CN115594513A - 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法 - Google Patents

一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN115594513A
CN115594513A CN202211271308.0A CN202211271308A CN115594513A CN 115594513 A CN115594513 A CN 115594513A CN 202211271308 A CN202211271308 A CN 202211271308A CN 115594513 A CN115594513 A CN 115594513A
Authority
CN
China
Prior art keywords
carbon fiber
silicon carbide
fiber reinforced
ceramic matrix
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211271308.0A
Other languages
English (en)
Other versions
CN115594513B (zh
Inventor
陈毛
陈勇强
范冰冰
王海龙
刘慧�
耿文钊
邵刚
张锐
李红霞
方成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202211271308.0A priority Critical patent/CN115594513B/zh
Publication of CN115594513A publication Critical patent/CN115594513A/zh
Application granted granted Critical
Publication of CN115594513B publication Critical patent/CN115594513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法,属于陶瓷微波烧结领域。所述的制备方法包括如下步骤:1)将SiC粉料、烧结助剂、粘结剂及催化剂进行球磨混合,得到混合料;2)将混合料压制成型,得到生胚;3)将生胚进行分段烧结,制备得到碳纤维增强碳化硅陶瓷基复合材料。使用本发明的制备方法得到的碳纤维增强碳化硅陶瓷基复合材料体积密度大,抗折强度高,制备周期短,烧结温度低,而且碳纤维直径可控,从纳米级到微米级都可制备;制备工艺简单,不需要使用碳纤维制备预制体,一次烧结即可制备完成,适用性广,操作方便,适合工业化快速生产,具有广阔的应用前景。

Description

一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备 方法
技术领域
本发明属于陶瓷技术领域,具体涉及一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法。
背景技术
碳纤维增强碳化硅(C/SiC)陶瓷基复合材料充分利用了碳纤维优异的高温力学性能和SiC陶瓷基体的高温抗氧化性能,具有低密度、高强度、优异的热稳定性和化学稳定性,被认为是目前最有发展前途的高温结构材料,已成功应用于航天、军事工业、民用工业等领域。
目前碳纤维增强碳化硅(C/SiC)陶瓷基复合材料的制备方法主要有化学气相渗透法(CVI)、反应熔体渗透法(RMI)、浆料浸渍热压法(SIHP)、前驱体浸渍热解法(PIP)、化学液气相沉积法(CLVD)以及这些工艺的复合方法等。这些方法都是首先制备碳纤维预制体,再将碳化硅基体引入到碳纤维预制体中而形成致密的复合材料。
化学气相渗透法(CVI)的主要优点包括相对较低的加工温度、纤维损伤小、基体纯度高以及可制备形状复杂的零部件;其主要缺点是残余孔隙率高(可达10%-15%)、制备时间长、成本高。
前驱体浸渍热解法(PIP)的优点主要有:工艺简单,渗透深度大,制备出的SiC基体均匀,加工温度相对较低,对碳纤维的损伤小,能够控制基体的组成,可实现复杂部件的制备,相比CVI法更经济。然而,PIP法制备的复合材料工艺周期长、孔隙率高、体积变形大、生产效率低,不利于生产应用。
反应熔体渗透法(RMI)具有制备时间短、致密度高、成本低、可制备复杂形状组件等优点,但是在基体中容易留下残余Si,残余Si与碳纤维反应会对纤维造成损伤,会降低复合材料抗氧化性和力学性能。
浆料浸渍热压法(SIHP)工艺简单、孔隙率低、成本低、接近净尺寸成型,但这种方法也存在一些不足,浆料中粉末颗粒容易发生团聚而堵塞纤维预制体外层的孔隙,高温高压烧结条件下纤维易受损伤,不适合制备复杂结构件。
化学液气相沉积法(CLVD)可以避免传统化学气相渗透法中经常出现的“表面结壳”现象,致密化效果好,基体的组成结构可设计,沉积速率相比化学气相渗透法约高出2个数量级。该工艺存在的不足之处是形状与尺寸相差较大的预制体需要不同大小的感应线圈和发热体,并且预制体的半径应足够大以便产生一定的热梯度,另外设备要保证能提供较大的功率。
这些生产工艺不仅步骤繁琐,对设备要求较高,而且在生成过程会排放一些污染物,能耗较高,不符合绿色发展的要求。
发明内容
本发明的目的在于提供一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法,可实现复合材料的高效绿色制备,以解决现有的制备方法制备碳纤维增强碳化硅陶瓷基复合材料时存在的工艺复杂、生产周期长、烧结温度高、污染严重以及能源消耗大的问题。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,包括下列步骤:
1)将SiC粉料、烧结助剂、粘结剂及催化剂进行球磨混合,得到混合料;
2)将混合料压制成型,得到生胚;
3)将生胚进行分段烧结,制备得到碳纤维增强碳化硅陶瓷基复合材料。
优选的,所述烧结助剂包含SiO2、MgO、Al2O3和Y2O3中的任意一种或多种;所述粘结剂包含包含聚乙二醇、乙醇、聚乙烯醇和羧甲基纤维素的任意一种或多种;所述催化剂包含Fe/Ni合金粉。
优选的,所述Fe/Ni合金粉中,Fe和Ni的质量比例为5:0.5~1。
优选的,所述SiC粉料、烧结助剂、粘结剂及催化剂的质量比为90~98:1~5:0.5~3:1~3。
优选的,所述SiC粉料的的粒径为80~120目。
优选的,步骤1)所述球磨的条件为,球料比为1:2~5,转速为100~300r/min,球磨时间为180~300min。
优选的,步骤2)所述成型的压力为80~120Mpa,保压时间为1~5min。
优选的,步骤3)所述的分段烧结包括以下两个阶段:第一个阶段以3~5℃/min的升温速率加热至1000~1200℃,保温0.5~2h;第二个阶段以3~5℃/min的升温速率加热至1400~1600℃,保温1~3h。
优选的,步骤3)所述分段烧结的环境为真空环境,真空度为5~20Pa。
本发明的另一目的是提供一种由所述制备方法制备得到的原位生成碳纤维增强碳化硅陶瓷基复合材料。
本发明与现有技术相比,具有以下有益效果:
本发明的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,使用一次烧结即可完成,胚料压制成型后,在1000~1200℃温度下会原位生成碳纤维,随着烧结温度的升高,金属催化剂会形成蒸汽挥发,同时SiC基体在烧结助剂的作用下实现致密化。
本发明的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,将压制成型的生坯,放入真空炉中,在真空环境下采用两段式升温进行烧结。第一阶段在催化剂的作用下,部分碳化硅分解原位生成碳纤维,不仅避免了常规工艺中制备碳纤维预制体容易损伤的问题,而且生成的碳纤维与SiC具有良好的接触界面,进一步提高了材料的强度和韧性。而且原位生成的碳纤维的数量和直径可通过工艺控制,调整催化剂的加入量和保温时间即可得到不同形貌的碳纤维。第二阶段升温到1400~1600℃进行保温,根据烧结助剂的不同而选择不同的温度,该阶段使SiC基体快速致密化,而且在第一阶段反应过程中产生的缺陷会得到显著改善,使材料的最终性能得到改善。使用该工艺所得碳纤维增强碳化硅陶瓷基复合材料体积密度为2.98g/cm3,抗折强度为532MPa,制备周期短,烧结温度低,而且碳纤维直径可控,从纳米级到微米级都可制备;制备工艺简单,不需要使用碳纤维制备预制体,一次烧结即可制备完成,适用性广,操作方便,适合工业化快速生产,而且材料制备和烧结过程中无任何污染排放,烧结温度低,时间短,能耗低,具有广阔的应用前景。
附图说明
图1为实施例1所得碳纤维增强碳化硅陶瓷基复合材料断口SEM图;
图2为实施例3所得碳纤维增强碳化硅陶瓷基复合材料的SEM图;
图3为实施例3所得碳纤维增强碳化硅陶瓷基复合材料的碳纤维SEM图;
图4为实施例1所得碳纤维增强碳化硅陶瓷基复合材料中碳纤维的TEM图(100nm)。
图5为实施例1所得碳纤维增强碳化硅陶瓷基复合材料中碳纤维的TEM图(50nm)。
具体实施方式
本发明提供了一种原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,包括下列步骤:
1)将SiC粉料、烧结助剂、粘结剂及催化剂进行球磨混合,得到混合料;
2)将混合料压制成型,得到生胚;
3)将生胚进行分段烧结,制备得到碳纤维增强碳化硅陶瓷基复合材料。
在本发明中,所述烧结助剂包含SiO2、MgO、Al2O3和Y2O3中的任意一种或多种;所述粘结剂包含聚乙二醇、乙醇、聚乙烯醇和羧甲基纤维素的任意一种或几种;所述催化剂优选为Fe/Ni合金粉。
在本发明中,所述Fe/Ni合金粉中,Fe和Ni的质量比例优选为5:0.5~1,进一步优选为5:0.6~0.9,更优选为5:0.8。
在本发明中,所述SiC粉料、烧结助剂、粘结剂及催化剂的质量比优选为:90~98:1~5:0.5~3:1~3,进一步优选为93~97:2~5:0.5~2:1~2.5,更优选为93~95:2~4:1~1.5:1.5~2。
在本发明中,所述SiC粉料的的粒径优选为80~120目,优选为90~110目,更优选为100目。
在本发明中,步骤1)所述球磨的条件为,球料比优选为1:2~5,进一步优选为1:2~4,更优选为1:2.5~3.5;转速优选为100~300r/min,进一步优选为150~300r/min,更优选为200~300r/min;球磨时间优选为180~300min,进一步优选为200~300min,更优选为240~280min。
在本发明中,步骤2)所述成型的压力优选为80~120Mpa,进一步优选为90~110Mpa,更优选为95~100Mpa;保压时间优选为1~5min,进一步优选为1.5~4min,更优选为2~3min。
在本发明中,步骤3)所述的分段烧结包含两个阶段。
在本发明中,第一个阶段的升温速率优选为3~5℃/min,进一步优选为4~5℃/min,更优选为4℃/min;优选升温至1000~1200℃,进一步优选为1050~1150℃,更优选为1100~1150℃;保温时间优选为0.5~2h,进一步优选为1~1.5h,更优选为1~1.2h。
在本发明中,第二个阶段的升温速率优选为3~5℃/min,进一步优选为4~5℃/min,更优选为4℃/min;优选升温至1400~1600℃,进一步优选为1450~1550℃,更优选为1500~1550℃;保温时间优选为1~3h,进一步优选为1.5~2.5h,更优选为1.5~2h。
在本发明中,步骤3)所述分段烧结的环境为真空环境,真空度优选为5~20Pa,进一步优选为8~15Pa,更优选为10Pa。
在本发明中,碳纤维是在烧结过程中原位生成的,不需要使用碳纤维制备预制体。
在本发明中,烧结过程中原位生成的碳纤维的直径在10nm-16μm范围内可控,能够根据材料适用场景需求进行调整。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
1)取SiC粉料97g(粒径为80目),SiO23 g,乙二醇2g及Fe/Ni催化剂3g(Fe/Ni的比例为5:0.5),进行球磨混合,球料比为1:5,转速为300r/min,球磨时间为300min;将混合料用压片机压制成型,成型的压力为120Mpa,保压时间为1min。;
2)将压好的生胚放入到真空炉中,抽真空至10Pa,然后开始加热,以3℃/min的速率从室温加热至1000℃,保温0.5h,然后再以3℃/min的速率升温至烧结温度1400℃,保温1h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为20nm,体积密度3.02g/cm3,抗折强度为502MPa。
图1为实施例1所得碳纤维增强碳化硅陶瓷基复合材料断口SEM图,在断口处可观察到生成的碳纤维,断口存在一些孔洞,碳纤维的存在使得SiC陶瓷由传统的脆性断口转变为韧性断口,断口变得参差交错,可以显著提高SiC复合陶瓷的抗折强度。图4和5为实施例1所得碳纤维增强碳化硅陶瓷基复合材料中碳纤维的TEM图,从图中可以看出生成碳纤维的直径在100nm左右,碳纤维的直径可控。
实施例2
本实施例的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,包括下列步骤:
1)取SiC粉料95g(粒径为80目),Al2O35 g,乙醇2g及Fe/Ni催化剂2.5g(Fe/Ni的比例为5:1),进行球磨混合,球料比为1:4,转速为280r/min,球磨时间为270min;将混合料用压片机压制成型,成型的压力为110Mpa,保压时间为2min。
2)将压好的生胚放入到真空炉中,抽真空至10Pa,然后开始加热,以3℃/min的速率从室温加热至1000℃,保温1h,然后再以3℃/min的速率升温至烧结温度1450℃,保温2h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为100nm,体积密度为2.99g/cm3,抗折强度为516MPa。
实施例3
本实施例的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,包括下列步骤:
1)取SiC粉料96g(粒径为100目),MgO 4g,乙二醇3g及Fe/Ni催化剂2g(Fe/Ni的比例为5:1),进行球磨混合,球料比为1:3,转速为250r/min,球磨时间为240min;将混合料用压片机压制成型,成型的压力为100Mpa,保压时间为3min。
2)将压好的生胚放入到真空炉中,抽真空至5Pa,然后开始加热,以3℃/min的速率从室温加热至1100℃,保温1h,然后再以3℃/min的速率升温至烧结温度1480℃,保温2.5h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为10μm,体积密度为2.98g/cm3,抗折强度为532MPa。
图2为实施例3所得碳纤维增强碳化硅陶瓷基复合材料的SEM图,从图中可以看到,SiC基体中分布着生成的碳纤维,两者之间界面接触良好,而且基体相对致密;图3为实施例3所得碳纤维增强碳化硅陶瓷基复合材料的碳纤维SEM图,在该条件下碳纤维的直径可以长到十微米。
实施例4
1)取SiC粉料94g(粒径为100目),Al2O3/Y2O3混合料2g(Al2O3/Y2O3的比例为10:1),羧甲基纤维素3g及Fe/Ni催化剂1.5g(Fe/Ni的比例为5:1),进行球磨混合,球料比为1:2;转速为200r/min,球磨时间为210min;将混合料用压片机压制成型,成型的压力为90Mpa,保压时间为4min。
2)将压好的生胚放入到真空炉中,抽真空至10Pa,然后开始加热,以3℃/min的速率从室温加热至1100℃,保温1.2h,然后再以3℃/min的速率升温至烧结温度1500℃,保温1.5h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为12μm,体积密度为2.78g/cm3,抗折强度为523MPa。
实施例5
1)取SiC粉料95g(粒径为110目),MgO/Y2O3混合料5g(MgO/Y2O3的比例为5:1),聚乙烯醇3g及Fe/Ni催化剂1g(Fe/Ni的比例为5:1),进行球磨混合,球料比为1:3;转速为150r/min,球磨时间为180min;将混合料用压片机压制成型,成型的压力为100Mpa,保压时间为3min。
2)将压好的生胚放入到真空炉中,抽真空至15Pa,然后开始加热,以4℃/min的速率从室温加热至1200℃,保温2h,然后再以4℃/min的速率升温至烧结温度1540℃,保温3h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为16μm,体积密度为2.73g/cm3,抗折强度为486MPa。
实施例6
1)取SiC粉料98g(粒径为120目),Al2O3/MgO/Y2O3混合料5g(Al2O3/MgO/Y2O3的比例为4:4:1),羧甲基纤维素/乙醇3g(羧甲基纤维素/乙醇比例为1:9),Fe/Ni催化剂1.5g(Fe/Ni的比例为5:0.8),进行球磨混合,球料比为1:3;转速为100r/min,球磨时间为240min;将混合料用压片机压制成型,成型的压力为100Mpa,保压时间为3min。
2)将压好的生胚放入到真空炉中,抽真空至20Pa,然后开始加热,以5℃/min的速率从室温加热至1100℃,保温1.5h,然后再以5℃/min的速率升温至烧结温度1600℃,保温2h,关闭电源,自然冷却至室温,即得所述碳纤维增强碳化硅陶瓷基复合材料。
本实施例所得碳纤维增强碳化硅陶瓷基复合材料碳纤维的直径为10μm,体积密度2.97g/cm3,抗折强度为518MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,包括下列步骤:
1)将SiC粉料、烧结助剂、粘结剂及催化剂进行球磨混合,得到混合料;
2)将混合料压制成型,得到生胚;
3)将生胚进行分段烧结,制备得到碳纤维增强碳化硅陶瓷基复合材料。
2.根据权利要求1所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,所述烧结助剂包含SiO2、MgO、Al2O3和Y2O3中的任意一种或多种;所述粘结剂包含聚乙二醇、乙醇、聚乙烯醇和羧甲基纤维素的任意一种或多种;所述催化剂包含Fe/Ni合金粉。
3.根据权利要求2所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,所述Fe/Ni合金粉中,Fe和Ni的质量比例为5:0.5~1。
4.根据权利要求3所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,所述SiC粉料、烧结助剂、粘结剂及催化剂的质量比为:90~98:1~5:0.5~3:1~3。
5.根据权利要求4所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,所述SiC粉料的的粒径为80~120目。
6.根据权利要求1、2、4或5所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,步骤1)所述球磨的条件为,球料比为1:2~5,转速为100~300r/min,球磨时间为180~300min。
7.根据权利要求6所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,步骤2)所述成型的压力为80~120Mpa,保压时间为1~5min。
8.根据权利要求1、2、4、5或7所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,步骤3)所述的分段烧结包含以下两个阶段:第一个阶段以3~5℃/min的升温速率加热至1000~1200℃,保温0.5~2h;第二个阶段以3~5℃/min的升温速率加热至1400~1600℃,保温1~3h。
9.根据权利要求8所述的原位生成碳纤维增强碳化硅陶瓷基复合材料的制备方法,其特征在于,步骤3)所述分段烧结的环境为真空环境,真空度为5~20Pa。
10.权利要求1~9任一项所述的制备方法制备得到的原位生成碳纤维增强碳化硅陶瓷基复合材料。
CN202211271308.0A 2022-10-18 2022-10-18 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法 Active CN115594513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211271308.0A CN115594513B (zh) 2022-10-18 2022-10-18 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211271308.0A CN115594513B (zh) 2022-10-18 2022-10-18 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115594513A true CN115594513A (zh) 2023-01-13
CN115594513B CN115594513B (zh) 2023-04-28

Family

ID=84847139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211271308.0A Active CN115594513B (zh) 2022-10-18 2022-10-18 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115594513B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388778A (ja) * 1988-12-27 1991-04-15 Ube Ind Ltd 炭素系無機繊維強化セラミックス複合材料
JP2007146316A (ja) * 2005-11-25 2007-06-14 Bussan Nanotech Research Institute Inc 気相法炭素繊維の製造方法
CN101659563A (zh) * 2009-09-22 2010-03-03 西北工业大学 一种由炭晶须和炭纤维双增强的炭/炭复合材料的制备方法
CN103073320A (zh) * 2013-01-16 2013-05-01 郑州大学 一种ZrB2-SiC(w)陶瓷原料的制备方法
KR101334736B1 (ko) * 2012-10-09 2013-12-05 한국에너지기술연구원 탄소 섬유 강화 탄화규소 복합소재 및 이의 제조 방법
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN107010982A (zh) * 2017-05-09 2017-08-04 哈尔滨工业大学 组分高度均匀的碳纤维增韧碳化硅复合材料的制备方法
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN109126846A (zh) * 2018-08-15 2019-01-04 华南农业大学 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用
CN112521172A (zh) * 2020-12-04 2021-03-19 拓米(成都)应用技术研究院有限公司 一种原位生长碳纤维的复合炭素材料及其制备方法和应用
US20210114940A1 (en) * 2019-10-16 2021-04-22 Northwestern Polytechnical University Process for the preparation of a ceramic nanowire preform

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388778A (ja) * 1988-12-27 1991-04-15 Ube Ind Ltd 炭素系無機繊維強化セラミックス複合材料
JP2007146316A (ja) * 2005-11-25 2007-06-14 Bussan Nanotech Research Institute Inc 気相法炭素繊維の製造方法
CN101659563A (zh) * 2009-09-22 2010-03-03 西北工业大学 一种由炭晶须和炭纤维双增强的炭/炭复合材料的制备方法
KR101334736B1 (ko) * 2012-10-09 2013-12-05 한국에너지기술연구원 탄소 섬유 강화 탄화규소 복합소재 및 이의 제조 방법
CN103073320A (zh) * 2013-01-16 2013-05-01 郑州大学 一种ZrB2-SiC(w)陶瓷原料的制备方法
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN107010982A (zh) * 2017-05-09 2017-08-04 哈尔滨工业大学 组分高度均匀的碳纤维增韧碳化硅复合材料的制备方法
CN107903067A (zh) * 2017-12-01 2018-04-13 苏州宏久航空防热材料科技有限公司 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN109126846A (zh) * 2018-08-15 2019-01-04 华南农业大学 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用
US20210114940A1 (en) * 2019-10-16 2021-04-22 Northwestern Polytechnical University Process for the preparation of a ceramic nanowire preform
CN112521172A (zh) * 2020-12-04 2021-03-19 拓米(成都)应用技术研究院有限公司 一种原位生长碳纤维的复合炭素材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115594513B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
GB2539861B (en) Method for reinforcing metal material by means of graphene
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN109439940B (zh) 一种大气气氛下热压烧结制备颗粒增强铝基复合材料的方法
CN110655407A (zh) 一种电阻可控碳化硅陶瓷的制备方法
CN105503227B (zh) 一种立体织物增强碳化硅‑金刚石复合材料的制备方法
CN104313380A (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN107602131B (zh) 一种碳化硅复相陶瓷
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN111848196B (zh) 一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN105000889B (zh) 一种前驱体转化法制备含铁硅碳氮陶瓷的方法
CN115677364A (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
EP1761474A1 (en) Process for manufacturing high density boron carbide
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN108178636A (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
CN115594513B (zh) 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法
CN111747748A (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN108218436B (zh) 一种降低ZrB2-SiC陶瓷材料烧结温度的方法
CN115894082A (zh) 一种(ZrHfTiTaNb)C-W金属高熵陶瓷改性C/C复合材料及其制备方法
CN108658589A (zh) 亚微晶氧化铝陶瓷刀具基体材料的制备方法
CN106673661A (zh) 一种厚板碳化硅陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant