CN109126846A - 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用 - Google Patents

一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN109126846A
CN109126846A CN201810930644.9A CN201810930644A CN109126846A CN 109126846 A CN109126846 A CN 109126846A CN 201810930644 A CN201810930644 A CN 201810930644A CN 109126846 A CN109126846 A CN 109126846A
Authority
CN
China
Prior art keywords
carbon fiber
fiber reinforced
reinforced polymers
preparation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810930644.9A
Other languages
English (en)
Other versions
CN109126846B (zh
Inventor
方岳平
周训富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201810930644.9A priority Critical patent/CN109126846B/zh
Publication of CN109126846A publication Critical patent/CN109126846A/zh
Application granted granted Critical
Publication of CN109126846B publication Critical patent/CN109126846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用,属于纳米材料制备技术领域。本发明以碳纤维布作为基体,在碳纤维上负载金属镍作为催化剂,微米硅作为硅源,在高温下利用镍作为催化剂,通过气‑液‑固生长过程在碳纤维上原位生长了SiC纳米线,制备得到SiC纳米线/碳纤维布复合材料并应用为光催化分解水制氢的催化剂。本发明实现了SiC纳米线在碳纤维布材料表面的生长;通过调控催化剂镍的含量,可优化和调控复合光催化剂的催化的形貌与性能;工艺简单可控,具有较好的可重复性。本发明所合成复合材料的纯度较高,表现出优异的光催化性能,且光催化分解水制氢性能稳定。

Description

一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种碳化硅(SiC)纳米线/碳纤维布复合材料及其制备方法与应用。
背景技术
多相光催化技术是解决当今能源与环境问题的有效途径。因此,光催化分解水制氢的研究受到越来越多的重视。3C-SiC是一种非常重要的非金属氧化物半导体,它的禁带宽约2.4eV,导带电位相对较负,高热导率,能够在可见光的照射下分解水制氢。而且,SiC的原料非常丰富,且对环境友好,这让它更具大规模应用的前景。然而,因为SiC容易发生自身光腐蚀以及本身较快的电子-空穴复合速率,SiC的光催化效率一直不高,关于SiC粉末光催化分解水的报道仍然很少。科学家提出了各种办法来提高SiC的光催化效率。其中一条有效的缓解途径是构造纳米结构的SiC晶体,包括量子点,纳米颗粒,纳米线,空心球等低维纳米结构。另外一条有效的途径是引入其他半导体或者导电材料与SiC结合形成半导体异质结等复合光催化材料。已经报道过的SiC异质结光催化分解水催化剂包括SiC/TiO2,SiC/MoS2与SiC/CdS等。
众所周知,碳材料能够对半导体的光催化效果产生有益的影响。碳材料具有许多独特的性能,包括大的电子储存容量,高的电子导电性,高的化学稳定性,出色的机械强度。因此,能作为一个载体,促进半导体中电子与空穴的分离。更有趣的是,碳材料能够作为制备SiC的碳源。
申请公开号为CN 102936350 A的中国专利利用硅粉、碳布,酚醛树脂、乙醇、乙二醇为原料。将在树脂溶液中浸泡过的碳布、硅粉、乙二醇置入UVave-1000型微波紫外超声合成仪中,控制反应温度、时间、紫外光催化时间,可以获得碳化硅和树脂均匀渗入碳布纤维与纤维之间以及纤维表面的复合摩擦材料。申请公开号为CN 103320092 A的中国专利利用以碳布、纳米碳化硅和改性酚醛树脂为原料,将纳米SiC和改性酚醛树脂按照一定的比例溶于无水乙醇溶液中,并加入硅烷偶联剂,磁力搅拌获得均匀分散的悬浮液;将预处理过的碳布浸入其中1~1.5小时,自然晾干后,采用硫化机热压成型得到纳米碳化硅改性碳布湿式摩擦材料。申请公开号为CN103061112A的中国专利文献公开一种碳化硅和碳纳米管的复合材料及其制备方法,它是以碳纳米管和含硅前驱体为原料,通过化学气相沉积热解含硅前驱体,将碳化硅沉积于碳纳米管宏观体,形成碳化硅和碳纳米管的复合材料。
由此可见,目前国内外已有不少文献与专利报道了SiC/纳米碳材料的制备,大多数合成方法主要采用在纳米碳表面高温真空气相沉积SiC层或者是在SiC基体表面原位气相沉积或热裂解形成新的碳纳米层,从而形成新的SiC/纳米碳复合材料。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种SiC纳米线/碳纤维布复合材料的制备方法。
本发明以碳纤维布作为基体,在碳纤维上负载金属镍作为催化剂,微米硅作为硅源,在高温下利用镍作为催化剂,通过气-液-固生长过程在碳纤维上原位生长了SiC纳米线,制备得到SiC纳米线/碳纤维布复合材料并应用为光催化分解水制氢的催化剂。
本发明的另一目的在于提供一种通过上述方法制备得到的SiC纳米线/碳纤维布复合材料。
本发明的再一目的在于提供上述SiC纳米线/碳纤维布复合材料作为光催化剂材料的应用。
本发明的目的通过下述技术方案实现:
一种SiC纳米线/碳纤维布复合材料的制备方法,包括如下制备步骤:
(1)碳纤维布预处理:将碳纤维布分别用丙酮洗,乙醇洗,然后用硝酸浸泡;
(2)负载金属镍:将硝酸处理后的碳纤维布浸没到硝酸镍溶液中2~8小时(优选为4小时),将碳纤维布用镊子夹起来,待碳纤维布吸附的溶液不再滴下来,将碳纤维布烘干,得到负载有金属镍的碳纤维布,待用;
(3)碳化硅(SiC)纳米线/碳纤维布复合材料制备(催化生长:V-L-S反应机理):在瓷舟底部放置过量硅粉,铺满整个底部,然后将负载有金属镍的碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,然后通氩气保护,升温到1130~1400℃,保温,自然降温到室温,取出样品,用过量的氢氟酸浸泡1~3天(优选为2天),烘干,得到SiC纳米线/碳纤维布复合材料。
优选地,步骤(1)中所述的硝酸的浓度为3.0mol/L。
优选地,步骤(1)中所述的浸泡的时间为4~12小时,更优选为8个小时。
优选地,步骤(2)中所述的硝酸镍溶液的浓度为0.44~1.32mol/L;更优选为0.88~1.32mol/L;
优选地,步骤(3)中所述的硅粉粒度为40~200目。
优选地,步骤(3)中所述的硅与碳质量比大于等于2,更优选为4。
优选地,步骤(3)中所述的氩气流量为50~300mL/min。
更优选地,步骤(3)中所述的氩气流量为100~250mL/min。
优选地,步骤(3)中所述的保温的时间为2~8小时,更优选为4小时;
优选地,步骤(3)中所述的保温是以3℃/min升温到1320℃保温4h。
优选地,步骤(3)中所述的氢氟酸浓度为2wt%。
一种SiC纳米线/碳纤维布复合材料,通过上述制备方法制备得到。
上述SiC纳米线/碳纤维布复合材料作为光催化材料的应用。
具体的,所述的SiC纳米线/碳纤维布复合材料在光催化分解水制氢中的应用。
本发明的原理为:为了阐明SiC/CNTs的形成机理,我们借助于几个主要的化学反应。Si的熔点与升华温度分别是1420℃与1127℃。因此,在氩气气氛下,加热碳纤维布与Si粉的混合物到1130~1400℃,Si升华得到蒸气与CNTs表面的固体碳层反应生成SiC,实验中用到的氩气中含有10ppm的氧气,这部分氧气能能够与碳,硅反应生成CO气体与SiO气体,同时,Ni与SiO(g)形成纳米尺度的合金液滴,更重要的是,Si(g)也与Ni形成纳米尺度的合金液滴,合金液滴与CO气体结合得到Si-C-Ni液滴,反应过程中SiO和CO在合金液滴中的浓度在不断增加,并发生反应生成Si和C。当Si和C在合金相中的浓度达到过饱和时,SiC就从合金相中析出来析出来的碳化硅沿生长点不断增长,最终形成SiC纳米线。相比于纯SiC材料而言,SiC纳米线与碳纤维布复合结构具有更稳定的导电网络结构,因此,SiC纳米线/碳纤维布复合材料具有优良的光电催化性能。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明实现了SiC纳米线在碳纤维布材料表面的生长。
(2)本发明通过调控催化剂镍的含量,可以优化和调控复合光催化剂的催化的形貌与性能。
(3)本发明所合成复合材料的纯度较高,表现出优异的光催化性能,且光催化分解水制氢性能稳定。
(4)本工艺简单可控,具有较好的可重复性。
附图说明
图1是实施例1所得SiC纳米线/碳纤维布复合材料的扫描电镜图(SEM)。
图2是实施例2所得SiC纳米线/碳纤维布复合材料的扫描电镜图(SEM)。
图3是实施例3所得SiC纳米线/碳纤维布复合材料的热重曲线图(TG)。
图4是实施例3所得SiC纳米线/碳纤维布复合材料的粉末衍射图(XRD)。
图5是实施例3所得SiC纳米线/碳纤维布复合材料光催化剂的光催化分解水制氢性能图。
图6是对比例所得SiC纳米颗粒/碳纤维布复合材料的扫描电镜图(SEM)。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种SiC纳米线/碳纤维布复合材料的制备方法,具体制备步骤如下:
碳纤维布预处理:
将碳纤维布丙酮洗,乙醇洗,3M硝酸浸泡八个小时。
负载金属镍(2wt%):
将酸处理后的碳纤维布浸没到0.44mol/L(2wt%)的硝酸镍溶液中4小时,将碳纤维布用镊子夹起来,待碳纤维布吸附的溶液不再滴下来,将碳纤维布烘干,得到负载有金属镍的碳纤维布,待用。(计算依据:碳纤维布0.2346g,加水之后是0.4170g,碳纤维布吸水量为0.7775g/g,即0.7775mL/g)。
碳化硅(SiC)纳米线/碳纤维布复合材料制备(催化生长:V-L-S反应机理):
在瓷舟底部放置过量硅粉(硅粉:40~200目),铺满整个底部(按照Si:C质量比4:1),然后将负载有金属镍的碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,抽真空,充氩气,反复三次(抽真空,充氩气过程要缓慢)。然后保持氩气流速100mL/min,以3℃每分钟升温到1320℃,保温4小时,自然降温到室温,取出样品,用过量的2%氢氟酸浸泡2天,烘干,得到SiC纳米线/碳纤维布复合材料。
本实施例所得SiC纳米线/碳纤维布复合材料的SEM图如图1所示。从图1可知,说明SiC纳米线生长在碳纤维布表面。
本实施例所得SiC纳米线/碳纤维布复合材料的光催化产氢性能为68.5μmol h-1g-1
实施例2
本实施例的一种SiC纳米线/碳纤维布复合材料的制备方法,具体制备步骤如下:
碳纤维布预处理:
将碳纤维布丙酮洗,乙醇洗,3M硝酸浸泡八个小时。
负载金属镍(4wt%):
将酸处理后的碳纤维布浸没到0.88mol/L(4wt%)的硝酸镍溶液中4小时,将碳纤维布用镊子夹起来,待碳纤维布吸附的溶液不再滴下来,将碳纤维布烘干,得到负载有金属镍的碳纤维布,待用。(计算依据同实施例1)。
碳化硅(SiC)纳米线/碳纤维布复合材料制备(催化生长:V-L-S反应机理):
在瓷舟底部放置过量硅粉(硅粉:40~200目),铺满整个底部(按照Si:C质量比4:1),然后将负载有金属镍的碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,抽真空,充氩气,反复三次(抽真空,充氩气过程要缓慢)。然后保持氩气流速200mL/min,以3℃每分钟升温到1320℃,保温4小时,自然降温到室温,取出样品,用过量的2%氢氟酸浸泡2天,烘干,得到SiC纳米线/碳纤维布复合材料。
本实施例所得SiC纳米线/碳纤维布复合材料的SEM图如图2所示。从图2可知,说明SiC纳米线生长在碳纤维布表面。
本实施例所得SiC纳米线/碳纤维布复合材料的光催化产氢性能为为98.5μmol h- 1g-1
实施例3
本实施例的一种SiC纳米线/碳纤维布复合材料的制备方法,具体制备步骤如下:
碳纤维布预处理:
将碳纤维布丙酮洗,乙醇洗,3M硝酸浸泡八个小时。
负载金属镍(6wt%):
将酸处理后的碳纤维布浸没到1.32mol/L(6wt%)的硝酸镍溶液中4小时,将碳纤维布用镊子夹起来,待碳纤维布吸附的溶液不再滴下来,将碳纤维布烘干,得到负载有金属镍的碳纤维布,待用。(计算依据同实施例1)。
碳化硅(SiC)纳米线/碳纤维布复合材料制备(催化生长:V-L-S反应机理):
在瓷舟底部放置过量硅粉(硅粉:40~200目),铺满整个底部(按照Si:C质量比4:1),然后将负载有金属镍的碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,抽真空,充氩气,反复三次(抽真空,充氩气过程要缓慢)。然后保持氩气流速250mL/min,以3℃每分钟升温到1320℃,保温4小时,自然降温到室温,取出样品,用过量的2%氢氟酸浸泡2天,烘干,得到SiC纳米线/碳纤维布复合材料。
本实施例所得SiC纳米线/碳纤维布复合材料的热重曲线图如图3所示。热重测试表明,SiC纳米线/碳纤维布复合材料中碳纤维布的含量约为35wt%。
本实施例所得SiC纳米线/碳纤维布复合材料的粉末衍射图(XRD)如图4所示。图4的XRD测试结果表明复合材料中同时含有碳化硅纳米线与与碳纤维。
本实施例所得SiC纳米线/碳纤维布复合材料的光催化产氢性能为128.3μmol h- 1g-1。光催化分解水制氢性能图,如图5所示。
光催化产氢性能的测试条件:将15mg SiC纳米线/碳纤维布复合材料放置到100mL0.1mol/L的Na2S溶液中,然后利用300W氙灯光照,用模拟太阳光的滤光片进行滤光。
对比例
本实施例的一种SiC纳米颗粒/碳纤维布复合材料的制备方法,具体制备步骤如下:
碳纤维布预处理:
将碳纤维布丙酮洗,乙醇洗,3M硝酸浸泡八个小时。
碳化硅(SiC)纳米颗粒/碳纤维布复合材料制备(催化生长:V-L-S反应机理):
在瓷舟底部放置过量硅粉(硅粉:40~200目),铺满整个底部(按照Si:C质量比4:1),然后将碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,抽真空,充氩气,反复三次(抽真空,充氩气过程要缓慢)。然后保持氩气流速250mL/min,以3℃每分钟升温到1320℃,保温4小时,自然降温到室温,取出样品,用过量的2%氢氟酸浸泡2天,烘干,得到SiC纳米颗粒/碳纤维布复合材料。
本实施例所得SiC纳米颗粒/碳纤维布复合材料的SEM图如图6所示,因为没有镍催化剂,所以没有SiC纳米线生成,只有SiC纳米颗粒生成。
本实施例所得SiC纳米颗粒/碳纤维布复合材料的光催化产氢性能为45μmol h-1g-1
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种SiC纳米线/碳纤维布复合材料的制备方法,其特征在于包括如下制备步骤:
(1)碳纤维布预处理:将碳纤维布分别用丙酮洗,乙醇洗,然后用硝酸浸泡;
(2)负载金属镍:将硝酸处理后的碳纤维布浸没到硝酸镍溶液中2~8小时,将碳纤维布夹起来,待碳纤维布吸附的溶液不再滴下来,将碳纤维布烘干,得到负载有金属镍的碳纤维布,待用;
(3)SiC纳米线/碳纤维布复合材料制备:在瓷舟底部放置过量硅粉,铺满整个底部,然后将负载有金属镍的碳纤维布放置在硅粉上面,然后再在碳纤维布上覆盖一层硅粉,将瓷舟放置在管式炉中,然后通氩气保护,升温到1130~1400℃,保温,自然降温到室温,取出样品,用过量的氢氟酸浸泡1~3天,烘干,得到SiC纳米线/碳纤维布复合材料。
2.根据权利要求1所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(1)中所述的硝酸的浓度为3.0mol/L;
步骤(1)中所述的浸泡的时间为4~12小时。
3.根据权利要求1所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(2)中所述的硝酸镍溶液的浓度为0.44~1.32mol/L。
4.根据权利要求1所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(3)中所述的硅与碳质量比大于等于2;
步骤(3)中所述的氩气流量为50~300mL/min。
5.根据权利要求1或4所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(3)中所述的硅粉粒度为40~200目;
步骤(3)中所述的氩气流量为100~250mL/min。
6.根据权利要求1所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(3)中所述的保温的时间为2~8小时。
7.根据权利要求1所述的SiC纳米线/碳纤维布复合材料的制备方法,其特征在于:
步骤(3)中所述的保温是以3℃/min升温到1320℃保温4h;
步骤(3)中所述的氢氟酸浓度为2wt%。
8.一种SiC纳米线/碳纤维布复合材料,其特征在于通过权利要求1~7任一项所述的制备方法制备得到。
9.权利要求8所述的SiC纳米线/碳纤维布复合材料在作为光催化材料中的应用。
10.根据权利要求9所述的应用,其特征在于:
所述的SiC纳米线/碳纤维布复合材料在光催化分解水制氢中的应用。
CN201810930644.9A 2018-08-15 2018-08-15 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用 Active CN109126846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810930644.9A CN109126846B (zh) 2018-08-15 2018-08-15 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810930644.9A CN109126846B (zh) 2018-08-15 2018-08-15 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109126846A true CN109126846A (zh) 2019-01-04
CN109126846B CN109126846B (zh) 2020-07-03

Family

ID=64789747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810930644.9A Active CN109126846B (zh) 2018-08-15 2018-08-15 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109126846B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004523A (zh) * 2019-04-23 2019-07-12 陕西科技大学 一种柔性碳化硅/碳纳米纤维复合纤维膜材料及其制备方法和应用
CN110042408A (zh) * 2019-04-23 2019-07-23 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN112553547A (zh) * 2020-12-07 2021-03-26 深圳市博迪科技开发有限公司 一种高导热金属基碳纤维发热体材料的制备方法
CN114870875A (zh) * 2022-05-23 2022-08-09 陕西科技大学 一种高催化活性Cf/SiC/Ni复合材料及其制备方法和应用
CN115594513A (zh) * 2022-10-18 2023-01-13 郑州大学(Cn) 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221154B1 (en) * 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
CN102828249A (zh) * 2012-04-27 2012-12-19 中国人民解放军第二炮兵工程学院 一种在柔性碳纤维衬底上制备单晶碳化硅纳米线的方法
US20140194278A1 (en) * 2013-01-10 2014-07-10 Korea Institute Of Science And Technology Porous silicon carbide nanocomposite structure comprising nanowires and method of preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221154B1 (en) * 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
CN102828249A (zh) * 2012-04-27 2012-12-19 中国人民解放军第二炮兵工程学院 一种在柔性碳纤维衬底上制备单晶碳化硅纳米线的方法
US20140194278A1 (en) * 2013-01-10 2014-07-10 Korea Institute Of Science And Technology Porous silicon carbide nanocomposite structure comprising nanowires and method of preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BING WANG等: "Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production", 《NANO RESEARCH》 *
MIN JIANG等: "Facile fabrication and efficient photoelectrochemical water-splitting activity of electrodeposited nickel SiC nanowires composite electrode", 《CATALYSIS COMMUNICATIONS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004523A (zh) * 2019-04-23 2019-07-12 陕西科技大学 一种柔性碳化硅/碳纳米纤维复合纤维膜材料及其制备方法和应用
CN110042408A (zh) * 2019-04-23 2019-07-23 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN110042408B (zh) * 2019-04-23 2021-04-16 陕西科技大学 一种Ni/SiCNWs/CNFs柔性复合电极材料及其制备方法和应用
CN110004523B (zh) * 2019-04-23 2022-03-29 陕西科技大学 一种柔性碳化硅/碳纳米纤维复合纤维膜材料及其制备方法和应用
CN112553547A (zh) * 2020-12-07 2021-03-26 深圳市博迪科技开发有限公司 一种高导热金属基碳纤维发热体材料的制备方法
CN114870875A (zh) * 2022-05-23 2022-08-09 陕西科技大学 一种高催化活性Cf/SiC/Ni复合材料及其制备方法和应用
CN115594513A (zh) * 2022-10-18 2023-01-13 郑州大学(Cn) 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法

Also Published As

Publication number Publication date
CN109126846B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109126846A (zh) 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用
Prasad et al. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review
Wang et al. An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications
Zhou et al. Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H 2 evolution under visible light irradiation
CN102886270B (zh) SiC纳米晶/石墨烯异质结及制备方法和应用
Fung et al. Recent progress in two-dimensional nanomaterials for photocatalytic carbon dioxide transformation into solar fuels
CN105396606B (zh) 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法
Bie et al. Graphdiyne-based photocatalysts for solar fuel production
Zhang et al. g‐C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction
Ping et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
CN110255626B (zh) 基于气相沉积制备表面活性洋葱状碳纳米球的方法
Liu Controllable ZnO nanorod arrays@ carbon fibers composites: towards advanced CO2 photocatalytic reduction catalysts
CN109663611B (zh) 一种单层氮化碳复合铁酸锌z型催化剂的制备方法及其固氮应用
CN103878006B (zh) 一种碳化硅/碳纳米材料复合可见光光催化剂的制备方法
CN108435228A (zh) 一种基于硬模板法制备g-C3N4纳米管的工艺
CN110148760A (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
CN110639595A (zh) 纳米金刚石基高活性光解水制氢复合光催化剂、制备方法及其应用
Liu et al. Fabrication of CdS-decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production
CN102553562B (zh) 多重改性复合光催化剂及其制备方法
CN111285368B (zh) 一种氮硼双掺杂多孔中空碳纳米胶囊材料的制备方法
CN106423144B (zh) 一种碳纤维@氧化钨纳米颗粒核壳复合结构及其制备方法
CN109499592B (zh) 纳米棒碳化钼/二氧化钼复合材料的制备方法
CN113856702B (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN105289660A (zh) 一种铁酸镁/硫化钼异质结纳米线的合成方法和用途
Chen et al. Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant