WO2024124732A1 - 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 - Google Patents
一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 Download PDFInfo
- Publication number
- WO2024124732A1 WO2024124732A1 PCT/CN2023/083270 CN2023083270W WO2024124732A1 WO 2024124732 A1 WO2024124732 A1 WO 2024124732A1 CN 2023083270 W CN2023083270 W CN 2023083270W WO 2024124732 A1 WO2024124732 A1 WO 2024124732A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive
- alh
- coumarin
- coating
- carbon
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 116
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 116
- 230000009977 dual effect Effects 0.000 title claims abstract description 17
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 94
- 239000011248 coating agent Substances 0.000 claims abstract description 87
- 238000006243 chemical reaction Methods 0.000 claims abstract description 48
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 claims description 69
- 229910052799 carbon Inorganic materials 0.000 claims description 35
- 229960000956 coumarin Drugs 0.000 claims description 35
- 235000001671 coumarin Nutrition 0.000 claims description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- 239000007850 fluorescent dye Substances 0.000 claims description 21
- 238000006862 quantum yield reaction Methods 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 14
- 229920001187 thermosetting polymer Polymers 0.000 claims description 14
- 238000010521 absorption reaction Methods 0.000 claims description 12
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 10
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- 238000006116 polymerization reaction Methods 0.000 claims description 9
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 238000013007 heat curing Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 6
- -1 1-(6-cyanohexyl)-3-(6-isocyanatohexyl)urea Chemical compound 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 239000000706 filtrate Substances 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 5
- 238000001029 thermal curing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 12
- 230000002829 reductive effect Effects 0.000 abstract description 10
- 229910000091 aluminium hydride Inorganic materials 0.000 abstract description 5
- 238000002474 experimental method Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 23
- 239000003380 propellant Substances 0.000 description 14
- 239000004449 solid propellant Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- GAGSAAHZRBTRGD-UHFFFAOYSA-N oxirane;oxolane Chemical compound C1CO1.C1CCOC1 GAGSAAHZRBTRGD-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 238000001723 curing Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 229940125782 compound 2 Drugs 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 239000012296 anti-solvent Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- SPRIOUNJHPCKPV-UHFFFAOYSA-N hydridoaluminium Chemical compound [AlH] SPRIOUNJHPCKPV-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- LHFIOLDNPBYKQL-UHFFFAOYSA-N oxiran-2-ol oxolane Chemical group O1CCCC1.OC1CO1 LHFIOLDNPBYKQL-UHFFFAOYSA-N 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920003225 polyurethane elastomer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000013034 coating degradation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B27/00—Compositions containing a metal, boron, silicon, selenium or tellurium or mixtures, intercompounds or hydrides thereof, and hydrocarbons or halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
Definitions
- the invention belongs to the technical field of energetic materials and relates to an adhesive, in particular to an adhesive having dual functions for aluminum hydride, a preparation method and application thereof.
- Solid rocket engines are the power systems of various advanced strategic and tactical missiles.
- Solid propellant technology is the core technology and supporting technology of solid rocket engines, which is of great significance to improving the delivery capability and miniaturization capability of missiles.
- high energy performance has always been the goal pursued by researchers and the driving force for the renewal of solid propellants.
- researchers have been committed to the development and use of energetic binders and plasticizers, high energy density oxidizers and new fuels.
- Finhollt used LiH and AlCl 3 to react in ether solution to produce AlH 3 for the first time.
- ⁇ -AlH 3 is the most stable, with a standard molar formation enthalpy of -11.8kJ/mol, an absolute entropy of 30.0kJ ⁇ mol -1 ⁇ °C, a standard molar Gibbs free energy of formation of 45.4kJ/mol, a relative molecular mass of 30.0, a density of 1.489g/cm 3 , a hydrogen content of 10.08%, and a hydrogen storage density of 148g/L, which is twice that of liquid hydrogen.
- ⁇ -AlH 3 Since its first synthesis, ⁇ -AlH 3 has a high hydrogen content, a small molecular weight of combustion products, and a relatively high thermal decomposition temperature, it has been regarded as an ideal fuel for a new generation of solid propellants to improve the energy performance of solid propellants.
- Solid propellants are prepared based on the ⁇ -AlH 3 component. Compared with Al-based propellants, the combustion performance of ⁇ -AlH 3 -based propellants is significantly improved, among which the combustion heat is increased to 1.5 times that of Al-based propellants, and the maximum combustion temperature is increased by about 200°C.
- ⁇ -AlH 3 has problems such as easy oxidation, poor chemical and thermal stability, dangerous production and storage, and easy failure. Studies have found that after 14 days of storage at room temperature, a flaky oxide layer will gradually form on the surface of ⁇ -AlH 3 , and hydrogen decomposition will occur. At the same time, humidity will accelerate the decomposition of ⁇ -AlH 3 , resulting in hydrogen pressure, voids and wrinkles inside the propellant, and poor burning rate. In addition, when ⁇ -AlH 3 decomposes rapidly, it acts as a reducing agent and affects other components of the solid propellant, resulting in poor compatibility with the main components of the solid propellant, which seriously limits the use of ⁇ -AlH 3 in solid propellants.
- Cai X. et al. used fluororubber FE26 as a coating agent, liquid CO 2 as an antisolvent and dispersion medium, and used supercritical fluid technology to successfully achieve physical coating of ⁇ -AlH 3. They found that after coating, the sample's formation enthalpy increased, thermal stability improved, spark sensitivity decreased, and the surface became smoother (Cai X., et al. Propellants, Explosives, Pyrotechnics, 2015, 40(6), 914-919). Li Lei et al.
- Coating method Although the strategies of spray drying, water suspension, vapor deposition, solvent-antisolvent, etc. adopted in the above literature can achieve relatively excellent coating effects on the coated energetic materials, they still have the disadvantages of cumbersome reaction steps and high requirements for experimental equipment; 2 Large amount of coating material: The coating material used has the defect of large amount.
- the present invention adopts the following technical solutions to achieve the above problems:
- X is an integer from 5 to 20.
- X is an integer from 6 to 10.
- the present invention also has the following technical features:
- the present invention also protects a method for preparing the adhesive as described above, the method comprising the following steps:
- Step 1 Synthesis of solid-state fluorescent probe with high fluorescence quantum yield:
- the high fluorescence quantum yield solid-state fluorescent probe is MOF808@7-hydroxy all-carbon coumarin.
- Step 3 Introduce solid-state fluorescent probes into adhesive molecules:
- the molar ratio of the adhesive molecule containing three heat-curing groups to MOF808@7-hydroxyl all-carbon coumarin is 1:1.
- the method comprises the following steps:
- Step 1 Synthesis of solid-state fluorescent probe with high fluorescence quantum yield:
- the high fluorescence quantum yield solid-state fluorescent probe is MOF808@7-hydroxy all-carbon coumarin.
- Step 3 Introduce solid-state fluorescent probes into adhesive molecules:
- the present invention also protects the use of the adhesive as described above for the dual functions of preventing moisture absorption of aluminum hydride and visually detecting coating uniformity.
- the added amount of the binder is 0.5 wt.% of the amount of aluminum hydride.
- the binder is coated on aluminum hydride by an in-situ polymerization coating method to obtain a coated product.
- the contact angle of the coated product is 88°.
- Step 1 dissolving trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether in 1,2-dichloroethane to prepare a trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether solution.
- Step 2 dilute the adhesive with 1,2-dichloroethane solvent, then add the weighed ⁇ - AlH3 into the reaction solution, then add the trifunctional terminal hydroxyl ethylene oxide tetrahydrofuran copolyether solution prepared in step 1 into the reaction solution, and finally drop dibutyltin dilaurate, stir at room temperature, and monitor the coating reaction progress in real time with an ultraviolet lamp.
- Step 3 after the coating reaction is completed, the obtained solid is filtered with a funnel, washed with 1,2-dichloroethane, and dried to obtain the coated product.
- the specific process of the coating is:
- Step 1 dissolving 5.0 g of trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether in 50.0 mL of 1,2-dichloroethane to prepare a trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether solution.
- Step 2 dilute 10.0 mL of adhesive with 20.0 mL of 1,2-dichloroethane solvent, then weigh 200.0 g of ⁇ -AlH 3 was added to the reaction solution, and then 10.0 mL of the trifunctional hydroxy-terminated ethylene oxide tetrahydrofuran copolyether solution prepared in step 1 was added to the reaction solution, and finally 1 drop of dibutyltin dilaurate was added. The mixture was stirred at room temperature for 3.0 h, and the coating reaction progress was monitored in real time with an ultraviolet lamp.
- Step 3 after the coating reaction is completed, the obtained solid is filtered with a funnel, and washed with 1,2-dichloroethane for 3-5 times and dried to obtain the coated product.
- the present invention has the following technical effects:
- the adhesive of the present invention is a novel adhesive material with dual functions. On the one hand, it has a relatively excellent coating effect on ⁇ -AlH 3 under the condition of an addition amount of 0.5wt.%, which reduces the electrostatic sensitivity of ⁇ -AlH 3 by more than 80% and greatly reduces the hygroscopic performance of ⁇ -AlH 3.
- the novel adhesive material with dual functions of the present invention has an intuitive effect of coating uniformity, and the reaction process can be monitored in real time, which greatly improves the efficiency of ⁇ -AlH 3 coating experiments.
- the adhesive of the present invention contains three heat curing groups, and when one group is replaced by a solid fluorescent probe, its curing crosslinking speed and crosslinking density are not greatly affected.
- the maximum tensile strength of the polyurethane elastomer prepared using the adhesive of the present invention as a raw material is 4.23MPa, and the elongation at break is 355%.
- the adhesive of the present invention contains a solid fluorescent group. Under the irradiation condition of 365nm ultraviolet lamp, the distribution area of the adhesive can be visually observed, the coating uniformity can be visually detected, and the coating reaction process can also be detected in real time.
- a coating amount of 0.5 wt.% can produce a relatively excellent coating effect on ⁇ -AlH 3 (whether visually detected or verified by scanning electron microscopy), almost eliminating the influence of ⁇ -AlH 3 on electrostatic spark sensitivity.
- the adhesive of the present invention uses an in-situ polymerization coating method to coat ⁇ -AlH 3. After the coating is completed, the contact angle of ⁇ -AlH 3 can be increased from 18° (strong hygroscopicity) before coating to 88° (close to 90°, almost hydrophobic). This property is conducive to the long-term storage and application of ⁇ -AlH 3 .
- the adhesive of the present invention After being made into an elastomer, the adhesive of the present invention has a tensile strength of 4.23 MPa and an elongation of 355%, and has relatively excellent mechanical properties.
- the thermal decomposition peak temperature of the ⁇ -AlH 3 of the present invention increases by about 4.1°C, further improving the heat resistance of the ⁇ -AlH 3 .
- FIG. 1 is a DSC spectrum of the adhesive in Example 1.
- FIG. 2 is a contact angle diagram before and after ⁇ -AlH 3 coating in Example 2.
- FIG3 is a graph showing the moisture absorption performance of ⁇ -AlH 3 before and after coating under different humidity conditions at room temperature in Example 2.
- FIG. 4 is a graph showing the moisture absorption performance of ⁇ -AlH 3 before and after coating at room temperature and 75% humidity in Example 2.
- FIG. 5 is a mapping diagram after ⁇ -AlH 3 coating in Example 2 is completed.
- FIG. 6 is a diagram showing the visual detection of uniformity after ⁇ -AlH 3 coating in Example 2.
- FIG. 7 is a scanning electron microscope image of ⁇ -AlH 3 before and after coating in Example 2.
- FIG8 is a DSC comparison diagram of ⁇ -AlH 3 before and after coating in Example 2.
- FIG9 is a scanning electron microscope image of the ⁇ -AlH 3 coated in Comparative Example 1.
- FIG. 10 is another SEM image of the ⁇ -AlH 3 coated in Comparative Example 1.
- FIG11 is a scanning electron microscope image of the ⁇ -AlH 3 coated in Comparative Example 2.
- FIG. 12 is another SEM image of the ⁇ -AlH 3 coated in Comparative Example 2.
- 7-hydroxy all-carbon coumarin uses known 7-hydroxy all-carbon coumarin, such as the 7-hydroxy all-carbon coumarin disclosed in Dyes Pigment, 2019, 163, 55-61.
- MOF-808 refers to the coordinated metal Zr metal cluster, which is the abbreviation of MOF-808(Zr), and its molecular formula is C 24 H 16 O 32 Zr 6 , CAS: 1579984-19-2.
- MOF808@coumarin in the present invention refers to MOF808@7-hydroxy all-carbon coumarin.
- the testing instrument of the present invention is a measuring instrument of the present invention.
- the infrared spectrum was measured using a Nexus 870 Fourier transform infrared spectrometer from Nicolet, USA.
- the present invention uses in-situ polymerization to coat ⁇ -AlH 3.
- In-situ polymerization uses prepolymer as shell material. While maintaining the properties of the substance itself, the polymer can enhance the stability and compatibility of the particles and graft functional groups.
- the in-situ polymerization method prepares polymer composite materials by initiating polymerization in a mixed solution of ⁇ -AlH 3 and polymerized monomers. The preparation process is simple, the dispersibility is good, and the thickness of the coating layer can be effectively controlled. It is a research hotspot for polymer modified composite materials.
- the solid-state fluorescent group is introduced into the adhesive molecule through a chemical bond, and the fluorescence quantum yield of the solid-state fluorescent group must be above 80% (the higher the better), because it acts as a positioning group in the adhesive molecule and is the positioning source for intuitive detection of coating degradation uniformity.
- the selected adhesive molecules have at least three identical curing groups.
- any group in the adhesive molecule can react and couple with the solid fluorescent group, and the other two groups remain free, so that this adhesive has the characteristics of fast curing and crosslinking speed in the subsequent coating process of energetic materials and good mechanical strength after coating and crosslinking.
- the amount of adhesive used in the coating process should be as small as possible.
- the present invention is conceived as follows:
- the selected adhesive and solid-state fluorescent probe should have the following two characteristics: (1) The functional groups in the adhesive molecule should be at least three or more, so that after the functional groups in the adhesive molecule are replaced by a few, the coating reaction process can still be completed quickly during the coating process without affecting the thermodynamic properties. (2) The functional groups in the adhesive molecule should be easy to react with MOF808, so that MOF808 can be introduced into the adhesive molecule under mild conditions without causing much impact on the performance of the adhesive.
- the trifunctional hydroxy-terminated ethylene oxide tetrahydrofuran copolyether adopts a known commercial product with a number average molecular weight of 3,800.
- the adhesive curing and encapsulation mechanism is shown below.
- the specific synthetic route of the preparation method comprises the following steps:
- Step 1 Synthesis of solid-state fluorescent probe with high fluorescence quantum yield:
- Step 3 Introduce solid-state fluorescent probes into adhesive molecules:
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- This embodiment provides a method for preparing an adhesive, which comprises the following steps:
- Step 1 Synthesis of solid-state fluorescent probe with high fluorescence quantum yield:
- the high fluorescence quantum yield solid-state fluorescent probe is MOF808@7-hydroxy all-carbon coumarin.
- Step 3 Introduce solid-state fluorescent probes into adhesive molecules:
- thermosetting groups compound 2
- MOF808@7-hydroxy all-carbon coumarin 1:1.
- the above structural identification data confirm that the synthesized compound is the target adhesive of the present invention, that is, an adhesive having the dual functions of preventing moisture absorption and visually detecting coating uniformity.
- the adhesive with a number average molecular weight of 2830 of the present invention is used as a raw material, mixed with a curing agent trifunctional terminal hydroxyl ethylene oxide tetrahydrofuran copolyether and heated for curing.
- R value is 1.2
- the mechanical properties of the prepared polyurethane elastomer are as follows: the maximum tensile strength is 4.23MPa, and the elongation at break is 355%.
- the glass transition temperature (T g ) is an important parameter for measuring the low-temperature mechanical properties of an adhesive.
- the T g of the adhesive was determined by DSC to be -68.8°C (as shown in FIG. 1 ), indicating that the adhesive has good thermal stability.
- the spectral properties of the all-carbon coumarin@MOF808 composite were converted into more useful solid-state fluorescence spectroscopy properties, as shown in Table 1, and its solid-state fluorescence quantum yield increased to 96%.
- the viscosity of this adhesive is 6.9 Pa ⁇ s at 20°C, which is moderate. Its viscosity at different temperatures was tested, as shown in Table 2. The experimental results show that the viscosity of the adhesive gradually decreases with increasing temperature. This is because as the temperature increases, the molecular chain movement of the adhesive accelerates, the entanglement between the molecular chains decreases, the spacing increases, and the internal friction decreases, resulting in a decrease in its viscosity.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- This embodiment provides an application of an adhesive for aluminum hydride to have the dual functions of preventing moisture absorption and visually detecting coating uniformity.
- the adhesive in this embodiment adopts the adhesive given in the above embodiment 1 which has the dual functions of preventing moisture absorption and visually detecting coating uniformity.
- Step 1 dissolving 5.0 g of trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether in 50.0 mL of 1,2-dichloroethane to prepare a trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether solution.
- Step 2 Dilute 10.0 mL of adhesive with 20.0 mL of 1,2-dichloroethane solvent, then add 200.0 g of ⁇ -AlH 3 to the reaction solution, then add 10.0 mL of trifunctional hydroxyl-terminated ethylene oxide tetrahydrofuran copolyether solution prepared in step 1 to the reaction solution, and finally add 1 drop of dibutyltin dilaurate (DBTDL). Stir at room temperature for 3.0 h. Use ultraviolet light to monitor the coating reaction process in real time.
- DBTDL dibutyltin dilaurate
- Step 3 after the coating reaction is completed, the obtained solid is filtered with a funnel, and washed with 1,2-dichloroethane for 3-5 times and dried to obtain the coated product.
- the contact angle of the adhesive of the present invention after coating ⁇ -AlH 3 was tested.
- the experimental results are shown in Figure 2.
- the experimental results show that the contact angle of ⁇ -AlH 3 before coating is 18°, which has strong hygroscopicity; the contact angle after coating is 88°, which is almost hydrophobic.
- the moisture absorption properties of ⁇ -AlH 3 and adhesive coated ⁇ -AlH 3 composite materials before and after the test were tested by the dryer balance method.
- the ⁇ -AlH 3 was placed for a long time under different humidity conditions and 75% humidity conditions before and after coating at room temperature using the weight gain method, and its moisture absorption curve was recorded.
- the moisture absorption properties of ⁇ -AlH 3 before and after coating at 25°C decreased significantly with the increase of humidity.
- the electrostatic sensitivity of ⁇ -AlH 3 before coating is relatively high, at 367mJ.
- the E-50 of ⁇ -AlH 3 is reduced to the upper limit of the test, 5390mJ, and no ignition is observed.
- the electrostatic sensitivity of ⁇ -AlH 3 can be reduced by using the adhesive invented by us. The reason for this is that the coating film formed by the adhesive on the surface of ⁇ -AlH 3 can play a physical isolation role, reducing the stimulation of external static electricity, so the electrostatic sensitivity is greatly reduced.
- This comparative example provides a method for preparing an adhesive, and the difference between this method and the preparation method of Example 1 is only the different ratio.
- step three of Example 1 the molar ratio of the adhesive molecule containing three thermosetting groups (compound 2) to MOF808@7-hydroxy all-carbon coumarin is 1:1.
- step 3 of this comparative example the adhesive molecule containing 3 heat curing groups (compound 2) is 5.0 g, and the MOF808@7-hydroxyl all-carbon coumarin is 5.0 g, and the molar ratio of the two is 1:2. The yield is 88%.
- the adhesive prepared in the ratio is subjected to the coating experiment as in Example 2, as shown in Figures 9 and 10, the coating effect is poor, and the adhesive agglomeration phenomenon occurs.
- This comparative example provides a method for preparing an adhesive, and the difference between this method and the preparation method of Example 1 is only the different ratio.
- step three of Example 1 the molar ratio of the adhesive molecule containing three thermosetting groups (compound 2) to MOF808@7-hydroxy all-carbon coumarin is 1:1.
- step 3 of this comparative example the amount of the adhesive molecule containing three heat curing groups (compound 2) is 5.0 g, and the amount of MOF808@7-hydroxyl all-carbon coumarin is 5.0 g, and the molar ratio of the two is 1:3.
- the yield is 90%.
- the adhesive prepared in this comparative example was subjected to the coating experiment as in Example 2. As shown in FIG. 11 and FIG. 12 , there was almost no coating effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供了一种对氢化铝兼具双重功能的粘合剂、制备方法及应用,该粘合剂的结构式如下所示。本发明的粘合剂为兼具双重功能的新型粘合剂材料,一方面在添加量为0.5wt.%的条件下对α-AlH3具有较为优异的包覆效果,使α-AlH3的静电感度下降80%以上,使α-AlH3的吸湿性能大大下降;另一方面,本发明的具备双重功能的新型粘合剂材料具有包覆均匀度直观的效果,可实时监测反应进程,大大提升了α-AlH3包覆实验的效率。
Description
本发明属于含能材料技术领域,涉及粘合剂,具体涉及一种对氢化铝兼具双重功能的粘合剂、制备方法及应用。
固体火箭发动机是各种先进战略、战术导弹的动力系统,固体推进剂技术是固体火箭发动机的核心技术和支撑技术,对提高导弹的投送能力及小型化能力具有重要意义。在固体推进剂的各项性能中,高能量性能一直是研究者追求的目标,也是推动固体推进剂更新换代的原动力。为提高固体推进剂的能量性能,研究者们一直致力于含能粘合剂与增塑剂、高能量密度氧化剂和新型燃料的研制与使用。其中,在新型燃料研制方面,1947年,Finhollt利用LiH和AlCl3在乙醚溶液中反应首次制得AlH3,目前共发现七种晶型,其中α-AlH3最为稳定,其标准摩尔生成焓为-11.8kJ/mol,绝对熵为30.0kJ·mol-1·℃,标准生成摩尔吉布斯自由能为45.4kJ/mol,相对分子质量为30.0,密度为1.489g/cm3,氢含量为10.08%,储氢密度为148g/L,是液氢的两倍。因α-AlH3含氢量高、燃烧产物分子量小、热分解温度相对较高,自首次合成以来就被视为新一代固体推进剂的理想燃料,用以提高固体推进剂能量性能。基于α-AlH3组分制备固体推进剂,相较于Al基推进剂,α-AlH3基推进剂燃烧性能显著提高,其中燃烧热提升至Al基推进剂的1.5倍,最高燃烧温度提高了约200℃,当固体推进剂其他组分含量一定时,随着α-AlH3取代Al粉量的增加,推进剂的理论比冲升高。每当1%质量分数的Al粉被AlH3取代,推进剂的理论比冲升高约0.64s,当α-AlH3全部取代18%的Al后,推进剂的理论比冲达到281.72s,比全Al推进剂的理论比冲提高了11.31s。因此,α-AlH3已被视为最有发展潜力的高能燃料,在推进剂领域被寄予厚望。其作为固体推进剂高能燃烧组分能够有效提高推进剂的理论比冲,已成为下一代固体推进剂的优选组分之一。
但是α-AlH3存在着易氧化、化学稳定性和热稳定性差、生产储存危险、易失效等问题。研究发现:α-AlH3在常温储存14天后表面会逐渐形成鳞片状氧化层,发生氢气解析,同时湿度会加速α-AlH3的分解,导致推进剂内部存在氢压、空隙和褶皱,燃速不佳。此外,α-AlH3加速分解时作为一种还原剂,会影响到固体推进剂的其它组分,导致与固体推进剂主要组分的相容性较差,严重限制了α-AlH3在固体推进剂中的使用。关于α-AlH3的分解机理,SinkeG.进行了理论计算,计算发现298K时,α-AlH3的平均生成焓为-11.4±0.8kJ/mol,绝对值熵为
30.0±0.4kJ/mol,生成吉布斯能为45.4±1.0kJ/mol,这表明α-AlH3热力学状态不稳定,可自发分解为Al和H2。据报道α-AlH3的等温热分解曲线呈S型,主要分为三个阶段:诱导期(该时期释氢缓慢,为铝核的生长期,是限速步骤)、加速期(释氢速率提高,释氢达到60%,可观察到晶体内部出现大量空腔)、消退期(内部释氢至α-AlH3完全分解为铝)。因此,可以得出结论:抑制α-AlH3分解的关键在于如何抑制诱导期的出现。
上述研究表明提高α-AlH3的稳定性对推进剂领域的发展具有重要的意义。目前,增强α-AlH3稳定性的主要方法是进行表面处理、包覆、低温储存等。其中包覆无疑是一种能有效提升α-AlH3稳定性的方法,并能避免α-AlH3与固体推进剂其它组分直接接触,完全符合设想的“抑制诱导期”的策略。对于含能材料的包覆是近年来研究比较热门的领域,2011年,Qiu H.等采用喷雾干燥法策略,使用质量分数为17%的PVAc和VMCC对RDX进行了包覆,使RDX的撞击感度明显降低(Qiu H.,et al.J.Hazard.Mater.,2011,185,489-493)。2016年,WangJ.等采用水悬浮策略,使用质量分数为25%石墨烯及其他包覆试剂对HMX进行了包覆,可使HMX的摩擦感度大幅降低(WangJ.,et al.J.Energ.Mater.,2016,34,235-245)。2019年,Zhou X.等采用气相沉积法策略,使用54%CuO对RDX进行包覆,可得到较为优异的包覆效果(Zhou X.,et al.Propellants Explos.Pyrotech.,2019,44,1368-1374)。Cai X.等以氟橡胶FE26作包覆剂,以液态CO2作为抗溶剂和分散介质,利用超临界流体技术,成功实现α-AlH3的物理包覆,发现包覆后样品生成焓增加,热稳定性提高,电火花感度降低,且表面更光滑(Cai X.,et al.Propellants,Explosives,Pyrotechnics,2015,40(6),914-919)。李磊等人发现采用氧化石墨烯溶剂-反溶剂法包覆α-AlH3,能有效降低了α-AlH3的机械撞击感度(李磊,顾健,黄丹椿,等.固体火箭技术,2019,42(1),66-71)。研究发现,α-AlH3的摩擦感度和撞击感度略低于或低于HMX,但静电感度很高,这极大地限制了其在推进剂领域中的应用研究。针对上述问题,秦明娜等采用溶剂-反溶剂法,使用硬脂酸包覆AlH3,有效降低了AlH3的静电感度(秦明娜,等.含能材料,2017,25(1),59-62)。
但是上述文献报道的AlH3包覆策略存在着以下三个方面的问题:
①包覆方法:上述文献中采取的喷雾干燥、水悬浮、气相沉积法、溶剂-反溶剂等策略虽然对所包覆的含能材料都能取得较为优异的包覆效果,但是依然存在着反应步骤繁琐的缺点,且对实验设备的要求较高;②包覆材料的用量较大:所采用的包覆材料存在着用量较大的缺陷。虽然在对含能材料包覆完成以后在一定程度上降低了含能材料的感度,但是也对包覆完成后含能样品的能量性能产生了极大的影响;③包覆产物的均匀度检测方法:上述文献对含能材料包覆完成后的包覆均匀度检测需要仍然采用扫描电镜,这无疑耗时耗力,且只能在反应完成后进行样品的均匀度检测,不能直观的实时监测包覆反应进程。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种对氢化铝兼具双重功能的粘合剂和制备方法及应用,解决现有技术中难以实现通过一种粘合剂同时解决防吸湿和包覆均匀度直观检测双重功能的技术问题。
为了解决上述技术问题,本发明采用如下技术方案予以实现:
一种粘合剂,该粘合剂的结构式如下所示:
式中:X为5至20的整数。
优选的,所述的X为6至10的整数。
本发明还具有如下技术特征:
本发明还保护一种如上所述的粘合剂的制备方法,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取7-羟基全碳香豆素和MOF-808加入至盛有甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗,将得到的MOF808@7-羟基全碳香豆素在室温下晾干。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在THF中,然后在反应液中加入稀盐酸,接着逐渐升温至80℃下搅拌,反应完成后浓缩得到含3个热固化基团粘合剂分子。
步骤三,将固态荧光探针引入粘合剂分子中:
称取含3个热固化基团粘合剂分子将其溶解在1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加二月桂酸二丁基锡,在室温下搅拌,制得粘合剂。
所述的含3个热固化基团粘合剂分子与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
优选的,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在100mLTHF中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子。
步骤三,将固态荧光探针引入粘合剂分子中:
称取5.0g含3个热固化基团粘合剂分子将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴二月硅酸二丁基锡,在室温下搅拌6.0h,制得粘合剂。
本发明还保护如上所述的粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
优选的,所述的粘合剂的添加量为氢化铝用量的0.5wt.%。
优选的,所述的粘合剂采用原位聚合的包覆方法对氢化铝进行包覆,得到包覆产物。
优选的,所述的包覆产物的接触角为88°。
进一步具体的,所述的包覆的具体过程为:
步骤1,将三官能度端羟基环氧乙烷四氢呋喃共聚醚溶解在1,2-二氯乙烷中,制成三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液。
步骤2,将粘合剂先用1,2-二氯乙烷溶剂进行稀释,接着将称取的α-AlH3加入反应液中,再将步骤1制备好的三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液加入反应液中,最后再滴加二月桂酸二丁基锡,在室温下搅拌,用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤,晾干,即可得到包覆产物。
进一步优选的,所述的包覆的具体过程为:
步骤1,将5.0g三官能度端羟基环氧乙烷四氢呋喃共聚醚溶解在50.0mL1,2-二氯乙烷中,制成三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液。
步骤2,将10.0mL粘合剂先用20.0mL1,2-二氯乙烷溶剂进行稀释,接着将称取的200.0g
α-AlH3加入反应液中,再将步骤1制备好的10.0mL三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液加入反应液中,最后再滴加1滴二月桂酸二丁基锡,在室温下搅拌3.0h,用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤3-5次,晾干,即可得到包覆产物。
本发明与现有技术相比,具有如下技术效果:
(Ⅰ)本发明的粘合剂为兼具双重功能的新型粘合剂材料,一方面在添加量为0.5wt.%的条件下对α-AlH3具有较为优异的包覆效果,使α-AlH3的静电感度下降80%以上,使α-AlH3的吸湿性能大大下降;另一方面,本发明的具备双重功能的新型粘合剂材料具有包覆均匀度直观的效果,可实时监测反应进程,大大提升了α-AlH3包覆实验的效率。
(Ⅱ)本发明的粘合剂中含有三个热固化基团,当一个基团被固态荧光探针取代之后对其固化交联速度和交联密度影响不大。以本发明的粘合剂为原料制备的聚氨酯弹性体最大拉伸强度为4.23MPa,断裂伸长率为355%。
(Ⅲ)本发明的粘合剂含有固态荧光基团,在365nm紫外灯照射条件下可直观观察到粘合剂的分布区域,可进行包覆均匀度的直观检测,也可实时检测包覆反应历程。
(Ⅳ)本发明中,0.5wt.%的包覆量即可对α-AlH3产生较为优异的包覆效果(无论是直观检测还是扫描电镜验证),几乎消解了α-AlH3的静电火花感度影响。
(Ⅴ)本发明的粘合剂采用原位聚合的包覆方法对α-AlH3进行包覆,在包覆完成后可使α-AlH3的接触角由包覆前的18°(吸湿性较强)上升至88°(接近90°,近乎疏水),这一特性有利于α-AlH3的长期储存和应用。
(Ⅵ)本发明的粘合剂在制成弹性体后,其拉伸强度4.23MPa,延伸率为355%,具有较为优异的力学性能。
(Ⅶ)本发明的α-AlH3在包覆完成后,其热分解峰温升高了约4.1℃,进一步提高了α-AlH3的耐热性能。
图1为实施例1中的粘合剂的DSC谱图。
图2为实施例2中的α-AlH3包覆前后的接触角图。
图3为实施例2中的室温下不同湿度条件下α-AlH3包覆前后的吸湿性能图。
图4为实施例2中的室温下在75%的湿度下α-AlH3包覆前后的吸湿性能图。
图5为实施例2中的α-AlH3包覆完成后的Mapping图。
图6为实施例2中的α-AlH3包覆后的均匀度直观检测图。
图7为实施例2中的α-AlH3包覆前后的扫描电镜图。
图8为实施例2中的α-AlH3包覆前后的DSC比对图。
图9为对比例1中的α-AlH3包覆后的一副扫描电镜图。
图10为对比例1中的α-AlH3包覆后的另一副扫描电镜图。
图11为对比例2中的α-AlH3包覆后的一副扫描电镜图。
图12为对比例2中的α-AlH3包覆后的另一副扫描电镜图。
以下结合实施例对本发明的具体内容作进一步详细解释说明。
需要说明的是,本发明中的所有原料,如无特殊说明,全部均采用现有技术中已知的商业化原料。氢化铝优选α-AlH3。
7-羟基全碳香豆素采用已知的7-羟基全碳香豆素,例如Dyes Pigment,2019,163,55-61.中公开的7-羟基全碳香豆素。
MOF-808指的是配位金属Zr金属簇,为MOF-808(Zr)的简称,分子式为C24H16O32Zr6,CAS:1579984-19-2。
本发明中的MOF808@香豆素指的即是MOF808@7-羟基全碳香豆素。
本发明的测试仪器:
(1)红外光谱采用美国Nicolet公司的Nexus 870型傅里叶变换红外光谱仪测试。
(2)核磁采用德国Bruker公司的AVANCE AV500型核磁共振仪测试。
(3)数均分子量采用英国PL公司GPC-50型凝胶渗透色谱仪测试。
(4)弹性体力学性能采用美国Instron公司Instron 4505型万能材料试验机测试。
(5)JGY-50Ⅲ(J)型静电感度测试仪。
(6)固态荧光量子产率通过爱丁堡FLS980仪器测试。
(7)美国X射线光电子能谱分析(Thermo SCIENTIFIC K-Alpha,XPS)。
(8)粘度由德国Bruker公司的锥板粘度计测定。
(9)DSC通过美国TA公司的DSC-2910型差热分析扫描仪测试。
本发明的技术构思是:
第一,本发明选用原位聚合法对α-AlH3进行包覆。原位聚合法将预聚物作为壳层材料,聚合物在保持物质自身性质的同时,可增强粒子的稳定性和相容性,接枝功能官能团。在众多聚合物包覆方法中,原位聚合法通过在α-AlH3与聚合单体的混合溶液中引发聚合制备聚合物复合材料,其制备工艺简单,分散性好,可实现对包覆层厚度的有效控制,是聚合物改性复合材料的研究热点。
第二,将固态荧光基团通过化学键引入至粘合剂分子中,且固态荧光基团的荧光量子产率要在80%以上(越高越好),因其在粘合剂分子中充当定位基团的作用,是包覆降感均匀度直观检测的定位来源。
第三,所选择的粘合剂分子至少有三个相同的固化基团,通过调控物料比例,使粘合剂分子中任意一个基团与固态荧光基团进行反应偶联,另两个基团保持游离,使此粘合剂在后续包覆含能材料的过程中起到固化交联速度快和包覆交联完成后力学强度较好的特点。
第四,所使用的粘合剂在包覆过程中的用量要尽可能的少。
为了解决α-AlH3在包覆过程中的粘合剂用量较大、固化速度较慢,包覆均匀度直观检测过程费事费力,且不能直观的检测包覆反应进程的问题,本发明的设想:
①固态荧光基团的选择。我们首先考虑到了香豆素类化合物,它是一类非常重要的天然产物,其骨架广泛存在于药物分子、化妆品及食品添加剂中。此外,由于其具有良好的生物相容性、较大的Stokes位移、强而稳定的荧光发射等优点,常常被应用于小分子荧光探针。2019年,华东理工大学的杨友军教授课题组报道了首例7-羟基全碳香豆素,它与传统的7-位氧香豆素相比具有较为优异的光谱学性质:无论是紫外吸收还是荧光发射的最大波长都有大幅度的红移,但是其结构不够刚性,导致其荧光量子产率较低,极大的限制了其使用范围。于是,我们考虑转换策略,找到一种方法既能使7-羟基全碳香豆素的荧光量子产率大幅度提升,又能将液态荧光转变为更加有用的固态荧光。我们的策略是将7-羟基螺环香豆素装入MOF笼中,限制螺环香豆素分子内的转动和振动,使非辐射跃迁的能量损失降低,辐射跃迁的能量升高,进而提高其荧光量子产率。我们的选用孔径大小与7-羟基螺环香豆素匹配的MOF808作为MOF笼进行尝试。令人非常惊喜的是,将7-羟基螺环香豆素装入MOF808以后,固态荧光量子产率上升至96%,这进一步验证了我们的猜想。
②粘合剂的选择和固态荧光探针的引入。所选择的粘合剂和固态荧光探针的引入应具备以下2个方面的特点:(1)粘合剂分子中的官能团应至少在三个及以上,这样在粘合剂分子中的官能团被少数取代以后,仍然在包覆过程中可以快速的完成包覆反应历程,且不影响热力学性能。(2)此粘合剂分子中的官能团应易与MOF808进行反应,这样可在温和的条件将MOF808引入至粘合剂分子中,且不会对粘合剂的性能造成太大影响。
③我们拟采用原位聚合包覆的思路对α-AlH3进行包覆。原位聚合法相比于喷雾干燥、水悬浮、气相沉积法、溶剂-反溶剂等包覆策略具有包覆效果好、包覆量少和包覆强度高等优点。
因此,我们拟选择含热固化基团(-NCO)的化合物作为粘合剂,选用含羟基基团的三官能度端羟基环氧乙烷四氢呋喃共聚醚作为固化剂,其对α-AlH3进行包覆固化成型。
三官能度端羟基环氧乙烷四氢呋喃共聚醚的结构式如下所示:
作为本发明的一种优选,三官能度端羟基环氧乙烷四氢呋喃共聚醚采用已知的市售产品,其数均分子量为3800。
粘合剂固化和包覆机理如下所示。
本发明的对氢化铝兼具双重功能的粘合剂的结构式如下所示:
本发明的对氢化铝兼具双重功能的粘合剂的制备方法的具体合成路线如下所示:
该制备方法的具体合成路线包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
步骤二,含3个热固化基团粘合剂分子的合成:
步骤三,将固态荧光探针引入粘合剂分子中:
注:不用处理反应,现配现用,即得到对氢化铝兼具双重功能的粘合剂,产率86%。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
本实施例给出一种粘合剂的制备方法,该方法包括以下步骤:
步骤一,高荧光量子产率固态荧光探针的合成:
所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素。
称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天。反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干,产率91%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
步骤二,含3个热固化基团粘合剂分子的合成:
在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲(化合物1)溶解在100mLTHF(四氢呋喃)中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子(化合物2),产率83%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
步骤三,将固态荧光探针引入粘合剂分子中:
称取5.0g含3个热固化基团粘合剂分子(化合物2)将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴(约0.6mL)二月桂酸二丁基锡(DBTDL),在室温下搅拌6.0h,制得粘合剂。
本步骤中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
注:不用后处理反应,现配现用。产率86%。
待实验工艺稳定后,可逐级放大至原投样量的2~3倍,产率基本不变。
结构鉴定:
IR(KBr,cm-1):3276(-NH,伸缩振动),2933(-CH2,反对称伸缩振动),2852(-CH2,对称伸缩振动),2258cm-1(–NCO的伸缩振动峰),1639(C=O,伸缩振动),1493(-NH,弯曲振动)968(=CH,面外变形振动),720(-CH2,面内摇摆振动)。
1H NMR:需要说明的是,本实施例中制备的目标粘合剂分子由于极性过大,不溶于核磁共振表征过程中常用的氘代试剂,因此无法获取准确的1H NMR数据。
分子量及分布:Mn=2830,Mw=3394,Mw/Mn=1.20。
以上结构鉴定数据证实所合成的化合物为本发明的目标粘合剂,即兼具防吸湿和包覆均匀度直观检测双重功能的粘合剂。
粘合剂的性能分析测试:
(1)弹性体的力学性能:
以本发明数均分子量为2830的粘合剂作为原料,与固化剂三官能度端羟基环氧乙烷四氢呋喃共聚醚混合加热固化,当R值为1.2时,制备的聚氨酯弹性体力学性能为:最大拉伸强度为4.23MPa,断裂伸长率为355%。
(2)玻璃化转变温度(Tg)测定:
玻璃化转变温度(Tg)是衡量粘合剂低温力学性能的重要参数,用DSC测定了此粘合剂的Tg为-68.8℃(如图1所示),表明此粘合剂的热稳定性较好。
(3)荧光量子产率测试:
在将全碳香豆素装入MOF808笼后,全碳香豆素@MOF808复合物的光谱性质转换为更加有用的固态荧光光谱学性质,如表1所示,其固态荧光量子产率上升至96%。
表1荧光量子产率测试结果
(4)粘合剂的粘度测定:
此粘合剂的粘度在20℃下的粘度为6.9Pa·s,粘度适中。对其在不同温度下的粘度进行了测试,如表2所示,实验结果表明:粘合剂的粘度均随着温度的升高而逐渐降低。这是由于随着温度的升高,粘合剂的分子链运动加快,分子链之间的缠绕降低,间距增大,内摩擦力减小,导致其粘度降低。
表2粘合剂的粘度测定结果
实施例2:
本实施例给出一种粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
本实施例中的粘合剂采用上述实施例1中给出的兼具防吸湿和包覆均匀度直观检测双重功能的粘合剂。
所述的包覆的具体过程为:
步骤1,将5.0g三官能度端羟基环氧乙烷四氢呋喃共聚醚溶解在50.0mL1,2-二氯乙烷中,制成三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液。
步骤2,将10.0mL粘合剂先用20.0mL1,2-二氯乙烷溶剂进行稀释,接着将称取的200.0gα-AlH3加入反应液中,再将步骤1制备好的10.0mL三官能度端羟基环氧乙烷四氢呋喃共聚醚溶液加入反应液中,最后再滴加1滴二月桂酸二丁基锡(DBTDL)。在室温下搅拌3.0h。用紫外灯实时监控包覆反应进程。
步骤3,包覆反应完成后用漏斗抽滤,所得到的固体用1,2-二氯乙烷洗涤3-5次,晾干,即可得到包覆产物。
包覆产物的性能分析测试:
(5)α-AlH3包覆前后的接触角测试:
本发明的粘合剂对α-AlH3包覆完成之后接触角进行了测试,实验结果如图2所示,实验结果表明:α-AlH3在包覆前的接触角为18°,吸湿性强;在包覆完成后的接触角为88°,近乎疏水。
(6)α-AlH3包覆前后的吸湿性能测试:
采用干燥器平衡法测试了α-AlH3和粘合剂包覆α-AlH3复合材料前后的吸湿性能。在室温下采用增重法,分别将α-AlH3包覆前后在不同湿度条件下、75%的湿度条件下长时间放置,记录其吸湿曲线。如图3所示,包覆前后的α-AlH3在25℃下,随着湿度的增加,α-AlH3包覆完成后的吸湿性能明显下降,如图4所示,包覆前后的α-AlH3在25℃下,湿度固定在75%
的条件下,α-AlH3包覆完成后的吸湿性能也明显下降。推测其主要源于粘合剂与α-AlH3的紧密结合,有效抑制了α-AlH3与水汽的反应。α-AlH3的接触角为18°,经粘合剂包覆后的接触角为88°,由于其疏水性,α-AlH3表面包覆的粘合剂薄膜可以很好的将水分与周围环境隔离,从而达到降低吸湿性的效果,这一特性有利于α-AlH3的长期储存和应用。
(7)α-AlH3包覆前后的静电感度测试:
采用国军标GJB-5891.27-2006静电感度测试方法对α-AlH3包覆前后的静电感度进行了测试,结果如表3所示。
表3α-AlH3包覆前后的静电感度测试结果
从表3中可知,包覆前α-AlH3的静电感度较高,为367mJ,包覆后α-AlH3的E-50降低至测试上限5390mJ时未见发火,可见α-AlH3采用我们发明的粘合剂可使其静电感度降低。分析原因为:粘合剂在α-AlH3表明形成的包覆膜可起到物理隔绝作用,降低了外界静电对其刺激,所以静电感度大幅度降低。
(8)α-AlH3包覆完成后的表面元素分析:
α-AlH3包覆完成后的表面元素分析结果如图5和表4所示。
表4α-AlH3包覆完成后的表面元素分析结果
(9)α-AlH3包覆后的均匀度直观检测图如图6所示,扫描电镜图如图7所示。
(10)热性能分析:
测试了α-AlH3包覆前后的热性能,如图8所示,DSC测试结果表明:α-AlH3包覆后较包覆前的热分解峰温推迟了约4.1℃,使α-AlH3的热稳定性明显提高。
对比例1:
本对比例给出一种粘合剂的制备方法,该方法与实施例1的制备方法之间的区别仅仅在于配比不同。
实施例1的步骤三中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
而本对比例的步骤三中,含3个热固化基团粘合剂分子(化合物2)为5.0g,MOF808@7-羟基全碳香豆素为5.0g,二者的摩尔比为1:2。产率88%。比例制得的粘合剂进行如实施例2中的包覆实验,如图9和图10所示,包覆效果较差,且出现粘合剂团聚现象的发生。
对比例2:
本对比例给出一种粘合剂的制备方法,该方法与实施例1的制备方法之间的区别仅仅在于配比不同。
实施例1的步骤三中,含3个热固化基团粘合剂分子(化合物2)与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
而本对比例的步骤三中,含3个热固化基团粘合剂分子(化合物2)为5.0g,MOF808@7-羟基全碳香豆素为5.0g,二者的摩尔比为1:3。产率90%。
本对比例制得的粘合剂进行如实施例2中的包覆实验,如图11和图12所示,几乎没有包覆效果。
Claims (8)
- 一种粘合剂,其特征在于,该粘合剂的结构式如下所示:
式中:X为5至20的整数。 - 如权利要求1所述的粘合剂,其特征在于,所述的X为6至10的整数。
- 一种如权利要求1或2所述的粘合剂的制备方法,其特征在于,该方法包括以下步骤:步骤一,高荧光量子产率固态荧光探针的合成:所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素;称取7-羟基全碳香豆素和MOF-808加入至盛有甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗,将得到的MOF808@7-羟基全碳香豆素在室温下晾干;步骤二,含3个热固化基团粘合剂分子的合成:在0℃下,1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在THF中,然后在反应液中加入稀盐酸,接着逐渐升温至80℃下搅拌,反应完成后浓缩得到含3个热固化基团粘合剂分子;步骤三,将固态荧光探针引入粘合剂分子中:称取含3个热固化基团粘合剂分子将其溶解在1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加二月桂酸二丁基锡,在室温下搅拌,制得粘合剂;所述的含3个热固化基团粘合剂分子与MOF808@7-羟基全碳香豆素的摩尔比为1:1。
- 如权利要求3所述的粘合剂的制备方法,其特征在于,该方法包括以下步骤:步骤一,高荧光量子产率固态荧光探针的合成:所述的高荧光量子产率固态荧光探针为MOF808@7-羟基全碳香豆素;称取15.0g7-羟基全碳香豆素、5.0gMOF-808加入至盛有50mL甲醇的反应瓶中静置3天;反应完成后用漏斗滤去滤液后所得到的固体材料反复用甲醇清洗8-10遍,将得到的MOF808@7-羟基全碳香豆素在室温下晾干;步骤二,含3个热固化基团粘合剂分子的合成:在0℃下,25.0g1-(6-氰基己基)-3-(6-异氰酸根己基)脲溶解在100mLTHF中,然后在反应液中加入1滴稀盐酸,接着逐渐升温至80℃下搅拌3.0h,反应完成后浓缩得到含3个热固化基团粘合剂分子;步骤三,将固态荧光探针引入粘合剂分子中:称取5.0g含3个热固化基团粘合剂分子将其溶解在50.0mL1,2-二氯乙烷溶剂中,然后将1.625gMOF808@7-羟基全碳香豆素加入反应液中,再滴加3滴二月桂酸二丁基锡,在室温下搅拌6.0h,制得粘合剂。
- 如权利要求1或2所述的粘合剂用于对氢化铝兼具防吸湿和包覆均匀度直观检测双重功能的应用。
- 如权利要求5所述的应用,其特征在于,所述的粘合剂的添加量为氢化铝用量的0.5wt.%。
- 如权利要求5所述的应用,其特征在于,所述的粘合剂采用原位聚合的包覆方法对氢化铝进行包覆,得到包覆产物。
- 如权利要求7所述的应用,其特征在于,所述的包覆产物的接触角为88°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211637579.3 | 2022-12-16 | ||
CN202211637579.3A CN115849995B (zh) | 2022-12-16 | 2022-12-16 | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024124732A1 true WO2024124732A1 (zh) | 2024-06-20 |
Family
ID=85674329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/083270 WO2024124732A1 (zh) | 2022-12-16 | 2023-03-23 | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115849995B (zh) |
WO (1) | WO2024124732A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115231983B (zh) * | 2022-07-15 | 2023-06-09 | 西安近代化学研究所 | 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用 |
CN115849995B (zh) * | 2022-12-16 | 2023-12-12 | 西安近代化学研究所 | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923536A (en) * | 1988-02-17 | 1990-05-08 | Olin Corporation | Explosives and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof |
CN110981659A (zh) * | 2019-12-11 | 2020-04-10 | 湖北航天化学技术研究所 | 一种溶剂-非溶剂法包覆金属氢化物的方法 |
CN115231983A (zh) * | 2022-07-15 | 2022-10-25 | 西安近代化学研究所 | 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用 |
CN115322741A (zh) * | 2022-07-15 | 2022-11-11 | 西安近代化学研究所 | 一种含荧光分子笼的三羟甲基己基内胺酯粘合剂、制备方法及应用 |
CN115849995A (zh) * | 2022-12-16 | 2023-03-28 | 西安近代化学研究所 | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114634392B (zh) * | 2022-03-08 | 2022-12-30 | 西安近代化学研究所 | 一种7-羟基双甲基全碳螺环香豆素及cl-20的包覆方法 |
-
2022
- 2022-12-16 CN CN202211637579.3A patent/CN115849995B/zh active Active
-
2023
- 2023-03-23 WO PCT/CN2023/083270 patent/WO2024124732A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923536A (en) * | 1988-02-17 | 1990-05-08 | Olin Corporation | Explosives and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof |
CN110981659A (zh) * | 2019-12-11 | 2020-04-10 | 湖北航天化学技术研究所 | 一种溶剂-非溶剂法包覆金属氢化物的方法 |
CN115231983A (zh) * | 2022-07-15 | 2022-10-25 | 西安近代化学研究所 | 一种含荧光分子笼的六亚甲基二异氰酸胺酯粘合剂、制备方法及应用 |
CN115322741A (zh) * | 2022-07-15 | 2022-11-11 | 西安近代化学研究所 | 一种含荧光分子笼的三羟甲基己基内胺酯粘合剂、制备方法及应用 |
CN115849995A (zh) * | 2022-12-16 | 2023-03-28 | 西安近代化学研究所 | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 |
Non-Patent Citations (1)
Title |
---|
TAN BOJUN, REN JIATONG, CHEN SHAOLI, GE ZHONGXUE, LU XIANMING, YANG XIONG, LIU NING: "A Spiro‐Containing 7‐Hydroxy‐Carbocoumarin: Facile Two‐Step Synthesis and Enhanced Long‐Wavelength Fluorescence Properties", CHEMPHOTOCHEM, JOHN WILEY & SONS, INC., HOBOKEN, USA, vol. 5, no. 11, 1 November 2021 (2021-11-01), Hoboken, USA, pages 995 - 998, XP093181821, ISSN: 2367-0932, DOI: 10.1002/cptc.202100126 * |
Also Published As
Publication number | Publication date |
---|---|
CN115849995B (zh) | 2023-12-12 |
CN115849995A (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024124732A1 (zh) | 一种对氢化铝兼具双重功能的粘合剂、制备方法及应用 | |
WO2021023226A1 (zh) | 一种富氮基团功能化石墨烯、制备方法及应用 | |
Wang et al. | Synthesis of a phosphorus‐and nitrogen‐containing flame retardant and evaluation of its application in waterborne polyurethane | |
Meng et al. | Synthesis, Thermal Properties and Sensitivity of Ladder‐like Nitrocellulose Grafted by Polyethylene Glycol | |
Zhao et al. | Interaction of nitrocellulose with pentaacyloxyphenyl fullerene derivatives: autocatalytic inhibition in thermal decomposition of nitrocellulose | |
Zhang et al. | Dual dynamic bonds self-healing polyurethane with superior mechanical properties over a wide temperature range | |
Huang et al. | The preparation and rheological properties of novel energetic composites TEGDN/NBC | |
Wu et al. | Fabrication and properties of glycidyl azide polymer-modified nitrocellulose spherical powders | |
Liu et al. | Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties | |
Aerts et al. | Pyranine Based Ion‐Paired Complex as a Mechanophore in Polyurethanes | |
CN116288776A (zh) | 一种抗老化超高分子量聚乙烯纤维材料及其制备方法 | |
CN115322741A (zh) | 一种含荧光分子笼的三羟甲基己基内胺酯粘合剂、制备方法及应用 | |
CN115109100B (zh) | 烷基咪唑高氮唑类二茂铁含能离子化合物及其制备方法 | |
Zou et al. | A study on the effect of four thermoplastic elastomers on the properties of double-base propellants | |
CN110483752B (zh) | 聚己二酸2-甲基-2-硝基丙二醇酯及其制备方法和用途 | |
CN114773681B (zh) | 一种具有微胶囊核壳结构的环三磷腈类阻燃剂及制备方法 | |
Hu et al. | Recycling of Polydicyclopentadiene Enabled with N‐Coordinated Boronic Bonds | |
Zhao et al. | A facile approach of improving the inhibition of arylfulleropyrrolidine on the thermal decomposition of nitrocellulose by enhancing the thermal interaction | |
Xia et al. | Preparation and characterization of self-healing furan-terminated polybutadiene (FTPB) based on Diels–Alder reaction | |
CN112778377B (zh) | 含双(咪唑或吡唑-1,2,3-三氮唑)基团的二茂铁类燃速催化剂及其制备方法 | |
Lu et al. | Enhanced thermal and energetic properties of NC-based nanocomposites with silane functionalized GO | |
Xiong et al. | Effect of aziridino [60] fullerenes on thermal stability of nitrocellulose | |
Shen et al. | Thermal decomposition of cured GAP-AP propellants containing catocene | |
Liu et al. | Thermally responsive AIE-active polyurethanes based on a tetraaniline derivative | |
CN110452366B (zh) | 聚己二酸2-乙基-2-硝基丙二醇酯及其制备方法和用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23901950 Country of ref document: EP Kind code of ref document: A1 |