CN115591013A - 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用 - Google Patents

一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用 Download PDF

Info

Publication number
CN115591013A
CN115591013A CN202211263859.2A CN202211263859A CN115591013A CN 115591013 A CN115591013 A CN 115591013A CN 202211263859 A CN202211263859 A CN 202211263859A CN 115591013 A CN115591013 A CN 115591013A
Authority
CN
China
Prior art keywords
titanium alloy
metal
printing
functional layer
hydroxyapatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211263859.2A
Other languages
English (en)
Other versions
CN115591013B (zh
Inventor
陈建宇
邓飞龙
张春雨
李敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Yihe Biotechnology Co ltd
ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL
Original Assignee
Foshan Yihe Biotechnology Co ltd
ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Yihe Biotechnology Co ltd, ORAL SUBSIDIARY SUN YAT-SEN UNIVERSITY HOSPITAL filed Critical Foshan Yihe Biotechnology Co ltd
Priority to CN202211263859.2A priority Critical patent/CN115591013B/zh
Publication of CN115591013A publication Critical patent/CN115591013A/zh
Application granted granted Critical
Publication of CN115591013B publication Critical patent/CN115591013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers
    • A61L2300/61Coatings having two or more layers containing two or more active agents in different layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种金属‑陶瓷混合梯度3D打印材料及其制备方法与应用,属于医用材料技术领域。本发明提供的材料包括钛合金基体层和功能层,所述功能层中包括钛合金和羟基磷灰石;本发明提供的材料是一种微观结构不断变化的复合材料,因此,材料以及性能的逐渐转变可以在很大程度上消除宏观界面,避免常规复合材料结构中的分层问题,并且降低制造由多种材料成分的不同物理性质引起的内应力,进而提升材料中陶瓷与金属之间的结合强度、增强材料的生物相容性;同时,本发明提供的材料中能够很好的保留钛合金的优异的机械强度等性能,钛合金和羟基磷灰石的复合也能够取得优异的成骨活力;并且本发明提供的制备方法操作简单,适用于实际生产。

Description

一种金属-陶瓷混合梯度3D打印材料及其制备方法与应用
技术领域
本发明属于医用材料技术领域,尤其涉及一种金属-陶瓷混合梯度3D打印材料及其制备方法与应用。
背景技术
依托于新型金属材料和精密制造技术的飞速发展,特别是近年来快速成型技术(Rapid Prototyping,RP)的广泛应用,医学领域通过疑难病例的个性化诊断以及个体化植入体和器械的制作,极大提高了诊断设计的准确性并获得满意的临床效果和美学效果。
选择性激光熔化技术(Selective laser melting,SLM)基于快速成型的基本原理,在超高能量密度激光束的热作用下,将原料金属粉末逐层熔化-快速冷却,循环进行,层层堆积增量,最终将复杂的三维CAD模型直接加工成型。SLM技术属于“加法制造”避免了“减法制造”过程中带来的贵重金属的浪费和不必要的污染;更重要的是,SLM技术能通过金属粉末的逐层堆积从而制造出具有特定精密几何形状或复杂内部腔隙的个性化医用金属零件,摆脱了模具的约束和人员的干预,真正意义上的实现了口腔医学的数字化制造,效率成倍增加。SLM对于细小精密的个性化金属零件的制造和材料技术的创新也代表了RP技术的最新发展方向,而医用金属材料(包括纯钛、钛合金、镍铬合金,钴铬合金以及贵金属)的加工和制造作为口腔医学不可或缺的领域,也将因SLM技术的进步而产生重大的影响。就材料本身而言,传统的SLM金属3D打印技术往往打印简单的单一材料,比如用于最常用的骨植入钛金属。钛及其合金因其良好的生物相容性和优异的机械强度而被广泛用于植入材料,然而生物惰性的钛及其合金制作的种植体缺乏生物活性,与机体的骨组织结合能力不强,所以很多骨植入钛产品,例如人工骨关节,牙科种植体等,会在钛金属表层添加生物相容性更好的材料作为活性表层,以期增加材料与骨组织结合的速度和强度。而人类骨基质中最常见的无机组分羟基磷灰石(hydroxyapatite,HA)因具有优异的生物活性、生物相容性和骨传导性,已被广泛用作金属植入物的涂层材料。羟基磷灰石能提高骨植入材料表面的生物相容性。表面形貌的分析检测出一定程度的羟基磷灰石溶解/分解,钙离子释放诱导成血管,促进干细胞分化为成骨细胞。传统的在钛表面包覆羟基磷灰石的技术包括等离子喷涂法、电化学沉积法和溶胶-凝胶法等等。等离子喷涂(plasma-spray)采用空气微等离子喷涂技术,利用台式微等离子喷涂机在植入体表面喷涂HA涂层,是在钛合金表面包裹羟基磷灰石的简单又安全的方法。电化学沉积法(electrochemical deposition method)用羟基磷灰石粉和胶原蛋白制备电解质,在恒电流密度下在钛金属表面沉积薄膜。此方法成功制备出了表面沉积含有或不含胶原蛋白的羟基磷灰石薄膜的钛金属。溶胶-凝胶法(Sol-geldeposition)则是制备多孔钛基底,金属基体涂上HA浸渍涂层,在真空条件下热处理以提高涂层的附着力。机械连接和可能的化学连接使得HA涂层与Ti基底之间形成了良好的连接。此外还有热压技术(hot-pressing technique)作为传统的粉末冶金方法,过程包括混合粉末、在一个理想的模具中压制粉末并烧结。在压制的过程中,模具提升到很高的温度,称为热压技术。已有多项研究使用热压技术制备了不同体积占比的Ti-HA复合体或者钛合金-HA复合体。
但是HA一类的陶瓷材料涂层与金属基体间的结合强度较差,可能导致涂层从金属基底上分离脱落。在制造过程中,HA相的转变也可能会降低HA与金属之间的结合强度,从而导致HA的分解和涂层的分层,引起炎症反应,最终导致种植体的失败。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种具有优异的稳定性、生物相容性、机械强度以及骨结合能力的金属-陶瓷混合梯度3D打印材料及其制备方法与应用。
为实现上述目的,本发明采取的技术方案为:一种金属-陶瓷混合梯度3D打印材料,所述金属-陶瓷混合梯度3D打印材料包括钛合金基体层和功能层,所述功能层中包括钛合金和羟基磷灰石。
本发明提供的一种金属-陶瓷混合梯度3D打印材料包含钛合金基体层和包括钛合金和羟基磷灰石的功能层的双层材料,也称为功能梯度材料(functionally gradematerial,FGM),其是一种微观结构不断变化的复合材料,因此,由此材料带来的性能也会出现梯度变化,材料以及性能的逐渐转变可以在很大程度上消除宏观界面,避免常规复合材料结构中的分层问题,并且降低制造由多种材料成分的不同物理性质引起的内应力;进而提升材料中陶瓷与金属之间的结合强度、增强材料的生物相容性。
作为本发明所述金属-陶瓷混合梯度3D打印材料的优选实施方式,所述功能层包括以下质量百分数的组分:0.5-1.5%羟基磷灰石、98.5-99.5%钛合金。
虽然羟基磷灰石具有较好的生物相容性且有利于成骨活性,但是其脆性较大,过多的添加会导致制备得到的材料的机械性能变差,从而导致在较低的应力水平下就会发生断裂,不利于实际使用,因此,本发明优选功能层中羟基磷灰石的质量百分数为0.5-1.5%,在此范围内,材料具有良好的成骨活性和优异的机械性能。
作为本发明所述金属-陶瓷混合梯度3D打印材料的优选实施方式,所述功能层包括以下质量百分数的组分:1%羟基磷灰石、99%钛合金。
当功能层中羟基磷灰石的质量百分数为1%、钛合金质量百分数为99%时,得到的材料的成骨活性和机械性能最优。
作为本发明所述金属-陶瓷混合梯度3D打印材料的优选实施方式,所述钛合金为Ti64。
本发明优选钛合金为Ti64是由于其不仅生物相容性较好,且其本身具有优异的耐热性和机械性能。
另外,本发明还提供了一种所述金属-陶瓷混合梯度3D打印材料的制备方法,包括以下步骤:
(1)将羟基磷灰石与钛合金混合球磨,得功能层混合粉末;
(2)利用选择性激光熔融技术打印钛合金粉末,得钛合金基体层;
(3)以步骤(2)所述钛合金基体层的一面作为选择性激光熔融技术打印基准面打印步骤(1)所述功能层混合粉末,得金属-陶瓷混合梯度3D打印材料。
本发明选择采用选择性激光熔融技术(selective laser melting,SLM)进行材料的制备,能够将羟基磷灰石很好的分散到钛合金基体中,进而在提供成骨活力的同时保证材料的机械性能;同时这样能够很好的制备过渡梯度复合双层打印材料,形成良好的结构梯度和成分梯度,从而使材料表面性质呈梯度变化,提高基体的结合强度。
作为本发明所述制备方法的优选实施方式,所述钛合金粉末的粒径为15-30μm,所述功能层粉末的粒径为7-30μm。
作为本发明所述制备方法的优选实施方式,所述步骤(1)中,球磨的时间为1-2小时,球磨的转速为150-250rpm。
作为本发明所述制备方法的优选实施方式,打印时采用的参数为:激光功率150-200W、扫描速度600-1000mm/s、舱口距离0.09-0.1mm、预热温度195-205℃。
作为本发明所述制备方法的优选实施方式,打印时采用的参数为:每层厚度25-35μm、柱体尺寸Ф3.5mm×5mm。
另外,本发明还提供了一种所述金属-陶瓷混合梯度3D打印材料在制备生物医用材料领域的应用。
作为本发明所述应用的优选实施方式,所述生物医用材料包括个体植入体材料。
本发明的有益效果为:
本发明提供的一种金属-陶瓷混合梯度3D打印材料是一种微观结构不断变化的复合材料,因此,由此材料带来的性能也会出现梯度变化,材料以及性能的逐渐转变可以在很大程度上消除宏观界面,避免常规复合材料结构中的分层问题,并且降低制造由多种材料成分的不同物理性质引起的内应力,进而提升材料中陶瓷与金属之间的结合强度、增强材料的生物相容性;同时,本发明提供的材料中能够很好的保留钛合金的优异的机械强度等性能,钛合金和羟基磷灰石的复合也能够取得优异的成骨活力;并且本发明提供的制备方法操作简单,适用于实际生产。
附图说明
图1为实施例1中打印设备图(图1a)和打印示意图(图1b);
图2为Ti64-Ti64-1%HA(a、c)和Ti64-Ti64-2.5%HA的材料外观图(b、d);
图3为效果例1中的表面形貌扫描图(a、b为Ti64,c、d为Ti64-1%HA,e、f为Ti64-2.5%HA);
图4为效果例1中的微观表征图(a、d、g为Ti64,b、e、h为Ti64-1%HA,c、f、i为Ti64-2.5%HA);
图5为效果例1中的相成分分析图;
图6为效果例2中的BMSCs代谢活性分析图;
图7为效果例3中的BMSCs成骨指标相关基因表达检测分析图;
图8为效果例4中的BMSCs的ALP表达分析图;
图9为效果例5中的染色结果图;
图10为效果例5中吸光度值结果图;
图11为效果例6中的压缩实验图;
图12为效果例7中的Micro-CT结果图;
图13为效果例7中的硬组织切片染色图;
图14为效果例7中的BIC统计结果图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本实施例的一种金属-陶瓷混合梯度3D打印材料(Ti64-Ti64-1%HA),包括钛合金基体层和功能层,所述功能层中包括以下质量百分数的组分:99%钛合金和1%羟基磷灰石,所述钛合金为Ti64;所述金属-陶瓷混合梯度3D打印材料由以下步骤制备得到:
(1)将1份羟基磷灰石(HA)与99份钛合金(Ti64)混合,在球磨机中以200rpm的转速球磨1.5小时,得功能层混合粉末;
(2)利用选择性激光熔融技术(SLM)打印Ti64粉末,得钛合金基体层;
(3)以步骤(2)所述钛合金基体层的一面作为选择性激光熔融技术打印基准面打印步骤(1)所述功能层混合粉末,得金属-陶瓷混合梯度3D打印材料;
其中,打印采用的设备如图1所示,结合设备进行制备过程的阐述:将Ti64粉末和功能层混合粉末分别加入到粉仓1和粉仓2中,先打印钛合金基体层,打印完成后的主体结构A留在基板上(如图1a所示),接着步骤(3)中以步骤(2)中打印好的主体结构A的一面作为打印基准面,将粉仓2中的功能层混合粉末铺在打印基准面上(如图1b所示),开启步骤(3)中的打印;打印完毕,得金属-陶瓷混合梯度3D打印材料;
打印过程包括以下参数:激光功率150w、扫描速度600mm/s、舱口距离0.09mm、预热温度200℃、每层厚度30μm、柱体尺寸Ф3.5mm×5mm;
制备得到的金属-陶瓷混合梯度3D打印材料的外观图如图2中a、c所示。
对比例1
本对比例的一种金属-陶瓷混合梯度3D打印材料(Ti64-Ti64-2.5%HA),包括钛合金基体层和功能层,所述功能层中包括以下质量百分数的组分:97.5%钛合金和2.5%羟基磷灰石,所述钛合金为Ti64;所述金属-陶瓷混合梯度3D打印材料的制备方法和实施例1中的制备方法保持一致;
制备得到的金属-陶瓷混合梯度3D打印材料的外观图如图2中b、d所示。
实施例2
本实施例的一种金属-陶瓷混合梯度3D打印材料中的功能层(Ti64-1%HA),所述功能层中包括以下质量百分数的组分:99%钛合金和1%羟基磷灰石,所述钛合金为Ti64;所述功能层的制备方法包括以下步骤:
(1)将1份羟基磷灰石(HA)与99份钛合金(Ti64)混合,在球磨机中以200rpm的转速球磨1.5小时,得功能层混合粉末;
(2)利用选择性激光熔融技术(SLM)打印功能层混合粉末,得功能层;
其中,打印设备保持和实施例1中一致,打印过程包括以下参数:激光功率150w、扫描速度600mm/s、舱口距离0.09mm、预热温度200℃、每层厚度30μm、圆片尺寸Ф10mm×1mm。
对比例2
本对比例的一种金属-陶瓷混合梯度3D打印材料中的功能层(Ti64-2.5%HA),所述功能层中包括以下质量百分数的组分:97.5%钛合金和2.5%羟基磷灰石,所述钛合金为Ti64;所述功能层的制备方法与实施例2保持一致。
对比例3
本对比例的一种金属-陶瓷混合梯度3D打印材料中的钛合金基体层(Ti64),所述钛合金基体层的制备方法包括以下步骤:利用选择性激光熔融技术(SLM)打印钛合金,得钛合金基体层;
(2)利用选择性激光熔融技术(SLM)打印功能层混合粉末,得功能层;
其中,打印设备保持和实施例1中一致,打印过程包括以下参数:激光功率200w、扫描速度1000mm/s、舱口距离0.1mm、预热温度200℃、每层厚度30μm、圆片尺寸Ф10mm×1mm。
效果例1
1、将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行表面形貌扫描,扫描结果如图3所示,从图3中可以看出,三组样品表面均有未完全熔融的Ti64颗粒或者HA颗粒,部分互相融合,在600倍视野下,Ti64-2.5%HA样品的表面可见一道约200μm长的裂痕贯穿整个视野。
2、将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行微观表征,如图4所示,从图4中可以看出,Ti64-1%HA和Ti64-2.5%HA的横截面可见存在少量孔隙,如图中白色箭头所示。每组样品的晶粒形状如图中黄圈轮廓所示。在Ti64组可观察到相对较长的条状晶粒。在Ti64基底中加入1%wt的HA后,晶粒相比之下变短,形成短针状的晶粒。当HA添加量增加至2.5%wt时,晶粒继续变短,形成椭圆形并倾向于相互连接。
3、将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行相成分分析,得到的XRD图谱如图5所示,从图5中可以看出,,Ti64-1%HA和Ti64-2.5%HA组没有明显的HA对应的峰值。对于SLM制备的Ti64材料,强衍射峰对应于密排六方晶体结构(hexagonal close-packed,HCP)的Ti。对于Ti64-HA复合材料,可以看到有新相TixO(氧化钛)、Ti5P3和CaTiO3形成。
4、将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行弹性模量测试,具体通过Oliver-Pharr纳米压痕的方法得到弹性模量,测试结果如表1所示,从表1中可以看出,加入了HA的材料的杨氏模量值明显升高。
表1
材料 Ti64 Ti64-1%HA Ti64-2.5%HA
杨氏模量E(MPa) 137228 149050 165308
效果例2
将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行BMSCs代谢活性分析;具体包括以下步骤:
将Ti64-1%HA、Ti64-2.5%HA、Ti64分别置于48孔板(各时间点9个样品/组)中,以5*104每孔的密度接种于材料表面进行培养,以Ti64作为对照。分别于细胞接种后的1d,3d和7d吸净培养基并加入含10% CCK-8完全培养基,放置于37℃避光孵育2h,将孵育液转移至96孔板中,转移进酶标仪,在450nm波长处检测OD值,重复3次实验;得到的结果如图6所示;
从图6中可以看出,培养1d后,对照组上的BMSCs细胞增殖情况优于Ti64-1%HA组和Ti64-2.5%HA组(p<0.05);培养3d后Ti64-1%HA组代谢活性增强,与对照组相比无显著差异(p>0.05);培养7d后,Ti64-1%HA组活性最高且三组之间均无显著性差异(p>0.05);即本发明提供的技术方案能够增强BMSCs代谢活性。
效果例3
将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行BMSCs成骨指标相关基因表达的RT-PCR检测分析;具体包括以下步骤:
(1)将Ti64-1%HA、Ti64-2.5%HA、Ti64置于48孔板中,以Ti64组作为对照,用于铺板的BMSCs密度是5*104每孔,待细胞贴壁后将原培养基换成成骨诱导液并培养7天,每2天换液;
(2)提取RNA:提取RNA的过程全程保持无酶条件,吸净原培养基,PBS清洗3次,使用奕衫生物RNA快速抽提试剂盒提取RNA,步骤如下:在每孔加入100μL裂解液,充分吹打材料表面,使在材料上生长的细胞完全裂解。用无酶EP管收集裂解液,加入等量的无水乙醇,吹打10次以上充分混匀。将混合液转移至分离柱内,12000rcf离心1.5min,弃掉下层管内的废液。往分离柱内部加入500μL wash buffer,12000rcf离心1.5min,弃废液并空管重复离心一次,再次弃废液,防止废液污染。将分离柱开盖风干2min,置于无酶EP管上,于柱中加入Elution buffer 20μL,溶解1min,12000rcf离心2min,收集EP管中的液体重新加入到分离柱中,再次溶解5min后再次离心,最终收集离心产物即为纯化的mRNA,在逆转录之前可以置于-80℃保存;
(3)使用NanoDrop测定出各组mRNA的浓度及纯度,并使用PrimeScript RT MasterMix进行逆转录;具体的,于冰上在8连管中配置反应液,混匀后离心,逆转录条件如下:37℃反应15min,85℃反应5s,4℃暂存。逆转录完成的cDNA储存于-20℃;
(4)扩增:在RT-PCR扩增时使用LightCycler 480SYBR GreenⅠMaster试剂盒,用透明薄膜严密封住PCR板,1500g离心5min,在LightCycler 480PCR仪中进行扩增,反应条件如下:95℃激活5min-95℃变性10s-60℃退火20s-72℃延伸20s,重复45个变性、退火、延伸的循环后,溶解曲线程序为95℃5s-65℃1min-40℃冷却10s。以GAPDH作为内参基因,所有基因的相对表达水平使用2-ΔΔct方法分析,重复3次实验。成骨诱导3d、7d后,检测BMSCs成骨相关基因Col I和OCN的mRNA的相对表达量(以GAPDH为内参);
检测结果如图7所示,从图7中可以看出,在成骨诱导3d后,Ti64-1%HA组的BMSCs成骨相关基因Col I和OCN的mRNA相关水平均高于Ti64组,其中Col I表达差异有统计学意义。而Ti64-2.5%HA组的Col I和OCN表达量虽然高于对照组,但无统计学差异。成骨诱导7d后,Ti64-1%HA组的Col I和OCN的表达水平均高于对照组且有统计学差异。而Ti64-2.5%HA仅有OCN表达量高于对照组,且无统计学差异;从结果中可以看出,本发明提供的技术方案能够诱导BMSCs成骨指标相关基因表达。
效果例4
将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行BMSCs的ALP表达Western Blot检测分析;具体包括以下步骤:
(1)将Ti64-1%HA、Ti64-2.5%HA、Ti64置于48孔板中,以Ti64组作为对照,BMSCs以5*104每孔的密度铺板,待细胞贴壁后将原培养基换成成骨诱导液并培养,每2天换液。在细胞培养第3天和第7天后,用预冷的PBS轻轻洗涤3次并吸净,加入预先混有抑制剂Cocktail(1:50)的RIPA裂解液到各组细胞,用刮刀反复刮材料表面,冰上充分裂解并吹打,收集至灭菌EP管中;
(2)将裂解液在超声探头下,于冰浴中以40%功率处理3次,每次3秒,以进一步充分裂解蛋白并使核酸杂质碎裂,裂解液在4℃12000g离心15min后,弃去沉淀,吸取上层清液到灭菌EP管中,即为所需蛋白样品;
(3)使用BCA试剂盒测定蛋白浓度,首先依梯度配置蛋白标准品,并加入至96孔板中,每孔20uL,而蛋白样品则在孔中进行五倍稀释,即每孔4uL并补加16uL PBS至20uL。然后将BCA试剂盒的A液与B液以50:1的比例进行混匀,于每孔加入200uL混合液,置于37℃避光孵育30min,使用酶标仪检测OD562值,绘制标准曲线,计算出每组蛋白样品浓度。根据计算的蛋白浓度,于样品中补加RIPA,调整蛋白浓度至一致,并按照最终体积量加入1/5的5xloading buffer,充分混匀后,于金属浴中95℃处理10min进行蛋白变性,最后样品储存于-20℃,用于后续的电泳实验;
(4)蛋白电泳及转膜:准备好电泳槽并加入足量配置好的电泳液,将4-20%梯度预制胶安装进电泳槽,小心拔去梳子,撕掉封膜,用1mL枪头轻轻冲洗上样孔,冲去残留的碎胶。依照每孔20μg蛋白总量进行上样,并于空置孔中加入5uL的Ladder。在上样完毕后,于140V恒定电压下进行电泳约60min,使蛋白条带充分分离开,电泳完成后取出胶块,放入转膜液,在转膜夹中按照从下往上的顺序放置好海绵垫,滤纸,胶块,PVDF膜,滤纸,海绵垫,滚轮排尽胶块与PVDF膜之间的气泡,将转膜夹置于转膜槽并倒入转膜液,于冰浴中以200mA恒定电流转膜2小时;
(5)转膜完成后,在TBST缓冲液中漂洗蛋白条带,并按照所需指标的蛋白分子量大小对蛋白条带进行裁剪,置于5%脱脂牛奶的TBST溶液中,室温下摇床上封闭1小时。待封闭完成后,使用一抗稀释液按照1:1000的浓度稀释ALP一抗,以1:10000的浓度稀释GAPDH一抗作为内参。将抗体并加入至放有对应蛋白条带的孵育槽中,摇床上4℃过夜孵育。一抗孵育完成后,TBST洗膜3次,每次5min,然后用TBST以1:8000的浓度稀释相应山羊抗兔二抗并加入孵育槽,室温下摇床孵育1小时,随后再次TBST洗膜3次,每次5min。最后使用发光试剂盒配置好发光液,将蛋白条带置于化学发光仪中,滴加发光液。使用ImageJ对各条带蛋白进行灰度值定量分析。对于分子量大小与GAPDH相近的ALP指标,在曝光完成后,以抗体洗脱液常温摇床处理15min,TBST漂洗去除洗脱液后进行脱脂牛奶封闭,使用一抗稀释液按照1:1000的浓度稀释ALP一抗,并随后重复抗原孵育和曝光过程;
检测结果如图8所示,从图8a、b中可以看出,在3d和7d时,Ti64-1%HA组ALP表达量均高于对照组,且定量分析差异显著(p<0.05)。而Ti64-2.5%HA组在7d时ALP表达量高于对照组,且无显著差异(p>0.05);从结果中可以看出,本发明提供的技术方案能够诱导BMSCs的ALP的表达。
效果例5
将实施例2、对比例2-3制备得到的Ti64-1%HA、Ti64-2.5%HA、Ti64进行矿化分析;具体包括以下步骤:
(1)将Ti64-1%HA、Ti64-2.5%HA、Ti64置于48孔板中,以Ti64组作为对照,BMSCs以5*104每孔的密度铺板,待细胞贴壁后将原培养基换成成骨诱导液并培养,每2天换液;
(2)分别培养7d、14d后,按照如下步骤进行茜素红矿化结节染色:将孔板中的培养基吸净,用PBS轻轻漂洗3次,使用95%的乙醇在室温条件下固定15min;吸干乙醇,加入茜素红矿化结节染色液,37℃避光孵育30min。使用PBS洗3次,每次5min,洗去多余的染液。将样品放置在扫描仪中进行矿化结节观察。为了进一步分析,将染色后的样品置于10%的西吡氯铵(cetylpyridiniumchloride,CPC)中,37℃孵育1h。在562nm波长下测量孵育后的CPC溶液的吸光度值。重复3次实验;
得到染色结果如图9所示,得到的CPC溶液的吸光度值如图10所示,从图9a、b中可以看出,各组BMSCs成骨诱导7d、14d后,茜素红染色后钙结节呈紫红色;Ti64-1%HA组钙结节染色明显较深且面积大,Ti64-2.5%HA组染色较浅。从图10中可以看出,Ti64-1%HA组和Ti64-2.5%HA组的吸光度值高于对照组且Ti64-1%HA组吸光度较Ti64-2.5%HA组高。
效果例6
将实施例1-2、对比例1-3制备得到的样品进行压缩试验;具体包括以下步骤:按照GB/T 7314-2017金属材料室温压缩试验方法,得到各组的最大压缩应力如下表2所示,将压力与压缩了用图11表示出来;从表2和图11中可以看出,最大压缩应力为Ti64组>Ti64-Ti64-1%HA组>Ti64-1%HA组>Ti64-Ti64-2.5%HA组>Ti64-2.5HA组;可以观察到,分别与纯复合材料Ti64-1%HA组、Ti64-2.5HAwt组相比,Ti64-Ti64-1%HA组和Ti64-Ti64-2.5%HA组双层梯度材料的断裂在较高的应变下才产生。
表2
Figure BDA0003890161690000121
效果例7
将实施例1、对比例1、对比例3制备得到的Ti64-Ti64-1%HA、Ti64-Ti64-2.5%HA和Ti64进行体内成骨效能验证,具体包括以下步骤:
将新西兰兔分为Ti64组,Ti64-Ti64-1%HA组和Ti64-Ti64-2.5%HA组一共3组;将材料对应的植入新西兰兔胫骨内侧;其余条件都保持一致;4w和8w时取材,Micro-CT评估样品周围骨体积,硬组织切片染色(亚甲基蓝酸性品红)观察样品-骨界面,评价Ti64-Ti64-1%HA、Ti64-Ti64-2.5%HA的体内成骨效能;
其中,Micro-CT结果如图12所示:在4w时,Ti64-Ti64-1%HA和Ti64-Ti64-2.5%HA组的骨小梁相对体积(BV/TV)均高于对照组,只有Ti64-Ti64-1%HA组具有显著性差异(p<0.05)。而在8w时,3组的BV/TV值均有增加,且Ti64-Ti64-1%HA和Ti64-Ti64-2.5%HA组与对照组相比均有显著差异(p<0.05);
其中,硬组织切片经过亚甲基蓝-酸性品红染色后,骨组织染色为深红色,可与黑色的骨植入材料加以区分(如图13所示)。其中在发生骨结合的部分,深红色的骨组织与黑色骨植入材料之间紧密贴合。进一步通过BIC进行统计,如图14所示,从图14中可以看出,通过染色结果可以发现在4w时,Ti64-Ti64-1%HA组和Ti64-Ti64-2.5%HA组的种植体具有较高的骨结合率,两者分别为49.7%和48.1%,而Ti64组存在较大的尚无直接骨结合的区域,BIC仅有35.6%。BIC%表现为Ti64-Ti64-1%HA组>Ti64-Ti64-2.5%HA组>Ti64组的趋势,但含有HA的两组没有显著差异(p>0.05)。而在种植体植入8w后,三组的BIC%较4w时都有所增高,分别为69.1%,76.7%和76.2%。虽然仍然表现为Ti64-Ti64-1%HA组>Ti64-Ti64-2.5%HA组>Ti64组的趋势,但是三组之间没有显著性差异(p>0.05)。
最后应当说明的是,以上实施例以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种金属-陶瓷混合梯度3D打印材料,其特征在于,所述金属-陶瓷混合梯度3D打印材料包括钛合金基体层和功能层,所述功能层中包括钛合金和羟基磷灰石。
2.根据权利要求1所述的金属-陶瓷混合梯度3D打印材料,其特征在于,所述功能层包括以下质量百分数的组分:0.5-1.5%羟基磷灰石、98.5-99.5%钛合金。
3.根据权利要求1所述的金属-陶瓷混合梯度3D打印材料,其特征在于,所述钛合金为Ti64。
4.如权利要求1-3任一项所述的金属-陶瓷混合梯度3D打印材料的制备方法,其特征在于,包括以下步骤:
(1)将羟基磷灰石与钛合金混合球磨,得功能层混合粉末;
(2)利用选择性激光熔融技术打印钛合金粉末,得钛合金基体层;
(3)以步骤(2)所述钛合金基体层的一面作为选择性激光熔融技术打印基准面打印步骤(1)所述功能层混合粉末,得金属-陶瓷混合梯度3D打印材料。
5.根据权利要求4所述的制备方法,其特征在于,所述钛合金粉末的粒径为15-30μm,所述功能层粉末的粒径为7-30μm。
6.根据权利要求4所述的制备方法,其特征在于,所述步骤(1)中,球磨的时间为1-2小时,球磨的转速为150-250rpm。
7.根据权利要求4所述的制备方法,其特征在于,打印时采用的参数为:激光功率150-200W、扫描速度600-1000mm/s、舱口距离0.09-0.1mm、预热温度195-205℃。
8.根据权利要求4所述的制备方法,其特征在于,打印时采用的参数为:每层厚度25-35μm、柱体尺寸Ф3.5mm×5mm。
9.如权利要求1-3任一项所述的金属-陶瓷混合梯度3D打印材料在制备生物医用材料领域上的应用。
10.根据权利要求9所述的应用,其特征在于,所述生物医用材料包括个体植入体材料。
CN202211263859.2A 2022-10-14 2022-10-14 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用 Active CN115591013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211263859.2A CN115591013B (zh) 2022-10-14 2022-10-14 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211263859.2A CN115591013B (zh) 2022-10-14 2022-10-14 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115591013A true CN115591013A (zh) 2023-01-13
CN115591013B CN115591013B (zh) 2024-01-02

Family

ID=84846151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211263859.2A Active CN115591013B (zh) 2022-10-14 2022-10-14 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115591013B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763092A (en) * 1993-09-15 1998-06-09 Etex Corporation Hydroxyapatite coatings and a method of their manufacture
JP2000129314A (ja) * 1998-10-27 2000-05-09 Asahi Optical Co Ltd ハイドロキシアパタイトとチタンとの複合体およびハイドロキシアパタイトとチタンとの複合体の製造方法
CN101229587A (zh) * 2008-02-20 2008-07-30 暨南大学 生物陶瓷钛基复合材料及其制备方法
CN101250634A (zh) * 2008-04-01 2008-08-27 暨南大学 一种具有生物活性的钛基梯度复合材料及其制备方法
CN104841009A (zh) * 2015-04-21 2015-08-19 昆明理工大学 一种羟基磷灰石活化钛合金表层生物复合材料及其制备方法
CN108950305A (zh) * 2018-08-24 2018-12-07 山东建筑大学 一种钛合金—羟基磷灰石盐生物陶瓷多孔材料的制备方法
US20190269830A1 (en) * 2016-09-12 2019-09-05 Innovaplants S.R.L. Implantable medical devices having coating layers with antimicrobial properties based on nanostructured hydroxyapatites
CN112620626A (zh) * 2020-11-24 2021-04-09 淮阴工学院 一种骨诱导型高抗菌性钛合金骨植入体的成形方法
KR20220131201A (ko) * 2021-03-19 2022-09-27 순천대학교 산학협력단 생체폐기물을 이용한 생체복합체의 제조방법 및 이에 의해 제조된 생체복합체

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763092A (en) * 1993-09-15 1998-06-09 Etex Corporation Hydroxyapatite coatings and a method of their manufacture
JP2000129314A (ja) * 1998-10-27 2000-05-09 Asahi Optical Co Ltd ハイドロキシアパタイトとチタンとの複合体およびハイドロキシアパタイトとチタンとの複合体の製造方法
CN101229587A (zh) * 2008-02-20 2008-07-30 暨南大学 生物陶瓷钛基复合材料及其制备方法
CN101250634A (zh) * 2008-04-01 2008-08-27 暨南大学 一种具有生物活性的钛基梯度复合材料及其制备方法
CN104841009A (zh) * 2015-04-21 2015-08-19 昆明理工大学 一种羟基磷灰石活化钛合金表层生物复合材料及其制备方法
US20190269830A1 (en) * 2016-09-12 2019-09-05 Innovaplants S.R.L. Implantable medical devices having coating layers with antimicrobial properties based on nanostructured hydroxyapatites
CN108950305A (zh) * 2018-08-24 2018-12-07 山东建筑大学 一种钛合金—羟基磷灰石盐生物陶瓷多孔材料的制备方法
CN112620626A (zh) * 2020-11-24 2021-04-09 淮阴工学院 一种骨诱导型高抗菌性钛合金骨植入体的成形方法
KR20220131201A (ko) * 2021-03-19 2022-09-27 순천대학교 산학협력단 생체폐기물을 이용한 생체복합체의 제조방법 및 이에 의해 제조된 생체복합체

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN CHANGJUN: "Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM:Material interface and fracture toughness)", MATERIALS & DESIGN, vol. 141, pages 256 - 266 *
HASSANEN JABER: "Selective Laser Melting of Ti6Al4V-2% Hydroxyapatite composites: Manufacturing Behavior and Microstructure Evolution", METALS, vol. 11, no. 8, pages 2 *
LIN YUJING: "Osteogenic properties of titanium alloy Ti6Al4V-hydroxyapatite composites fabricated by selective laser melting", JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, vol. 2023, pages 08632 - 8 *
贾毅恩: "钛合金-羟基磷灰石功能梯度材料的激光加工工艺研究", 中国优秀硕士学位论文全文数据库, pages 022 - 372 *

Also Published As

Publication number Publication date
CN115591013B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
CN107130138B (zh) 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法
US20060285991A1 (en) Metal injection moulding for the production of medical implants
Ouyang et al. Powder metallurgical Ti-Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application
CN106041074B (zh) 一种钛合金人工骨植入体的制备方法
CN108273126B (zh) 一种径向梯度医用复合材料的制备方法
CN109135175B (zh) 聚醚酮酮基复合材料、组合物、修复体及制备方法、应用
CN110938816B (zh) 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
WO2011071299A2 (ko) 임플란트
EP3980389A1 (en) A green body composition and functional gradient materials prepared thereof
US12091731B2 (en) Biomedical beta titanium alloy and preparation method thereof
Yoganand et al. Characterization and in vitro-bioactivity of natural hydroxyapatite based bio-glass–ceramics synthesized by thermal plasma processing
Han et al. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering
CN114288471A (zh) 镁合金医用植入物及其制备方法
Luo et al. Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application
CN113289056A (zh) 一种3d打印钛网及其制备方法和应用
CN114014647B (zh) 一种硅酸锌复合磷酸三钙陶瓷支架及其制备方法与应用
CN115591013A (zh) 一种金属-陶瓷混合梯度3d打印材料及其制备方法与应用
CN115786747B (zh) 一种医用高性能抗菌钛合金板材的制备方法
KR20110065392A (ko) 골다공증 치료를 위한 마그네슘 합금 임플란트
CN115414526B (zh) 一种仿生学结构的生物降解锌合金承重骨支架及加工方法
CN109200339B (zh) 一种复合材料、原料组合物、骨修复体、制备方法和应用
CN106563808A (zh) 一种被动中耳植入装置及其制备方法
Dobrzański et al. Ti6Al4V porous elements coated by polymeric surface layer for biomedical applications
CN106924816B (zh) 生物可降解镁基金属陶瓷复合材料及其制备方法和应用
WO2011074779A2 (ko) 임플란트의 표면처리방법 및 그 방법에 의해 표면처리된 임플란트

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant