CN115627028A - 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用 - Google Patents

一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用 Download PDF

Info

Publication number
CN115627028A
CN115627028A CN202211301777.2A CN202211301777A CN115627028A CN 115627028 A CN115627028 A CN 115627028A CN 202211301777 A CN202211301777 A CN 202211301777A CN 115627028 A CN115627028 A CN 115627028A
Authority
CN
China
Prior art keywords
fiber
foam material
foam
polymer
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211301777.2A
Other languages
English (en)
Other versions
CN115627028B (zh
Inventor
蒋晶
孙俊威
杨莲
乔珉
贾彩宜
王小峰
李倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202211301777.2A priority Critical patent/CN115627028B/zh
Publication of CN115627028A publication Critical patent/CN115627028A/zh
Application granted granted Critical
Publication of CN115627028B publication Critical patent/CN115627028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

本发明属于隔热保温材料技术领域,公开了一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用。本申请采用聚丙烯基体、成纤聚合物、弹性体和抗氧剂为发泡材料,将发泡材料先进行一次熔融共混、热拉伸处理,再经二次熔融共混、冷却造粒后、压制处理得到复合板材;将复合板材进行超临界流体发泡处理,得到复合隔热泡沫材料。本发明通过原位成纤技术在聚丙烯泡沫材料内形成纤维网络,不仅提高泡沫材料的泡孔密度,同时还大大增强了聚丙烯的熔体强度,扩大了聚丙烯的发泡区间,大大改善聚丙烯泡沫材料的隔热性能与抗压强度。

Description

一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法 和应用
技术领域
本发明属于隔热保温材料领域,具体涉及一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用。
背景技术
随着汽车行业的迅速发展,采用更加安全舒适,更加轻量化的材料已经成为一种趋势。因此,在保持材料良好力学性能的前提下,降低材料密度,减小能源消耗具有重要意义。在保险杠材料、内饰件、方向盘材料等方面,采用低密度、高性能的聚丙烯泡沫,不但可以减小汽车自重,增加汽车舒适性和可操控性,还可以有效降低能耗,而且聚丙烯易于回收再利用,可以降低资源消耗,这些使得聚丙烯泡沫成为了汽车轻量化领域的首选材料。但是聚丙烯发泡之后,强度损失严重,这将大大降低聚丙烯泡沫的力学性能与隔热性能,限制了聚丙烯泡沫的使用。目前,聚丙烯发泡材料在增强与隔热性能方面需要进一步提升。
发明内容
针对现有技术中存在的问题和不足,本发明的目的在于提供一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用。
基于上述目的,本发明采用如下技术方案:
本发明第一方面提供了一种原位微纤化增强聚合物复合隔热泡沫材料的制备方法,所述制备方法为:将发泡材料先进行一次熔融共混、热拉伸处理,得到微纤具有取向的复合物样条;将复合物样条进行二次熔融共混,冷却造粒后再经压制处理得到复合板材;将复合板材进行超临界流体发泡处理,得到复合隔热泡沫材料;
所述发泡材料包括基体聚合物、成纤聚合物和弹性体;所述基体聚合物和成纤聚合物均为热塑性聚合物,所述弹性体为热塑性弹性体。
优选地,所述发泡材料中,基体聚合物质量占基体聚合物和成纤聚合物质量和的80wt.%-99wt.%,成纤聚合物质量占基体聚合物和成纤聚合物质量和的1wt.%-20wt.%;所述弹性体的用量为基体聚合物和成纤聚合物质量和的3wt.%-10wt.%。
更加优选地,成纤聚合物质量占基体聚合物和成纤聚合物质量和的7wt.%-12wt.%。该质量百分比的成纤聚合物可以在基体聚合物中能得到均匀且有一定间隙的分散,既适宜后续进行发泡处理,又能使制备的泡沫材料具有较高的力学强度。
优选地,所述发泡材料还包括抗氧剂;所述抗氧剂的用量为基体聚合物和成纤聚合物质量和的0.1wt.%-1wt.%。更加优选地,所述抗氧剂为抗氧剂1010或/和抗氧剂168。
优选地,所述基体聚合物为聚丙烯(PP)。更加优选地,所述基体聚合物为等规聚丙烯。
更加优选地,所述聚丙烯的熔融指数为2-30g/10min。更加优选地,所述聚丙烯为Z30S、T30S或HJ500。
优选地,所述成纤聚合物为聚对苯二甲酸乙二醇酯(PET)、聚四氟乙烯(PTFE)或尼龙66中的其中一种。更加优选地,所述成纤聚合物为聚对苯二甲酸乙二醇酯。
更加优选地,所述聚对苯二甲酸乙二醇酯为FC510。
优选地,所述弹性体为乙烯-辛烯共聚物(POE)、SEBS(聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯嵌段共聚物)或乙烯-醋酸乙烯酯共聚物(EVA)中的其中一种。更加优选地,所述弹性体为乙烯-辛烯共聚物。
优选地,所述乙烯-辛烯共聚物中辛烯的含量为25wt.%-40wt.%;POE中柔软辛烯卷曲结构的存在可提高各组分的联结缓冲效果,但辛烯的含量也不能过高,否则反而会影响共聚材料的硬度。
更加优选地,所述发泡材料在进行熔融共混前还进行干燥处理。
优选地,采用双螺杆挤出机进行所述一次熔融共混处理。经过一次熔融共混处理的聚合物复合材料中,当成纤聚合物为PET或尼龙66时,PP基体中并不会出现成纤聚合物微纤维,但当成纤聚合物为PTFE时,PP基体中已经出现了PTFE微纤维,这是由材质本身特性决定的。
优选地,所述双螺杆挤出机设置条件为:挤出温度120-270℃,螺杆转速70-90rad/min,下料斗转速6-9rad/min。更加优选地,所述双螺杆挤出机1-6区和机头温度依次设置为:120-140℃、150-170℃、185-195℃、220-240℃、255-270℃、255-270℃、250-260℃。
优选地,采用变速滚筒进行所述热拉伸处理。经过热拉伸处理的聚合物复合样条宏观表现为直径150-300μm的长丝;进一步地,该长丝内部表现为:成纤聚合物以微纤维的形式均匀分布在PP基体中,且该微纤维具有沿热拉伸方向的定向取向。
优选地,所述热拉伸处理的牵引速率为5-13m/s。
更加优选地,所述变速滚筒转速为500-900r/min;所述变速滚筒直径为25cm。因此可换算得出,所述热拉伸处理的牵引速率为392.5-706.5m/min,也即6.5-11.8m/s。更加优选地,所述热拉伸处理的牵引速率为6-12m/s。
优选地,采用单螺杆挤出机进行二次熔融共混处理。为使成纤聚合物微纤维以纤维网络的形式均匀分布在基体中使发泡材料各向同性,需将上述热拉伸处理得到的聚合物复合样条进行二次熔融共混处理;进一步地,为不破坏成纤聚合物微纤维形态,选用剪切力较小的单螺杆挤出机进行二次熔融共混处理。
优选地,所述单螺杆挤出机温度为190-200℃,螺杆转速70-90rad/min,下料斗转速6-9rad/min。
更加优选地,采用真空压膜机对从单螺杆挤出机得到的冷却粒料进行压制处理;所述真空压膜机设置条件为:压力0-5000kg,温度180-200℃。
进一步地,将压制得到的复合板材进行刻蚀PP基体处理,可以观察看出,成纤聚合物微纤维已形成纤维网络结构。
优选地,所述复合板材厚度为2-5mm。
更加优选地,所述超临界流体为二氧化碳或氮气。
优选地,所述超临界流体发泡处理中,饱和温度为140-160℃,饱和压力为2800-3000psi,饱和时间为0.5-1.5h。更加优选地,所述超临界流体发泡处理中饱和温度为152-158℃。
本发明第二方面提供了上述第一方面所述制备方法制备的复合隔热泡沫材料。从微观上看,所述复合隔热泡沫材料中泡孔直径小于15μm,泡孔密度高于108个/cm3。从宏观上看,所述复合隔热泡沫材料密度可达0.32g/cm3;压缩强度可达12.34MPa。
本发明第三方面提供了上述第一方面所述复合隔热泡沫材料在隔热保温材料中的应用。所述复合隔热泡沫材料热导率可达0.068W·K-1·m-1
与现有技术相比,本发明的有益效果如下:
(1)本发明采用PP+PET+POE为原料,利用双螺杆挤出机共混挤出-热拉伸装置热拉伸处理-萃冷工艺的原位成纤技术使PP基体内形成稳定的PET纳米级纤维网络结构实现对PP的改性,再利用超临界流体发泡技术与间歇微孔发泡工艺相结合的方式制备出一种高强度的原位微纤化增强聚合物复合隔热泡沫材料。在其中一个实施例中,本发明以普通等规聚丙烯制备出的PP/PET/POE共混料原位微纤化增强聚合物复合隔热泡沫材料密度达到0.32g/cm3,压缩强度为12.34MPa,泡孔尺寸为6.87μm,泡孔密度为7.84×109个/cm3,热导率为0.068W·K-1·m-1,分别比不经过热拉伸处理的PP/PET/POE泡沫材料的压缩强度增大了5倍,泡孔密度提升3个数量级,导热系数也降低近90%。因此,本发明的原位微纤化增强聚合物复合隔热泡沫材料具有泡孔尺寸小,泡孔密度高,较低的导热系数,较高的抗压强度,同时具有隔热能力强和抗压性能好等优点。综上,本发明不仅克服现有聚丙烯泡沫材料的抗压性能与隔热性能的不足,大大改善聚丙烯泡沫材料的抗压强度与隔热性能,也令其在汽车领域具有广阔的发展前景。
(2)本发明在以PP为基体,PET为成纤相的共混体系的加工过程中,成纤相PET在剪切作用和拉伸作用下形成具有取向的微纤维,二次熔融共混后在PP基体内形成PET微纤维网络,这极大增强了PP的熔体强度,提高了泡沫的抗压强度。一般而言,发泡制品的密度越低,所需的聚丙烯熔体强度就越高,本申请采用普通熔体强度的等规聚丙烯制备出密度为0.32g/cm3的泡沫制品,进一步证实本发明PP/PET/POE共混料原位微纤化增强聚合物熔体强度很高。进一步的,本发明还扩大了PP的发泡温度区间,在其中一项实施例中,本发明PP/PET/POE共混料原位微纤化增强聚合物复合隔热泡沫材料可在142-160℃发泡温度范围内发泡出大小均匀的闭合孔,使PP泡沫材料兼顾力学性能和多种发泡程度需求成为可能。
(3)本发明采用超临界CO2或N2物理发泡剂,具有价格低廉、操作易于控制、无毒无污染的优点,绿色环保,且可制备出泡孔尺寸小、泡孔密度高且尺寸较均匀的发泡材料。
(4)本发明采用的原位成纤技术和间歇发泡法,简便易行、易于控制和降低生产成本。
附图说明
图1为本发明实施例1制备的复合板材样品中PET纤维网络的微观形貌图;
图2为本发明实施例1制备的泡沫材料样品在厚度方向断面的微观形貌图;
图3为本发明对比例1制备的泡沫材料样品在厚度方向断面的微观形貌图;
图4为本发明对比例2制备的泡沫材料样品在厚度方向断面的微观形貌图;
图5为本发明对比例3制备的泡沫材料样品在厚度方向断面的微观形貌图;
图6为本发明对比例4制备的泡沫材料样品在厚度方向断面的微观形貌图;
图7为饱和温度为142℃时,本发明实施例1制备的泡沫材料样品在厚度方向断面的微观形貌图;
图8为饱和温度为160℃时,本发明实施例1制备的泡沫材料样品在厚度方向断面的微观形貌图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例结合附图,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要说明的是,本发明通过SEM观察泡沫材料样品厚度方向断面的微观形貌,并统计泡沫材料样品的泡孔结构参数;还将发泡前的复合板材样品在140℃的温度下的二甲苯溶液中刻蚀2h,刻蚀掉PP基体,得到PET纤维并统计纤维平均直径;并根据GB/T 10295-2008标准测定泡沫材料样品的热导率;根据GB/T 8813-2020标准测定泡沫材料样品的压缩强度(压缩强度为压缩应变为80%时对应的压缩应力值)。
(一)复合隔热泡沫材料制备方法中热拉伸处理的探讨
为了探讨热拉伸处理对制得的复合隔热泡沫材料的性能影响,发明人分别做了以下实验,即实施例1和对比例1,其对应的热拉伸处理如表1所示,对制得的复合隔热泡沫材料的性能测定结果如表1所示。
实施例1
本实施例提供一种原位微纤化增强聚合物复合隔热泡沫材料,其制备方法包括如下步骤:
(1)将1000g PP颗粒(供应商:中国茂名石化有限公司;货号:Z30S)、100g PET(供应商:仪征化纤股份有限公司;货号:FC510)、50g POE(供应商:韩国LG-DOW;货号:LC565)、1.5g巴斯夫抗氧剂1010干燥之后混合均匀,加入双螺杆挤出机进行一次熔融共混处理,得到挤出物料;所述双螺杆挤出机1-6区和机头温度依次设置为130℃、160℃、190℃、230℃、265℃、265℃、255℃,螺杆转速为70rad/min,下料斗转速为6.5rad/min。
其中,所述PP的熔融指数为25g/10min,相对密度为0.91g/cm3;PET的特性粘度为0.675dL/g,密度为1.38g/cm3;POE的熔融指数为5g/10min,密度为0.87g/cm3,门尼粘度为8MU,辛烯含量为35wt.%。
(2)将挤出物料经热拉伸装置进行热拉伸处理,得到微纤具有取向的聚合物长丝;将聚合物长丝加入单螺杆挤出机进行二次熔融共混处理,冷却造粒后得到PP/PET/POE原位微纤化增强复合材料;所述热拉伸装置由依次连接的冷却水槽和变速滚筒(直径25cm)构成,所述变速滚筒转速为700r/min;所述单螺杆挤出机温度为190-200℃。
(3)将PP/PET/POE原位微纤化增强复合材料经真空压膜机进行190℃加压压制处理,得到30×10×5mm复合板材;将复合板材放入密封的高压釜中,充入超临界二氧化碳,设置饱和压力为3000psi,饱和温度为154℃,维持饱和时间1h,使超临界流体充分融入到材料中,形成均相体系;然后迅速卸压降温,卸压速率为2-3MPa/s,冷却后得到原位微纤化增强聚合物复合隔热泡沫材料。
本实施例制备的泡沫材料密度为0.32g/cm3;PP/PET/POE原位微纤化增强复合材料熔点为165℃。此外,从图1复合板材样品的PET纤维的形貌图中可以看出,PET纤维交错排布,在PP基体中形成了具有一定间隙的三维立体网状结构,为后续泡孔的形成提供了空间以及力学基础。
对比例1
一种PP/PET/POE共混物泡沫材料内容与实施例1的内容基本相同,其不同之处在于:不进行步骤(2)的热拉伸处理,直接将挤出物料冷却造粒后进行步骤(3)的压制处理和发泡处理,得到PP/PET/POE共混物泡沫材料。
本对比例制备的泡沫材料密度为0.41g/cm3;发泡前的挤出物料熔点为163℃。
表1实施例1和对比例1泡沫材料样品的性能参数
Figure BDA0003904363590000061
由表1可知,将对比例1和实施例1相比,将PP/PET/POE共混料原位微纤化处理后制备的泡沫材料中出现了平均直径为283nm的PET纤维,比仅将PP/PET/POE熔融共混而不进行热拉伸处理的泡沫材料的泡孔尺寸由43.86μm降为6.87μm,泡孔密度由9.88×106个/cm3增至7.84×109个/cm3,热导率由0.623W·K-1·m-1降至0.068W·K-1·m-1,压缩强度由2.22MPa增至12.34MPa。这是因为,实施例1中存在纳米纤维网络(如图1所示,平均纤维直径283nm),这极大地改善了PP熔体强度,使泡沫材料压缩强度增大了5倍,同时由于纤维的异相成核作用使泡孔密度提升3个数量级,导热系数也降低近90%。因此,将PP/PET/POE熔融共混料中的PET进行原位微纤化处理,可以大大增加泡沫材料的泡孔密度,缩小泡孔大小,增强泡沫材料的力学性能和隔热性能。
(二)复合隔热泡沫材料制备方法中原料种类的探讨
为了探讨原料种类对制得的复合隔热泡沫材料的性能影响,发明人分别做了以下实验,即实施例1和对比例1-5,其对应的原料种类如表2所示,对制得的复合隔热泡沫材料的性能测定结果如表2所示。
对比例2
一种PP泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中不加100g PET和50g POE;不进行步骤(2)的热拉伸处理,直接将挤出物料冷却造粒后进行步骤(3)的压制处理和发泡处理,得到PP/PET共混物泡沫材料。
对比例3
一种PP/PET共混物泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中不加50g POE;不进行步骤(2)的热拉伸处理,直接将挤出物料冷却造粒后进行步骤(3)的压制处理和发泡处理,得到PP/PET共混物泡沫材料。
对比例4
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中不加50g POE。
对比例5
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中不加100g PET。
表2实施例1和对比例1-5泡沫材料样品的性能参数
Figure BDA0003904363590000071
由表1可知,将对比例3和对比例2相比,在PP中加入PET熔融共混后制备的泡沫材料比不加PET的泡孔尺寸小,泡孔密度大,热导率低,压缩强度大。这是因为PET颗粒能够均匀的分散在基体中,提高了基体熔体强度并且改善了结晶性能,而且PET为泡孔生长提供了更多的异相成核点,明显降低了体系成核的临界自由能垒。因此,在PP中熔融共混PET可以增加泡沫材料的泡孔密度,缩小泡孔大小,增强泡沫材料的力学性能和隔热性能。
将对比例3和对比例1相比,在PP/PET中进一步加入POE熔融共混后制备的泡沫材料比不加POE的泡孔尺寸略有变小,泡孔密度略大,热导率略低,压缩强度略大。因此POE对PP/PET的熔融体系制备的泡沫材料性能虽有提升,但影响不大。这是因为POE长链支化聚合物在PP基体内会增加分子链的缠结程度,从而提高共混体系的熔体强度,能够在一定程度上改善发泡性能,但影响不大。
将对比例4和实施例1相比,在PP/PET/POE三者熔融共混后原位微纤制备的泡沫材料比PP/PET二者熔融共混后原位微纤制备的泡沫材料的纤维直径尺寸更细(由390nm降至283nm),因此,POE的加入可以细化PET纤维尺寸。此外,在微纤体系中加入POE使泡孔尺寸由14.34μm降为6.87μm,泡孔密度由4.73×109个/cm3增至7.84×109个/cm3,热导率由0.076W·K-1·m-1降至0.068W·K-1·m-1,压缩强度由11.23MPa增至12.34MPa。而且同时将对比例1和对比例3比较,实施例1与对比例4比较,POE的加入对热拉伸处理制备的泡沫材料的贡献更大。这是因为在熔融共混阶段,适量POE的存在能够提高基体黏度,增加了PP熔体和PET液滴间应力传递效率,有助于细化PET颗粒尺寸;但在热拉伸阶段,PP基体黏度的提高增加了成纤过程中基体与PET液滴界面处的摩擦力,因此在外界的拉伸作用下,摩檫力的增加增强了液滴变形能力,有利于PET液滴沿拉伸方向进行变形和取向,逐渐经历椭球、长扁球、长纺锤、粗纤维等形状,最终变形成高长径比的细纤维,纤维细化可以进一步增大泡孔密度,缩小泡孔大小,增强泡沫材料的力学性能和隔热性能。
将对比例5和实施例1相比,PP/POE二者熔融共混后热拉伸制备的泡沫材料中并不能形成纤维,这是因为POE与PP具有良好的相容性,无法满足原位成纤的黏度比要求,因而POE无法成纤,同时也无法形成颗粒在基体中均匀分散以提供泡沫形成的异相成核点。因此,PP/POE二者熔融共混后热拉伸制备的泡沫材料性能甚至低于PP/PET二者熔融共混制备的泡沫材料(对比例3)。
此外,由图2-6可知,实施例1和对比例1-4中泡孔结构以闭孔为主,泡孔尺寸较小且分布均匀。
综上,优选PP/PET/POE三者熔融共混后原位微纤制备泡沫材料。
(三)复合隔热泡沫材料制备方法中变速滚筒转速的探讨
为了探讨变速滚筒转速对制得的复合隔热泡沫材料的性能影响,发明人分别做了以下实验,即实施例1-5,其对应的变速滚筒转速分别为:700r/min、300r/min、500r/min、900r/min、1100r/min,对制得的复合隔热泡沫材料的性能测定结果如表3所示。
实施例2
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(2)的变速滚筒转速为300r/min。
实施例3
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(2)的变速滚筒转速为500r/min。
实施例4
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(2)的变速滚筒转速为900r/min。
实施例5
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(2)的变速滚筒转速为1100r/min。
表3实施例1-5泡沫材料样品的性能参数
Figure BDA0003904363590000091
由表3可知,随着变速滚筒转速的增加,纤维尺寸、泡孔尺寸、热导率呈现先减小后增加的趋势,泡孔密度和压缩强度均呈现先增加后减小的趋势。这是因为当变速滚筒的拉伸速率过低时,PET纤维无法得到充分拉伸,纤维长径比低,导致熔体强度和结晶性能较差,不利于发泡行为的改善,然而当滚筒的转速过大时,纤维会发生断裂,形成长径比不高的短纤维,无法形成稳固的三维物理缠结网络结构,因此优选700r/min的滚筒转速进行热拉伸处理。
(四)复合隔热泡沫材料制备方法中POE含量的探讨
为了探讨POE加入量对制得的复合隔热泡沫材料的性能影响,发明人分别做了以下实验,即实施例1和实施例6-9,其对应的POE加入量分别为:50g、30g、70g、100g、125g,对制得的复合隔热泡沫材料的性能测定结果如表4所示。
实施例6
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)的POE加入量为30g。
实施例7
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)的POE加入量为70g。
实施例8
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)的POE加入量为100g。
实施例9
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)的POE加入量为125g。
表4实施例1和实施例6-9泡沫材料样品的性能参数
Figure BDA0003904363590000101
由表4可知,随着POE加入量的增加,纤维尺寸、泡孔尺寸、热导率呈现先减小后增加的趋势,泡孔密度、压缩强度呈现先增加后减小的趋势。这是因为分散在PP与PET界面处的POE弹性体具有一定的增容作用,随着POE含量的增加,增容作用愈加明显,导致基体相与成纤相界面粘合增强的同时,也会加大了PET液滴沿拉伸方向脱离PP基体的难度,从而抑制了PET液滴在原位成纤过程中的变形和取向。因此,优选在1000gPP和100gPET体系中加入50gPOE制备原位微纤化增强聚合物复合隔热泡沫材料。
(五)复合隔热泡沫材料制备方法中饱和温度的探讨
为了探讨饱和温度对制得的复合隔热泡沫材料的性能影响,发明人分别做了以下实验,即实施例1和实施例10-12,其对应的饱和温度分别为:154℃、152℃、156℃、158℃,对制得的复合隔热泡沫材料的性能测定结果如表5所示。
实施例10
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(3)中饱和温度为152℃。
实施例11
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(3)中饱和温度为156℃。
实施例12
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(3)中饱和温度为158℃。
表5实施例1和实施例10-12泡沫材料样品的性能参数
Figure BDA0003904363590000111
由表5可知,随着POE加入量的增加,泡孔尺寸、热导率呈现先减小后增加的趋势,泡孔密度、压缩强度呈现先增加后减小的趋势。这是因为温度过高,熔体强度变小,泡孔尺寸变大;而温度过低,熔体强度过大,又难以使结晶态的聚合物起泡,泡孔尺寸过小,且泡孔尺寸不均匀,热导率反而因为泡沫孔隙率低而变大。此外,据研究表明,较小的泡孔直径和均匀的泡孔结果有助于降低泡孔的导热系数。因此,优选154℃为制备原位微纤化增强聚合物复合隔热泡沫材料的饱和温度。
性能测试:
发明人分别仅调整实施例1、对比例1、对比例2中的饱和温度,在140-160℃饱和温度范围内每2℃测定出制备的泡沫材料的泡孔密度,数据结果如表6所示。
表6实施例1、对比例1和对比例2泡沫材料样品的性能参数
Figure BDA0003904363590000112
由表6可知,实施例1、对比例1和对比例2中泡孔密度均随着饱和温度的升高呈现先升高后降低的趋势,但是实施例1泡沫材料样品在饱和温度为142-160℃时仍多为均匀大小的闭合孔(具体见图7和图8);而对比例1泡沫材料样品在饱和温度为142-156℃时有均匀大小的闭合孔,但当对比例1的饱和温度超过156℃时,出现泡孔塌陷或合并形成的局部开孔,因此对比例1泡沫材料的发泡温度范围比实施例1的窄,且泡孔密度更低;对比例2泡沫材料样品在饱和温度为142-154℃时有均匀大小的闭合孔,在156℃的饱和温度条件下,也出现泡孔合并和塌陷现象,因此对比例2泡沫材料的发泡温度范围比对比例1的更窄,泡孔密度更低。因此,PET纤维网络的引入不仅增大了PP的结晶度,增强了PP的熔体强度,同时也扩大了PP的发泡温度区间,更有利于控制发泡过程,更易于得到独立的、气孔率高的发泡体。
实施例11
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:
步骤(1)中将1000g PP颗粒、250g PTFE、125g POE、10g抗氧剂168干燥之后混合均匀;所述双螺杆挤出机温度设置为140℃、170℃、195℃、240℃、270℃、270℃、260℃,螺杆转速为90rad/min,下料斗转速为9rad/min;其中,所述PP的熔融指数为30g/10min;POE辛烯含量为40wt.%。
步骤(3)中真空压膜机温度设为200℃;饱和压力为2800psi,饱和时间为1.5h。
实施例12
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:
步骤(1)中将1000g PP颗粒、50g尼龙66、30g POE、1g抗氧剂168干燥之后混合均匀;所述双螺杆挤出机温度设置为120℃、150℃、185℃、220℃、255℃、255℃、250℃,下料斗转速为6rad/min;其中,所述PP的熔融指数为2g/10min;尼龙66特性黏度为0.3dL/g;POE辛烯含量为25wt.%。
步骤(3)中真空压膜机温度设为180℃;饱和压力为2800psi,饱和时间为0.5h。
实施例13
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中将POE替换为SEBS。
实施例14
一种原位微纤化增强聚合物复合隔热泡沫材料内容与实施例1的内容基本相同,其不同之处在于:步骤(1)中将POE替换为EVA。
综上所述,本发明有效克服了现有技术中的不足,且具高度产业利用价值。上述实施例的作用在于说明本发明的实质性内容,但并不以此限定本发明的保护范围。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和保护范围。

Claims (10)

1.一种原位微纤化增强聚合物复合隔热泡沫材料的制备方法,其特征在于,所述制备方法为:将发泡材料先进行一次熔融共混、热拉伸处理,得到微纤具有取向的复合物样条;将复合物样条进行二次熔融共混,冷却造粒后再经压制处理得到复合板材;将复合板材进行超临界流体发泡处理,得到复合隔热泡沫材料;
所述发泡材料包括基体聚合物、成纤聚合物和弹性体;所述基体聚合物和成纤聚合物均为热塑性聚合物,所述弹性体为热塑性弹性体。
2.根据权利要求1所述的制备方法,其特征在于,所述发泡材料中,基体聚合物质量占基体聚合物和成纤聚合物质量和的80wt.%-99wt.%,成纤聚合物质量占基体聚合物和成纤聚合物质量和的1wt.%-20wt.%;所述弹性体的用量为基体聚合物和成纤聚合物质量和的3wt.%-10wt.%。
3.根据权利要求1或2所述的制备方法,其特征在于,所述基体聚合物为聚丙烯;所述成纤聚合物为聚对苯二甲酸乙二醇酯、聚四氟乙烯或尼龙66中的其中一种;所述弹性体为乙烯-辛烯共聚物、SEBS或乙烯-醋酸乙烯酯共聚物中的其中一种。
4.根据权利要求3所述的制备方法,其特征在于,所述基体聚合物为等规聚丙烯;所述乙烯-辛烯共聚物中辛烯的含量为25wt.%-40wt.%。
5.根据权利要求1所述的制备方法,其特征在于,所述热拉伸处理的牵引速率为5-13m/s。
6.根据权利要求1所述的制备方法,其特征在于,采用双螺杆挤出机进行所述一次熔融共混处理;所述双螺杆挤出机设置条件为:挤出温度120-270℃,螺杆转速70-90rad/min,下料斗转速6-9rad/min;采用单螺杆挤出机进行二次熔融共混处理;所述单螺杆挤出机温度为190-200℃。
7.根据权利要求1所述的制备方法,其特征在于,所述复合板材厚度为2-5mm;所述超临界流体发泡处理中,饱和温度为140-160℃,饱和压力为2800-3000psi,饱和时间为0.5-1.5h。
8.根据权利要求1所述的制备方法,其特征在于,所述发泡材料还包括抗氧剂;所述抗氧剂的用量为基体聚合物和成纤聚合物质量和的0.1wt.%-1wt.%。
9.权利要求1-8任一所述制备方法制备的复合隔热泡沫材料。
10.权利要求9所述复合隔热泡沫材料在隔热保温材料中的应用。
CN202211301777.2A 2022-10-24 2022-10-24 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用 Active CN115627028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211301777.2A CN115627028B (zh) 2022-10-24 2022-10-24 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211301777.2A CN115627028B (zh) 2022-10-24 2022-10-24 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115627028A true CN115627028A (zh) 2023-01-20
CN115627028B CN115627028B (zh) 2023-08-08

Family

ID=84906098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211301777.2A Active CN115627028B (zh) 2022-10-24 2022-10-24 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115627028B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164932A (zh) * 2023-10-31 2023-12-05 汕头市虹桥包装实业有限公司 一种注塑发泡聚丙烯材料及其制备方法和在轻量化高性能瓶盖中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944512A (zh) * 2006-09-13 2007-04-11 四川大学 微纤柔性可控的原位微纤化复合材料及其制备方法
WO2007145705A1 (en) * 2006-06-08 2007-12-21 Exxonmobil Chemical Patents Inc. Process for preparing articles
WO2012142802A1 (zh) * 2011-04-22 2012-10-26 天津东皋膜技术有限公司 后交联橡胶、聚烯烃复合材料纳米微多孔隔膜及其制造方法
CN104877162A (zh) * 2015-04-27 2015-09-02 中国科学院长春应用化学研究所 原位微纤化聚丙烯系树脂复合发泡颗粒及其应用
CN106147107A (zh) * 2015-04-01 2016-11-23 李永腾 多层热塑性弹性体发泡材料及其制造方法
WO2017030835A1 (en) * 2015-08-19 2017-02-23 Nike Innovate C.V. Process for preparing thermoplastic elastomer foam and foamed article
CN115403815A (zh) * 2022-10-08 2022-11-29 郑州大学 一种具有取向泡孔的微孔泡沫材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145705A1 (en) * 2006-06-08 2007-12-21 Exxonmobil Chemical Patents Inc. Process for preparing articles
CN1944512A (zh) * 2006-09-13 2007-04-11 四川大学 微纤柔性可控的原位微纤化复合材料及其制备方法
WO2012142802A1 (zh) * 2011-04-22 2012-10-26 天津东皋膜技术有限公司 后交联橡胶、聚烯烃复合材料纳米微多孔隔膜及其制造方法
CN106147107A (zh) * 2015-04-01 2016-11-23 李永腾 多层热塑性弹性体发泡材料及其制造方法
CN104877162A (zh) * 2015-04-27 2015-09-02 中国科学院长春应用化学研究所 原位微纤化聚丙烯系树脂复合发泡颗粒及其应用
WO2017030835A1 (en) * 2015-08-19 2017-02-23 Nike Innovate C.V. Process for preparing thermoplastic elastomer foam and foamed article
CN115403815A (zh) * 2022-10-08 2022-11-29 郑州大学 一种具有取向泡孔的微孔泡沫材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164932A (zh) * 2023-10-31 2023-12-05 汕头市虹桥包装实业有限公司 一种注塑发泡聚丙烯材料及其制备方法和在轻量化高性能瓶盖中的应用
CN117164932B (zh) * 2023-10-31 2024-01-26 汕头市虹桥包装实业有限公司 一种注塑发泡聚丙烯材料及其制备方法和在轻量化高性能瓶盖中的应用

Also Published As

Publication number Publication date
CN115627028B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN101275002B (zh) 聚丙烯发泡开孔材料及其制备工艺
CN107200929B (zh) 一种丙烯共聚物微孔发泡材料及其制备方法
US8262925B2 (en) Method for producing a phase-change material composition
CN111087701B (zh) 抗菌聚丙烯组合物和微孔抗菌聚丙烯发泡板材及其制备方法和发泡片材
CN111253677B (zh) 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
CN111138755A (zh) 一种低密度低介电聚丙烯复合材料及其制备方法
CN105623098A (zh) 一种长纤维增强聚丙烯微孔发泡材料的制备方法
CN103756124A (zh) 一种聚丙烯发泡材料、制品及制品的制备方法
CN109988362A (zh) 一种微发泡聚丙烯材料及其制备方法
CN115627028A (zh) 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用
CN105385024A (zh) 具有双峰分布的聚丙烯发泡材料及其制备方法
CN103183871A (zh) 皮革离型纸用聚丙烯基树脂组合物及其制备方法和用途
CN109385689A (zh) 一种共混超高分子量聚乙烯的纺丝方法
CN108409985B (zh) 一种通过预等温冷结晶处理提高聚乳酸发泡倍率的方法
CN109354764A (zh) 一种纳米纤维素增强聚丙烯发泡材料及其制备方法
CN111393812A (zh) 一种pla/eva超临界发泡复合材料及其制备方法
CN109371475A (zh) 一种超高分子量聚乙烯的纺丝方法
CN104072880B (zh) 一种tpo发泡微球的制备方法以及应用
Zhou et al. Effect of nano‐sized zinc citrate on the supercritical carbon dioxide‐assisted extrusion foaming behavior of poly (lactic acid)
CN107501850A (zh) 利用废弃abs树脂制备汽车后扰流板专用材料及其制备方法
CN109054183A (zh) 一种高孔隙率聚丙烯微发泡复合材料及其制备方法
CN110216958A (zh) 一种低热导率耐拉耐压的多层发泡材料及其制备方法
CN109265825B (zh) 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
CN109456524B (zh) 一种高阻隔pe/lcp/pet树脂组合物及其制备方法
CN111019240B (zh) 一种注塑发泡用聚丙烯复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant