热固化,当R值为1.2时,制备的聚氨酯弹性体力学性能为:最大拉伸强度为4.23MPa,断裂伸长率为355%。
(2)玻璃化转变温度(Tg)测定:
玻璃化转变温度(Tg)是衡量粘合剂低温力学性能的重要参数,用DSC测定了此粘合剂的Tg为-68.8℃(如图1所示),表明此粘合剂的热稳定性较好。
(3)荧光量子产率测试:
在将全碳香豆素装入MOF808笼后,全碳香豆素@MOF808复合物的光谱性质转换为更加有用的固态荧光光谱学性质,如表1所示,其固态荧光量子产率上升至96%。
表1荧光量子产率测试结果
Figure BDA0004003603450000161
(4)粘合剂的粘度测定:
此粘合剂的粘度在20℃下的粘度为6.9Pa·s,粘度适中。对其在不同温度下的粘度进行了测试,如表2所示,实验结果表明:粘合剂的粘度均随着温度的升高而逐渐降低。这是由于随着温度的升高,粘合剂的分子链运动加快,分子链之间的缠绕降低,间距增大,内摩擦力减小,导致其粘度降低。
表2 粘合剂的粘度测定结果
温度(℃) 20 40 60
粘度(Pa·s) 6.9 2.7 0.8
实施例2:
本实施例给出一种粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
本实施例中的粘合剂采用上述实施例1中给出的兼具防吸湿和包覆均匀度直观检测双重功能的粘合剂。
所述的包覆的具体过程为:
步骤1,将5.0gPET溶解在50.0mL1,2-二氯乙烷中,制成PET溶液。
步骤2,将10.0mL粘合剂先用20.0mL1,2-二氯乙烷溶剂进行稀释,接着将称取的200.0gα-AlH3加入反应液中,再将步骤1制备好的10.0mLPET溶液加入反应液中,最后再滴加1滴二月硅酸二丁基锡(DBTDL)。在室温下搅拌3.0h。用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤3-5次,晾干,即可得到包覆产物。
包覆产物的性能分析测试:
(5)α-AlH3包覆前后的接触角测试:
本发明的粘合剂对α-AlH3包覆完成之后接触角进行了测试,实验结果如图2所示,实验结果表明:α-AlH3在包覆前的接触角为18°,吸湿性强;在包覆完成后的接触角为88°,近乎疏水。
(6)α-AlH3包覆前后的吸湿性能测试:
采用干燥器平衡法测试了α-AlH3和粘合剂包覆α-AlH3复合材料前后的吸湿性能。在室温下采用增重法,分别将α-AlH3包覆前后在不同湿度条件下、75%的湿度条件下长时间放置,记录其吸湿曲线。如图3所示,包覆前后的α-AlH3在25℃下,随着湿度的增加,α-AlH3包覆完成后的吸湿性能明显下降,如图4所示,包覆前后的α-AlH3在25℃下,湿度固定在75%的条件下,α-AlH3包覆完成后的吸湿性能也明显下降。推测其主要源于粘合剂与α-AlH3的紧密结合,有效抑制了α-AlH3与水汽的反应。α-AlH3的接触角为18°,经粘合剂包覆后的接触角为88°,由于其疏水性,α-AlH3表面包覆的粘合剂薄膜可以很好的将水分与周围环境隔离,从而达到降低吸湿性的效果,这一特性有利于α-AlH3的长期储存和应用。
(7)α-AlH3包覆前后的静电感度测试:
采用国军标GJB-5891.27-2006静电感度测试方法对α-AlH3包覆前后的静电感度进行了测试,结果如表3所示。
表3α-AlH3包覆前后的静电感度测试结果
Figure BDA0004003603450000181
从表3中可知,包覆前α-AlH3的静电感度较高,为367mJ,包覆后α-AlH3的E-50降低至测试上限5390mJ时未见发火,可见α-AlH3采用我们发明的粘合剂可使其静电感度降低。分析原因为:粘合剂在α-AlH3表明形成的包覆膜可起到物理隔绝作用,降低了外界静电对其刺激,所以静电感度大幅度降低。
(8)α-AlH3包覆完成后的表面元素分析:
α-AlH3包覆完成后的表面元素分析结果如图5和表4所示。
表4α-AlH3包覆完成后的表面元素分析结果
Figure BDA0004003603450000182
Figure BDA0004003603450000191
(9)α-AlH3包覆后的均匀度直观检测图如图6所示,扫描电镜图如图7所示。
(10)热性能分析:
测试了α-AlH3包覆前后的热性能,如图8所示,DSC测试结果表明:α-AlH3包覆后较包覆前的热分解峰温推迟了约4.1℃,使α-AlH3的热稳定性明显提高。
对比例1:
本对比例给出一种粘合剂的制备方法,该方法与实施例1的制备方法之间的区别仅仅在于配比不同。
实施例1的步骤三中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
而本对比例的步骤三中,含3个热固化基团粘合剂分子(化合物2)为5.0g,MOF808@7-羟基全碳香豆素为5.0g,二者的摩尔比为1:2。产率88%。比例制得的粘合剂进行如实施例2中的包覆实验,如图9和图10所示,包覆效果较差,且出现粘合剂团聚现象的发生。
对比例2:
本对比例给出一种粘合剂的制备方法,该方法与实施例1的制备方法之间的区别仅仅在于配比不同。
实施例1的步骤三中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
而本对比例的步骤三中,含3个热固化基团粘合剂分子(化合物2)为5.0g,MOF808@7-羟基全碳香豆素为5.0g,二者的摩尔比为1:3。产率90%。
本对比例制得的粘合剂进行如实施例2中的包覆实验,如图11和图12所示,几乎没有包覆效果。

Claims (10)

1.一种粘合剂,其特征在于,该粘合剂的结构式如下所示:
Figure FDA0004003603440000011
式中:X为5至20的整数。
2.如权利要求1所述的粘合剂,其特征在于,所述的X为6至10的整数。
3.一种如权利要求1或2所述的粘合剂的制备方法,其特征在于,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素;
称取7-羟基全碳香豆素和MOF-808加入至盛有甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗,将得到的MOF808@7-羟基全碳香豆素在室温下晾干;
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在THF中,然后在反应液中加入稀盐酸,接着逐渐升温至80℃下搅拌,反应完成后浓缩得到含3个热固化基团粘合剂分子;
步骤三,将固态荧光探针引入粘合剂分子中:
称取含3个热固化基团粘合剂分子将其溶解在1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加二月硅酸二丁基锡,在室温下搅拌,制得粘合剂;
所述的含3个热固化基团粘合剂分子与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
4.如权利要求3所述的粘合剂的制备方法,其特征在于,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素;
称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干;
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在100mLTHF中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子;
步骤三,将固态荧光探针引入粘合剂分子中:
称取5.0g含3个热固化基团粘合剂分子将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴二月硅酸二丁基锡,在室温下搅拌6.0h,制得粘合剂。
5.如权利要求1或2所述的粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
6.如权利要求5所述的应用,其特征在于,所述的粘合剂的添加量为氢化铝用量的0.5wt.%。
7.如权利要求5所述的应用,其特征在于,所述的粘合剂采用原位聚合的包覆方法对氢化铝进行包覆,得到包覆产物。
8.如权利要求7所述的应用,其特征在于,所述的包覆产物的接触角为88°。
9.如权利要求7所述的应用,其特征在于,所述的包覆的具体过程为:
步骤1,将PET溶解在1,2-二氯乙烷中,制成PET溶液;
步骤2,将粘合剂先用1,2-二氯乙烷溶剂进行稀释,接着将称取的α-AlH3加入反应液中,再将步骤1制备好的PET溶液加入反应液中,最后再滴加二月硅酸二丁基锡,在室温下搅拌,用紫外灯实时监控包覆反应进程;
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤,晾干,即可得到包覆产物。
10.如权利要求9所述的应用,其特征在于,所述的包覆的具体过程为:
步骤1,将5.0gPET溶解在50.0mL1,2-二氯乙烷中,制成PET溶液;
步骤2,将10.0mL粘合剂先用20.0mL1,2-二氯乙烷溶剂进行稀释,接着将称取的200.0gα-AlH3加入反应液中,再将步骤1制备好的10.0mLPET溶液加入反应液中,最后再滴加1滴二月硅酸二丁基锡,在室温下搅拌3.0h,用紫外灯实时监控包覆反应进程;
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤3-5次,晾干,即可得到包覆产物。
CN202211637579.3A 2022-12-16 2022-12-16 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 Active CN115849995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211637579.3A CN115849995B (zh) 2022-12-16 2022-12-16 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211637579.3A CN115849995B (zh) 2022-12-16 2022-12-16 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN115849995A true CN115849995A (zh) 2023-03-28
CN115849995B CN115849995B (zh) 2023-12-12

Family

ID=85674329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211637579.3A Active CN115849995B (zh) 2022-12-16 2022-12-16 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN115849995B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231983A (zh) * 2022-07-15 2022-10-25 西安近代化学研究所 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923536A (en) * 1988-02-17 1990-05-08 Olin Corporation Explosives and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof
CN114634392A (zh) * 2022-03-08 2022-06-17 西安近代化学研究所 一种7-羟基双甲基全碳螺环香豆素及cl-20的包覆方法
CN115231983A (zh) * 2022-07-15 2022-10-25 西安近代化学研究所 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用
CN115322741A (zh) * 2022-07-15 2022-11-11 西安近代化学研究所 一种含荧光分子笼的三羟甲基己基内胺酯粘合剂、制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923536A (en) * 1988-02-17 1990-05-08 Olin Corporation Explosives and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof
CN114634392A (zh) * 2022-03-08 2022-06-17 西安近代化学研究所 一种7-羟基双甲基全碳螺环香豆素及cl-20的包覆方法
CN115231983A (zh) * 2022-07-15 2022-10-25 西安近代化学研究所 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用
CN115322741A (zh) * 2022-07-15 2022-11-11 西安近代化学研究所 一种含荧光分子笼的三羟甲基己基内胺酯粘合剂、制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231983A (zh) * 2022-07-15 2022-10-25 西安近代化学研究所 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用
CN115231983B (zh) * 2022-07-15 2023-06-09 西安近代化学研究所 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用

Also Published As

Publication number Publication date
CN115849995B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
JP7371128B2 (ja) 高分子量フラン系アラミド及びその製造方法ならびに使用
WO2021023226A1 (zh) 一种富氮基团功能化石墨烯、制备方法及应用
Wang et al. Synthesis of a phosphorus‐and nitrogen‐containing flame retardant and evaluation of its application in waterborne polyurethane
CN115849995A (zh) 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用
CN113354680B (zh) 一种生物基反应型阻燃剂、阻燃水性聚氨酯乳液及制备方法
CN101735427B (zh) 一种聚氨酯的改性方法
CN110963944B (zh) 一种新型含氟碳链的低游离tdi聚氨酯固化剂及其制备方法
CN110669203B (zh) 一种分子内多炔基聚氨酯及聚三唑固化体系
Huang et al. The preparation and rheological properties of novel energetic composites TEGDN/NBC
CN112574335B (zh) 一种改性端羟基聚丁二烯及其制备方法和应用
CN117534870A (zh) 一种全生物质基苯并噁嗪改性纤维素气凝胶的制备方法和应用
CN110483752B (zh) 聚己二酸2-甲基-2-硝基丙二醇酯及其制备方法和用途
CN116288776A (zh) 一种抗老化超高分子量聚乙烯纤维材料及其制备方法
CN108359293B (zh) 一种含氮和羟基的丙烯酰磷酸酯及其的环氧丙烯酸酯阻燃涂料
CN113896871B (zh) 一种环氧-石墨烯体系的分散剂及其制备方法
CN112047795B (zh) 一种氧化石墨烯/硝化棉复合物的制备方法
CN110452366B (zh) 聚己二酸2-乙基-2-硝基丙二醇酯及其制备方法和用途
Yadollahi et al. Investigation of viscoelastic and thermal properties of cyclic carbonate bearing copolymers
CN115926018B (zh) 一种壳聚糖基二醛六亚甲基异氰酸酯荧光水凝胶膜及其制备方法和应用
CN115180996B (zh) 一种自修复复合材料及其制备方法和应用
Hsieh et al. Interpenetrating polymer networks of polyurethane and polystyrene ionomers
CN115109101B (zh) 双二茂铁基高氮含能离子化合物及其制备方法
KR102478598B1 (ko) 바이오매스 유래 환형 단량체를 포함하는 고분자 화합물 및 그의 제조방법
CN113999082A (zh) 一种改性六硝基六氮杂异伍兹烷的制备方法、改性六硝基六氮杂异伍兹烷及应用
CN102585225A (zh) 二氮杂萘酮联苯聚苯并噁唑、单体及聚合物制备法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant