CN115710711A - 析氧催化剂及其制备方法和应用 - Google Patents

析氧催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115710711A
CN115710711A CN202211392064.1A CN202211392064A CN115710711A CN 115710711 A CN115710711 A CN 115710711A CN 202211392064 A CN202211392064 A CN 202211392064A CN 115710711 A CN115710711 A CN 115710711A
Authority
CN
China
Prior art keywords
nickel
europium
source
oxygen evolution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211392064.1A
Other languages
English (en)
Other versions
CN115710711B (zh
Inventor
严纯华
席聘贤
沈巍
李秭骏
胡阳
殷杰
安丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202211392064.1A priority Critical patent/CN115710711B/zh
Publication of CN115710711A publication Critical patent/CN115710711A/zh
Application granted granted Critical
Publication of CN115710711B publication Critical patent/CN115710711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种析氧催化剂及其制备方法和应用。所述析氧催化剂包括氧化铕和二硫化镍。该析氧催化剂为非贵金属高活性的析氧催化剂,具有良好的导电性,表面积大,同时存在大量的活性位点,使得其具有良好的氧气析出催化性能。另外,本发明的催化剂具有良好的稳定性,至少可以稳定200小时。

Description

析氧催化剂及其制备方法和应用
技术领域
本发明属于电化学催化领域,具体涉及一种析氧催化剂及其制备方法,以及其在电解水中的应用。
背景技术
随着化石燃料的快速消耗和由此产生的环境问题,研究人员正在努力寻找可持续的替代能源和能源储存和转换方法。氢气是一种最佳的清洁能源载体。电解水具有无污染,工艺简单,资源丰富等优点。但是,阳极上析氧反应(OER)的缓慢动力学是限制析氢效率和阻碍水电解广泛应用的最严重的瓶颈之一。
发明内容
基于上述现有技术中存在的问题,本发明的目的之一是提供一种析氧催化剂,目的之二是提供一种析氧催化剂的制备方法,目的之三是提供上述析氧催化剂在电解水中的应用。
在第一方面,本发明提供一种析氧催化剂。该催化剂包括氧化铕和二硫化镍。本发明中,通过稀土元素的掺杂,利用稀土金属特殊的4f-5d结构对二硫化镍的能带调控,能够明显改善二硫化镍的电催化OER活性,并有助于提升其循环稳定性,使得本发明的析氧催化剂具有优良的电催化水分解析氧性能。
根据本发明的一些实施方式,所述氧化铕和二硫化镍形成异质结,形成稀土-过渡金属界面,异质结指的是两种不同材料相接触所形成的界面区域。
根据本发明的一些实施方式,所述氧化铕和二硫化镍的结构为异质结纳米片,纳米片状结构可以有效提升催化剂的比表面积,进而提升电催化OER活性。
根据本发明的一些实施方式,所述氧化铕和二硫化镍中,铕的摩尔含量1%-30%,例如2%、4%、6%、8%、10%、12%、14%、16%、18%、20%、22%、25%、27%、29%或它们之间的任意值。
在一些实施例中,所述氧化铕和二硫化镍中,铕的摩尔含量为5%-20%。在一些实施例中,所述氧化铕和二硫化镍中,铕的摩尔含量为8%-15%。在一些实施例中,所述氧化铕和二硫化镍中,铕的摩尔含量为10%-15%。
根据本发明的一些实施方式,所述催化剂还包括基底,所述氧化铕和二硫化镍负载在所述基底上。在一些实施例中,所述基底为导电基底。在一些实施方式中,所述基底选自碳布、泡沫镍和导电玻璃中的一种或多种。
根据本发明的一些实施方式,所述氧化铕和二硫化镍在基底上的负载量为2mg/cm2-10mg/cm2,例如2.5mg/cm2、3.0mg/cm2、3.5mg/cm2、4.0mg/cm2、4.5mg/cm2、5.0mg/cm2、6.0mg/cm2、7.0mg/cm2、9.0mg/cm2或它们之间的任意值。在本发明的一些实施方式中,所述氧化铕和二硫化镍在基底上的负载量为2mg/cm2-8.5mg/cm2。在一些实施例中,所述氧化铕和二硫化镍在基底上的负载量为2.5mg/cm2-5.0mg/cm2
在第二方面,本发明提供了一种析氧催化剂的制备方法,该制备方法包括将含有铕源和镍源的前驱体进行硫化。
在一些实施方式中,将前驱体进行硫化,所述前驱体包括硝酸铕和硝酸镍。
根据本发明的一些实施方式,采用化学气相沉积实现硫化。根据本发明的一些实施方式,所述硫化包括在硫源的存在下,将前驱体在惰性气氛中加热至100℃-600℃,优选300℃-400℃,保持1h-8h,优选3h-6h。根据本发明的一些实施方式,所述硫源选自升华硫粉或硫脲的一种,优选升华硫粉。根据本发明的一些实施方式,所述惰性气体可选择氮气和氩气,优选氩气。
根据本发明的一些实施方式,所述前驱体的制备包括:将基底依次置于含有镍源和铕源的溶液中,进行电化学沉积。在一些实施例中,通过三电极体系进行电化学沉积。以Ag/AgCl为参比电极,铂为对电极,碳纤维布为工作电极。
根据本发明的一些实施方式,所述前驱体的制备包括以下步骤:
将基底置于含有镍源的溶液中,在-0.6V至-1.5V(例如为-0.7V、-0.9V、-1.1V、-1.3V、-1.5V或它们之间的任意值)的电位下沉积1000s-7000s(例如为1000s、3000s、5000s、7000s或它们之间的任意值),得到沉积有氢氧化镍的基底;以及
将沉积有氢氧化镍的基底置于含有铕源的溶液中,在-0.6V至-1.5V(例如为-0.7V、-0.9V、-1.1V、-1.3V、-1.5V或它们之间的任意值)的电位下沉积100s-1000s(例如为200s、400s、600s、800s、1000s或它们之间的任意值),得到所述前驱体。
根据本发明的一些实施方式,所述前驱体的制备包括以下步骤:
将基底置于含有镍源的溶液中,在-0.9V至-1.2V的电位下沉积2000s-5000s,优选在-1.0V至-1.1V的电位下沉积3000s-4000s,得到沉积有氢氧化镍的基底;以及
将沉积有氢氧化镍的基底置于含有铕源的溶液中,在-0.9V至-1.2V的电位下沉积200s-800s,优选在-1.0V至-1.1V的电位下沉积200s-500s,得到所述前驱体。
根据本发明的一些实施方式,上述催化剂的制备方法包括首先在基体上采用电化学沉积形成氢氧化镍,再沉积氧化铕,然后采用化学气相沉积实现硫化。本发明中,对镍源和铕源依次进行电化学沉积,从而在镍源上原位外延生长氧化铕,形成异质结界面,这样的界面在OER过程中起到了决定性的作用。如果是同时对镍源和铕源进行电化学共沉积过程,往往得到的是稀土元素铕以掺杂的形式进入晶格的二硫化镍。
根据本发明的一些实施方式,在将基底依次置于含有镍源和铕源的溶液中之前,可以用酸液对基底表面进行洗涤例如超声洗涤,然后用有机溶剂和水洗涤并将其干燥。在一些实施例中,酸液可以是有机酸液或者无机酸液,优选甲酸、乙酸、硫酸、硝酸中的至少一种。在一些实施例中,酸液的浓度为0.5M(mol/L)-1.5M,优选为0.8M-1.2M。
根据本发明的一些实施方式,所述铕源和镍源的摩尔比为1:1-1:49,例如1:1、1:2、1:3、1:5、1:6、1:8、1:10、1:12、1:14、1:17、1:20、1:24、1:29、1:31、1:33、1:35、1:39、1:40、1:43、1:47、1:49或它们之间的任意值。在一些实施例中,铕源和镍源的摩尔比为1:2-1:29。在一些实施例中,铕源和镍源的摩尔比为1:4-1:19。在一些实施例中,铕源和镍源的摩尔比为1:5-1:12。
根据本发明的一些实施方式,所述铕源和硫源的摩尔比为1:10-1:200,例如1:20、1:40、1:60、1:80、1:100、1:120、1:140、1:160、1:180、1:200或它们之间的任意值。在一些实施例中,铕源和硫源的摩尔比为1:20-1:180。在一些实施例中,铕源和硫源的摩尔比为1:50-1:150。在一些实施例中,铕源和硫源的摩尔比为1:80-1:120。
根据本发明的一些实施方式,所述硫源的质量为100mg-1000mg,例如100mg、200mg、400mg、500mg、700mg、900mg或1000mg等。在一些实施例中,硫源的质量为300mg-500mg。
根据本发明的一些实施方式,所述铕源选自硝酸铕和/或氯化铕,优选选自硝酸铕。
根据本发明的一些实施方式,所述镍源选自硝酸镍和/或氯化镍,优选选自硝酸镍。
根据本发明的一些实施方式,所述基底选自碳布、泡沫镍和导电玻璃中的一种或多种。在一些实施例中,所述基底为导电基底。在一些实施例中,所述基底为碳布。在一些实施例中,所述基底为泡沫镍。在一些实施例中,所述基底为导电玻璃。
根据本发明的一些实施方式,所述析氧催化剂的制备方法包括如下具体步骤:
步骤S1:将基底置于酸液中超声,然后用有机溶剂和水洗涤并将其干燥;
步骤S2:将步骤S1干燥后的基底分别置于含有镍盐与铕盐的溶液中,通过三电极体系进行电化学沉积,得到前驱体;
步骤S3:将步骤S2获得的前驱体洗涤后烘干,优选放入真空烘箱中在30℃-80℃烘干1h-4h,更优选在50℃-60℃烘干2h-3h;
步骤S4:将步骤S3处理后的前驱体置于管式炉中,加入升华硫,高温惰性气体反应,得到所述析氧催化剂。
本发明利用电化学沉积法制备所述析氧催化剂,操作简单,快速。
在第三方面,本发明提供了上述析氧催化剂在水分解制备氧气中的应用。
在第四方面,本发明提供了一种水分解方法,包括在本发明所述的析氧催化剂存在下,将水进行电解。
本发明提供的析氧催化剂包括基底以及生长在其上的氧化铕/二硫化镍异质结。该析氧催化剂为稀土金属高活性的析氧催化剂,其具有很好的导电性,表面积大同时存在大量的活性位点,使得本发明具有良好的氧气析出催化性能。另外,本发明的析氧催化剂具有很好的稳定性,至少可以稳定200小时。
附图说明
图1为实施例1中的X射线衍射图。
图2为实施例1制备得到的产物的透射电子显微镜照片。
图3为实施例1制备得到的产物的原位电催化拉曼光谱图。
图4为实施例1至实施例3和对比例1至对比例2制备得到的产物作为催化剂促进氧气析出反应的线性扫描伏安法曲线。
图5为实施例1制备得到的产物作为催化剂促进氧气析出反应的稳定性图。
具体实施方式
下面将通过具体实施例对本发明作进一步地说明,但本发明的范围并不限于此。
实验过程中使用的均为电导率为18.25MΩ的超纯水,实验所用的试剂均为分析纯。
使用的主要仪器和试剂:
CHI760E电化学工作站(上海辰华仪器公司),用于线性扫描伏安法测试;
优普特实验室超纯水器(成都超纯科技有限公司),用于制备超纯水;
电子天平(上海铂勒机电设备有限公司),用于称量药品;
台式X射线衍射仪(株式会社理学,MiniFlex600),用于进行X射线衍射表征;
透射电镜,用于析氧催化剂的形貌表征;
激光共聚焦拉曼光谱仪(HORIBA FRANCE SAS,Lab RAM HR Evolution),用于析氧催化剂的表征;
真空干燥箱(上海一恒科学仪器有限公司);
KQ5200超声波清洗器(昆山市超声仪器有限公司);
工作电极:三电极体系,Ag/AgCl(美国CHI仪器公司)为参比电极,铂为对电极;
台式干燥箱(重庆试验设备厂);
硝酸镍(成都市科龙化工研究所);
硝酸铕(北京伊诺凯科技有限公司);
碳布(上海河森电气有限公司),导电玻璃(珠海凯为电子元器件有限公司,型号FTO-P002),泡沫镍(广胜佳新材料有限公司)。
实施例1-3为本发明析氧催化剂的制备实施例。
实施例1
将一片2cm×3cm的碳布放入1M的硝酸溶液中超声数分钟,取出后用乙醇和水洗涤数次,放入真空干燥箱中50℃干燥。
将50mL 0.1M Ni(NO3)2·6H2O水溶液置于100mL烧杯中,将经过预处理的碳布材料浸入溶液中,与工作电极相连,在-1.0V的电压下,反应3600s后取出。
将50mL 0.1M Eu(NO3)3·5H2O水溶液置于100mL烧杯中,将上述电沉积后的碳布材料浸入溶液中,与工作电极相连,在-1.0V的电压下,反应300s后取出,用去离子水清洗,然后在50℃的真空烘箱中干燥2h,得到纳米片状前驱体。
硫化过程在气相沉积系统的真空管式炉中进行。将前驱体与300mg硫粉加入真空管式炉中,待管式炉抽真空后,通氩气至大气压稳定状态。以10℃/min的升温速率升温至300℃,并反应2h后,以100℃/h的降温速率降至室温,得到纳米片结构的稀土元素氧化铕/二硫化镍异质结,即Eu2O3/NiS2-C。
Eu2O3/NiS2-C中,以Eu2O3-NiS2计,Eu的摩尔含量为13.2%,Eu2O3-NiS2在碳布上的负载量为3.19mg/cm2
本实施例得到的最终产物的X射线衍射图如图1所示,其中卡片80-375归属于NiS2的衍射峰,32-380归属于氧化铕的衍射峰。其中Eu2O3/NiS2-C电子显微镜照片如图2所示,原位拉曼能谱图如图3所示。通过原位拉曼光谱变化,得到氧化铕的沉积有利于调控二硫化镍的能级结构并有利于反应吸附氧,故有利于提升其电催化活性及稳定性。
实施例2
将一片2cm×3cm的泡沫镍放入1M的硝酸溶液中超声数分钟,取出后用乙醇和水洗涤数次,放入真空干燥箱中50℃干燥。
将50mL 0.1M Ni(NO3)2·6H2O水溶液置于100mL烧杯中,将经过预处理的泡沫镍浸入溶液中,与工作电极相连,在-1.2V的电压下,反应3600s后取出。
将50mL 0.1M Eu(NO3)3·5H2O水溶液置于100mL烧杯中,将上述电沉积后的泡沫镍浸入溶液中,与工作电极相连,在-1.2V的电压下,反应300s后取出,用去离子水清洗,然后在50℃的真空烘箱中干燥2h,得到纳米片状前驱体。
硫化过程在气相沉积系统的真空管式炉中进行。将前驱体与300mg硫粉加入真空管式炉中,待管式炉抽真空后,通氩气至大气压稳定状态。以10℃/min的升温速率升温至300℃,并反应2h后,以100℃/h的降温速率降至室温,得到纳米片结构的稀土元素氧化铕/二硫化镍异质结,即Eu2O3/NiS2-Ni。
Eu2O3/NiS2-Ni中,以Eu2O3-NiS2计,Eu的摩尔含量为11.2%,Eu2O3-NiS2在泡沫镍上的负载量为4.23mg/cm2
实施例3
将一片2cm×3cm的导电玻璃放入1M的硝酸溶液中超声数分钟,取出后用乙醇和水洗涤数次,放入真空干燥箱中50℃干燥。
将50mL 0.1M Ni(NO3)2·6H2O水溶液置于100mL烧杯中,将经过预处理的导电玻璃浸入溶液中,与工作电极相连,在-0.8V的电压下,反应3600s后取出。
将50mL 0.1M Eu(NO3)3·5H2O水溶液置于100mL烧杯中,将上述电沉积后的导电玻璃浸入溶液中,与工作电极相连,在-0.8V的电压下,反应300s后取出,用去离子水清洗,然后在50℃的真空烘箱中干燥2h,得到纳米片状前驱体。
硫化过程在气相沉积系统的真空管式炉中进行。将前驱体与300mg硫粉加入真空管式炉中,待管式炉抽真空后,通氩气至大气压稳定状态。以10℃/min的升温速率升温至300℃,并反应2h后,以100℃/h的降温速率降至室温,得到纳米片结构的稀土元素氧化铕/二硫化镍异质结,即Eu2O3/NiS2-FTO。
Eu2O3/NiS2-FTO中,以Eu2O3-NiS2计,Eu的摩尔含量为13.2%,Eu2O3-NiS2在导电玻璃上的负载量为2.26mg/cm2
对比例1
将一片2cm×3cm的碳布放入1M的硝酸溶液中超声数分钟,取出后用乙醇和水洗涤数次,放入真空干燥箱中50℃干燥。
将50mL 0.1M Ni(NO3)2·6H2O水溶液置于100mL烧杯中,将经过预处理的碳布材料浸入上述溶液中,与工作电极相连,在-1.0V的电压下,反应3600s后取出,用去离子水清洗,然后在50℃的真空烘箱中干燥2h,得到纳米片状前驱体。
硫化过程在气相沉积系统的真空管式炉中进行。将前驱体与300mg硫粉加入真空管式炉中,待管式炉抽真空后,通氩气至大气压稳定状态。以10℃/min的升温速率升温至300℃,并反应2h后,以100℃/h的降温速率降至室温,得到纳米片结构的二硫化镍,即NiS2-C。
对比例2
将一片2×3cm2的碳布放入1M的硝酸溶液中超声数分钟,取出后用乙醇和水洗涤数次,放入真空干燥箱中50℃干燥。
将50mL 0.1M Ni(NO3)2·6H2O水溶液和5mL 0.1M Eu(NO3)3·5H2O水溶液置于100mL烧杯中,将经过预处理的碳布材料浸入溶液中,与工作电极相连,在-1.0V的电压下,反应3600s后取出。
硫化过程在气相沉积系统的真空管式炉中进行。将前驱体与300mg硫粉加入真空管式炉中,待管式炉抽真空后,通氩气至大气压稳定状态。以10℃/min的升温速率升温至300℃,并反应2h后,以100℃/h的降温速率降至室温,得米片结构的稀土元素掺杂的二硫化镍,即Eu-NiS2-C。
测试例1
分别将实施例1(Eu2O3/NiS2-C)、实施例2、实施例3、对比例1和对比例2得到的产物剪成0.5cm×1cm夹在电极夹上作为工作电极、以铂为对电极、以Hg/HgO为参比电极组成三电极体系,将三电极体系插入到物质的量浓度为的1M的氢氧化钾溶液中进行氧气析出反应,在电位窗口-1V到-2V的范围内扫描,扫速为2mV/s,得到氧气析出曲线,如图4所示。
测试例2
将实施例1得到的产物(Eu2O3/NiS2-C)剪成0.5cm×1cm夹在电极夹上作为工作电极、以铂为对电极、以Hg/HgO为参比电极组成三电极体系,将三电极体系插入到物质的量浓度为的1M的氢氧化钾溶液中进行恒电流法稳定性测试曲线,在电流窗口以10mV/cm2的电位测试200小时,得到恒电流法稳定性测试曲线,如图5所示。
通过以上实施例和附图可以得知,本发明的析氧催化剂具有很好的电催化活性。本发明的析氧催化剂表面积大,同时存在大量的活性位点,这些因素使得其具有良好的氧气析出催化性能。另外本发明的析氧催化剂还具有很好的稳定性,至少可以稳定200小时。
应当注意的是,以上所述的实施例仅用于解释本发明,并不对本发明构成任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性的词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可以扩展至其它所有具有相同功能的方法和应用。

Claims (10)

1.一种析氧催化剂,包括氧化铕和二硫化镍。
2.根据权利要求1所述的析氧催化剂,其特征在于,所述氧化铕和二硫化镍形成异质结,优选地,所述氧化铕和二硫化镍的结构为异质结纳米片。
3.根据权利要求1或2所述的析氧催化剂,其特征在于,以所述氧化铕和二硫化镍的总量计,铕的摩尔含量为1%-30%,优选为5%-20%,更优选为10%-15%。
4.根据权利要求1-3中任一项所述的析氧催化剂,其特征在于,所述析氧催化剂还包括基底,所述氧化铕和二硫化镍负载在所述基底上,
优选地,所述基底选自碳布、泡沫镍和导电玻璃中的一种或多种。
5.根据权利要求4所述的析氧催化剂,其特征在于,所述氧化铕和二硫化镍在基底上的负载量为2mg/cm2-10mg/cm2
6.一种析氧催化剂的制备方法,包括将含有镍源和铕源的前驱体进行硫化,
优选地,所述前驱体的制备包括:将基底依次置于含有镍源和铕源的溶液中,进行电化学沉积。
7.根据权利要求6所述的制备方法,其特征在于,所述硫化包括在硫源的存在下,将前驱体在惰性气氛中加热至100℃-600℃,优选300℃-400℃,保持1h-8h,优选3h-6h;
和/或所述前驱体的制备包括以下步骤:
将基底置于含有镍源的溶液中,在-0.6V至-1.5V的电位下沉积1000s-7000s,得到沉积有氢氧化镍的基底;优选地,在-0.9V至-1.2V的电位下沉积2000s-5000s,更优选地,在-1.0V至-1.1V的电位下沉积3000s-4000s;以及
将沉积有氢氧化镍的基底置于含有铕源的溶液中,在-0.6V至-1.5V的电位下沉积100s-1000s,得到所述前驱体;优选地,在-0.9V至-1.2V的电位下沉积200s-800s,更优选地,在-1.0V至-1.1V的电位下沉积200s-500s。
8.根据权利要求6或7所述的制备方法,其特征在于,所述铕源和镍源的摩尔比为1:1-1:49,优选为1:2-1:29,更优选为1:4-1:19,最优选为1:5-1:12:
和/或所述铕源和硫源的摩尔比为1:10-1:200,优选为1:20-1:180,更优选为1:50-1:150,最优选为1:80-1:120。
9.根据权利要求6-8中任一项所述的制备方法,其特征在于,所述铕源选自硝酸铕和/或氯化铕,优选选自硝酸铕;
和/或所述镍源选自硝酸镍和/或氯化镍,优选选自硝酸镍;
和/或所述基底选自碳布、泡沫镍和导电玻璃中的一种或多种。
10.根据权利要求1-5中任一项所述的析氧催化剂或者根据权利要求6-9中任一项所述的制备方法制备的析氧催化剂在水分解制备氧气的应用。
CN202211392064.1A 2022-11-08 2022-11-08 析氧催化剂及其制备方法和应用 Active CN115710711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211392064.1A CN115710711B (zh) 2022-11-08 2022-11-08 析氧催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211392064.1A CN115710711B (zh) 2022-11-08 2022-11-08 析氧催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115710711A true CN115710711A (zh) 2023-02-24
CN115710711B CN115710711B (zh) 2023-08-25

Family

ID=85232458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211392064.1A Active CN115710711B (zh) 2022-11-08 2022-11-08 析氧催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115710711B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127060A (en) * 1998-06-17 2000-10-03 Aer Energy Resources, Inc. Recharge catalyst with thin film low corrosion coating, metal-air electrode including said catalyst and methods for making said catalyst and electrode
CN113106488A (zh) * 2021-03-25 2021-07-13 中山大学 一种铁掺杂硫化镍析氧电催化剂的制备方法
CN113668007A (zh) * 2021-07-23 2021-11-19 兰州大学 析氢催化剂及其制备方法和应用
CN114561655A (zh) * 2022-03-28 2022-05-31 河北工业大学 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127060A (en) * 1998-06-17 2000-10-03 Aer Energy Resources, Inc. Recharge catalyst with thin film low corrosion coating, metal-air electrode including said catalyst and methods for making said catalyst and electrode
CN113106488A (zh) * 2021-03-25 2021-07-13 中山大学 一种铁掺杂硫化镍析氧电催化剂的制备方法
CN113668007A (zh) * 2021-07-23 2021-11-19 兰州大学 析氢催化剂及其制备方法和应用
CN114561655A (zh) * 2022-03-28 2022-05-31 河北工业大学 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI GAO, FANGYUAN MA, CHEN WANG, DAN WEN: "Ce dopant significantly promotes the catalytic activity of Ni foam-supported Ni3S2 electrocatalyst for alkaline oxygen evolution reaction", JOURNAL OF POWER SOURCES, vol. 450, pages 227654 *

Also Published As

Publication number Publication date
CN115710711B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN113668007B (zh) 析氢催化剂及其制备方法和应用
US20190211461A1 (en) Photoelectrochemical devices, methods, and systems with a cupric oxide/cuprous oxide coated electrode
CN112076761B (zh) 一种氧化铜纳米线负载银颗粒复合电极、制备方法及应用
CN108048868B (zh) 一种氮化钼纳米棒电极材料及其制备方法和应用
CN111636074B (zh) 一种二氧化碳电化学还原用铜电极的制备及其应用
CN108336374B (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN113463128B (zh) 水分解催化剂及其制备方法和应用
CN112237927A (zh) 一种电催化还原硝酸盐的催化剂及其制备方法和应用
CN113275027A (zh) 一种生长在泡沫镍上以普鲁士蓝类似物为模板衍生的双金属磷化物的制备及应用
CN111420651A (zh) 铋基电催化剂的制备方法及铋基电催化剂和应用
CN111068717B (zh) 一种钌单质修饰的硫掺杂石墨烯二维材料及其制备与应用
CN113908870A (zh) 双功能非贵金属氮化物催化剂的可控制备和大电流电解尿素制氢应用
CN112058282A (zh) 一种基于钼、钨基层状材料pH广适催化剂的制备方法及其应用于电解水析氢反应
CN111005035B (zh) 一种含铁镍掺杂的氮化钽碳纳米薄膜一体化电极的制备方法和应用
CN114405521A (zh) 一种缺陷丰富的掺锌二硫化钼纳米片析氢电催化剂的制备方法
CN111804317A (zh) 一种直接在导电基底上生长高密度磷化钴纳米线电催化剂的方法及其应用
CN115058731B (zh) 一种N、S掺杂多孔碳负载Co复合材料及其制备方法和应用
CN115710711B (zh) 析氧催化剂及其制备方法和应用
CN115992366A (zh) 高效电催化还原硝酸盐制氨的Ni(OH)2修饰Cu催化剂的制备方法
CN114807973A (zh) 一种铈修饰的镍基催化剂及其制备方法与应用
CN115287691A (zh) CeO2/NiS异质结构催化剂的制备方法及其应用
CN116237063B (zh) 钇促进的二氧化碳还原催化剂及其制备方法
CN114855184B (zh) 水分解催化剂及其制备方法和应用
CN114369848B (zh) 一种杂原子掺杂二硫化钼纳米复合材料的制备及其应用
CN114232020B (zh) 水分解催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant