CN115584035A - 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用 - Google Patents

基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用 Download PDF

Info

Publication number
CN115584035A
CN115584035A CN202211245711.6A CN202211245711A CN115584035A CN 115584035 A CN115584035 A CN 115584035A CN 202211245711 A CN202211245711 A CN 202211245711A CN 115584035 A CN115584035 A CN 115584035A
Authority
CN
China
Prior art keywords
hydrogel
chlorpyrifos
solution
fluorescent
auncs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211245711.6A
Other languages
English (en)
Other versions
CN115584035B (zh
Inventor
卢革宇
闫旭
李红霞
王图慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202211245711.6A priority Critical patent/CN115584035B/zh
Publication of CN115584035A publication Critical patent/CN115584035A/zh
Application granted granted Critical
Publication of CN115584035B publication Critical patent/CN115584035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种基于聚集诱导发光效应(AIE)的农药便携化检测荧光水凝胶、制备方法及其在现场快速检测毒死蜱中的应用,属于生物传感器技术领域。本发明构建的荧光水凝胶具有可调的荧光行为和刺激响应特性。AIE活性水凝胶集成了AuNCs的AIE效应和双网络水凝胶的多孔结构,从而显著提高了光学响应。利用纳米结构特性,AIE活性水凝胶被铸入凝胶盘中作为荧光POC平台,以增强其操作稳定性和防污性能。AIE活性水凝胶与高亲和力乙酰胆碱酯酶(AChE)结合,提高了毒死蜱农药评估和监测的灵敏度。通过使用基于智能手机的便携式设备对凝胶盘成像进行分析,准确定量研究农药的降解残留,为精准农业发展提供一个具有广阔应用前景的监测工具。

Description

基于AIE效应的农药便携化检测荧光水凝胶、制备方法及其 应用
技术领域
本发明属于生物传感器技术领域,具体涉及一种基于聚集诱导发光效应(AIE)的农药便携化检测荧光水凝胶、制备方法及其在现场快速检测毒死蜱中的应用。
背景技术
具有多孔聚合物网络、仿生活性和优异定制能力的功能化水凝胶在生物医学工程、电子设备和生物传感等众多领域受到越来越多的关注。荧光水凝胶集成了发光特性和凝胶特性,以便于制造POC装置,扩大其生物传感领域的应用。目前,荧光水凝胶应用的主要障碍是聚集引起的猝灭效应(ACQ),具有半固态或凝聚态特性的水凝胶在凝胶化过程中,不可避免地会限制荧光指示剂的运动间距,从而限制光致发光,聚集诱导发射效应(AIE)被有效证实能够避免上述问题。因此,寻求制备具有优异光致发光和良好稳定性的AIE活性水凝胶对于设计刺激响应传感器具有重要意义。
将金纳米簇(AuNCs)嵌入纳米或微孔纳米材料中,通过空间限制效应实现AIE发光。本发明通过将金属离子与有机配体组装而成的类沸石咪唑框架纳米材料(ZIF-8)具有理想的孔结构,是封装AuNCs的候选材料。这种封闭的ZIF单元空腔结构为纳米颗粒提供的受限自由和微环境,创建物理保护防止外部干扰,进一步提高AuNCs稳定性、荧光特性以及传感性能。在ZIF-8模板中引入AuNCs,使AuNCs@ZIF可以有效地调节AIE效应以改善荧光行为,从而结合水凝胶和AuNCs@ZIF荧光复合材料制备POC器件,为现场检测提高传感性能方面提供了新方法。
发明内容
本发明的目的是提供一种基于聚集诱导发光效应(AIE)的农药便携化检测荧光水凝胶、制备方法及其在现场快速检测毒死蜱中的应用。
本发明构建了一种稳定明亮的荧光AIE活性水凝胶,其具有可调的荧光行为和刺激响应特性。AIE活性水凝胶集成了AuNCs的AIE效应和双网络水凝胶的多孔结构,从而显著提高了光学响应。利用纳米结构特性,AIE活性水凝胶被铸入凝胶盘中作为荧光POC平台,以增强其操作稳定性和防污性能。AIE活性水凝胶与高亲和力乙酰胆碱酯酶(AChE)结合,提高了毒死蜱农药评估和监测的灵敏度。通过使用基于智能手机的便携式设备对凝胶盘成像进行分析,准确定量研究农药的降解残留,为精准农业发展提供一个具有广阔应用前景的监测工具。
本发明将AuNCs包封入金属有机框架材料(ZIF-8)中,构筑了基于AuNCs@ZIF的荧光探针,进一步利用双网络水凝胶将AuNCs@ZIF荧光探针进行封装,制成荧光水凝胶片,集成AuNCs的AIE效应、ZIF-8的刺激响应特性和水凝胶的多孔网络结构,通过增强稳定的荧光信号和防污性能提高了传感灵敏度。协同生物酶(乙酰胆碱酯酶,AChE)介导的传感体系和有机磷农药对AChE的不可逆抑制作用,结合自制便携化设备(图3d),将水凝胶盘的荧光图像转化为色坐标数据信息准确定量检测毒死蜱农药,进而实现该农药在白菜中的降解残留监测。
本发明所述的一种基于AIE效应农药便携化检测荧光水凝胶的制备方法,其步骤如下:
A、AuNCs溶液的制备:
将四氯金酸水溶液(HAuCl4,20mmol/L)与超纯水、谷胱甘肽水溶液(GSH,100mmol/L)按体积比10:87:3混合,然后在20~30℃下搅拌3~8min,再在60~80℃下加热20~30h,得到黄色AuNCs溶液;然后用透析袋(1kDa)透析10~15h,得到AuNCs溶液,冷冻抽干得到AuNCs固体粉末;超纯水溶解配置AuNCs溶液(1mg/mL),4℃储存备用;
B、AuNCs@ZIF荧光复合材料的制备:
将Zn(OAc)2·2H2O水溶液(10mg/mL)和2-甲基咪唑水溶液(HmIM,100mg/mL)和AuNCs水溶液(1mg/mL)溶液按照1:1:1(体积比)的混合,然后室温下在300~600转/min下搅拌20~40min,再在5000~8000转/min下离心3~8min,将得到的浅黄色沉淀用超纯水洗涤3~5次,冷冻抽干得到AuNCs@ZIF荧光复合材料,超纯水溶解配置AuNCs@ZIF荧光复合材料水溶液(5mg/mL),4℃储存备用;
C、毒死蜱检测水凝胶圆盘的制备:
使用石英滑块制作一个用于铸造凝胶圆盘的主模,主模保持两排直径为7mm、深度为0.9mm的孔,以形成凝胶盘;将牛血清白蛋白(超纯水溶解,质量分数为3.5~9.5%)、海藻酸钠(超纯水溶解,质量分数为1~10%)、戊二醛(超纯水溶解,质量分数为0.1~5%)按照2:10:1(体积比)进行双交联反应5~10min得到水凝胶;使用移液管将水凝胶和AuNCs@ZIF荧光复合材料水溶液装入上述主模的孔中(水凝胶与AuNCs@ZIF荧光复合材料水溶液的体积用量比例为10:1),然后将其浸入CaCl2(0.01M)溶液中浸泡2~5min,得到双网络水凝胶盘;使用镊子将双网络水凝胶盘从主模的孔中取出后置于载玻片上,从而得到基于AIE效应农药便携化检测的荧光水凝胶。
D、制作“色坐标-毒死蜱浓度”的标准关系曲线
将毒死蜱标准溶液用超纯水进行稀释,得到不同浓度的毒死蜱溶液(0.5ng/mL~10000ng/mL),与乙酰胆碱酯酶水溶液(AChE,1.0U/mL)按体积比5:2混合均匀,孵育20~30min,得到溶液A;然后,将硫代乙酰胆碱水溶液(ATCh,50mmol/L)和HEPES缓冲液(pH=8,10mmol/L)加入到溶液A中并在30~40℃下孵育20~30min得到反应溶液,ATCh水溶液、HEPES缓冲液和溶液A的体积用量比例为2:1:7;孵育完成后将5~25μL反应溶液滴加到前面制备得到的水凝胶盘上;然后,将水凝胶盘放入由3D打印附件和智能手机组成的自制便携式设备中(3D打印附件即为188mm×95mm×50mm(长×宽×高)的方形盒子(材料为聚乳酸塑料),应用发光二极管(发射光为365nm,长度为8cm,直径为1.5cm,功率为150mW)照射水凝胶盘,通过智能手机采集水凝胶盘图像,使用商业软件ImageJ直接分析图像的色坐标(包括红色通道R、绿色通道G和蓝色通道B),即可获得不同浓度毒死蜱对应的色坐标,从而建立“色坐标-毒死蜱浓度”的标准关系曲线;实际应用中,可以利用上述便携式设备采集未知毒死蜱浓度溶液的水凝胶盘图像,获得对应的色坐标值,代入该“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到实际样品溶液中的毒死蜱浓度。
E、实际样品的检测:
将梨、苹果和橙子分别经榨汁机加工并用超纯水稀释10倍,得到实际样品溶液(样品为菜市场购买,测试前使用气相色谱测试,不含有毒死蜱农药);然后将毒死蜱标准溶液加入到上述实际样品溶液中,使毒死蜱的终浓度分别为0.01、0.1和1μg/mL;再将含有毒死蜱的实际样品溶液分别与乙腈(样品提取液)按照1:10的体积比例混合,并超声处理5~10min,振荡20~30min,再在3000~5000rpm下离心5~10min;所得有机相用PBS缓冲液(10.0mmol/L,pH=8.0)稀释1~10倍,将5~25μL稀释后溶液滴加到步骤C制备得到的水凝胶盘上,使用步骤D所述的自制便携式设备采集水凝胶盘图像,获得对应的色坐标值,代入步骤D获得的“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到实际样品溶液中的毒死蜱浓度,然后与加标量进行比对,验证本发明装置的可行性。
F、毒死蜱在白菜中降解残留的监测:
将两组大白菜在室温、适宜光照等相同条件下培养10天,一组喷洒毒死蜱标准溶液(1.0mg/mL),另一组作为对照;喷洒农药后,在第2、3、4、5、6、7、10和14天采摘5~10g大白菜;按照20g:20mL:1g的比例将采摘样品加入到乙腈(mL)和NaCl(g)中,然后超声处理5~10min,振荡20~30min,再在3000~5000rpm下离心5~10min,所得有机相用PBS缓冲液(10.0mmol/L,pH=8.0)稀释1~10倍,将5~25μL稀释后溶液滴加到步骤C制备得到的水凝胶盘上,使用步骤D所述的自制便携式设备采集水凝胶盘图像,获得对应的色坐标值,代入步骤D获得的“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到毒死蜱浓度,从而实现对毒死蜱在白菜中降解残留的监测。
本发明的机理如下:
利用谷胱甘肽(GSH)为模板合成具有荧光发射的AuNCs,并采用原位生长法合成AuNCs@ZIF荧光复合材料。AuNCs@ZIF对AChE催化水解ATCh获得的产物TCh表现出较差的稳定性,典型的菱形十二面体形状开始分解,AuNCs开始脱离框架。当毒死蜱农药存在时,AChE被不可逆地灭活,从而阻断ZIF-8的分解,间接调节金纳米簇的AIE效应,伴随着可区分的荧光颜色变化。进一步利用双网络水凝胶将AuNCs@ZIF荧光探针进行封装,制成荧光水凝胶盘,该水凝胶盘结合了AuNCs的AIE效应、ZIF-8的刺激响应特性和水凝胶的多孔网络结构,通过增强稳定的荧光信号和防污性能来提高传感灵敏度。结合由3D打印附件和智能手机组成的自制便携式设备以及ImageJ软件分析,可直接获得不同浓度毒死蜱对应的色坐标,建立“色坐标-毒死蜱浓度”的标准曲线,进而测得未知毒死蜱浓度的该数据信息,由该标准曲线计算得到毒死蜱的浓度,实现白菜中毒死蜱降解残留监测。
本发明所制备的基于AIE效应的荧光水凝胶能够敏感地获取农药残留信息,基于乙酰胆碱酯酶的高亲和力,水凝胶盘在0.5~10000ng/mL毒死蜱农药范围内表现出良好的线性关系(如图3)。使用自制便携式设备,将水凝胶盘的荧光图像转换为数据信息,反映了毒死蜱农药的准确定量(检出限为0.2ng/mL)。随着生物分析参数的改进(特别是在检测灵敏度、防污性能和稳定性方面),水凝胶盘还缩短了总体分析时间,减少了试剂消耗,简化了现场测试的读出仪器。该便携式装置能够被用于检测毒死蜱在中国白菜中的动态降解。
与现有的技术相比,本发明具有以下特点:
(1)本发明中金属有机框架结构(ZIF-8)为金纳米粒子提供有限的空间,以减少分子内的振动和配体的旋转,引发金纳米粒子的AIE效应,并增强荧光信号以改善信噪比。
(2)双网络结构的AuNCs@ZIF基水凝胶盘通过水凝胶的表面钝化和亲水性生物界面,具有较高的稳定性和防污性能,对复杂环境具有良好的抗干扰能力。
(3)本发明与其他基于乙酰胆碱酯酶的系统相比,所需的乙酰胆碱酯酶量较少,可以大大节节约检测成本。此外,使用基于智能手机的便携式荧光读数设备,目前的水凝胶圆盘可提供准确的定量数值,比传统的POC方法(只显示是/否)更具有应用优势。
附图说明
图1(a)为实施例1所述AuNCs@ZIF的透射电镜图像;图1(b)为实施例1制备的AuNCs@ZIF的高分辨率透射电镜图像。
图2(a)为实施例2通过BSA和SA的自分选组装形成双网络水凝胶圆盘照片;(b)为实施例2通过BSA和SA的自分选组装形成双网络水凝胶圆盘的扫描电镜图像;(c)为实施例2通过BSA和SA的自分选组装形成双网络水凝胶圆盘的透射光谱图;(d)为实施例2通过BSA和SA的自分选组装形成双网络水凝胶圆盘的贮存稳定性曲线;(e)为实施例2通过BSA和SA的自分选组装形成双网络水凝胶圆盘和海藻酸钠单水凝胶盘的抗污性能对比图。
图3(a)为实施例3基于AIE效应的荧光水凝胶的自制便携化装置示意图;(b)为实施例3基于AIE效应的荧光水凝胶将真彩色图像分割成RGB通道,获得色坐标响应图;(c)为实施例3基于AIE效应的荧光水凝胶B和R值相关性的归一化强度曲线图;(d)为实施例3基于AIE效应的荧光水凝胶毒死蜱浓度与色坐标响应值的关系曲线图。
图4(a)为实施例3基于AIE效应的荧光水凝胶在14天内对1.0μg/mL毒死蜱的工作稳定性柱形图;(b)为实施例3基于AIE效应的荧光水凝胶检测加标果汁的荧光图像(激发波长为580nm,发射波长范围为500~700nm;激发与发射狭缝分别为10、10nm,响应时间为0.25s;最佳发射波长位于550nm处)。
图5(a)为实施例4白菜中农药的降解残留监测水凝胶对毒死蜱在叶片中的色坐标响应图;(b)为实施例4白菜中农药的降解残留监测水凝胶对毒死蜱在叶片中10天内的降解曲线。
具体实施方式
实施例1:AuNCs@ZIF荧光复合材料的合成及表征
以谷胱甘肽(GSH)为模板合成具有荧光发射的AuNCs,并采用原位生长法合成AuNCs@ZIF荧光复合材料。即将四氯金酸水溶液(HAuCl4,20mmol/L)与超纯水、谷胱甘肽水溶液(GSH,100mmol/L)按体积比10:87:3混合,然后在25℃下搅拌5min,再在70℃下加热25h,得到黄色AuNCs溶液;然后用透析袋(1kDa)透析12h,得到AuNCs溶液,冷冻抽干得到AuNCs固体粉末,超纯水溶解配置AuNCs溶液(1mg/mL);再将Zn(OAc)2·2H2O水溶液(10mg/mL)和2-甲基咪唑水溶液(HmIM,100mg/mL)和AuNCs水溶液(1mg/mL)溶液按照1:1:1(体积比)的混合,在室温500rpm下搅拌30min,再在6000rpm下离心5min,将得到的浅黄色沉淀用超纯水洗涤3次后冷冻抽干,得到AuNCs@ZIF荧光复合材料,超纯水溶解配置AuNCs@ZIF荧光复合材料水溶液(5mg/mL),4℃储存备用;
将AuNCs@ZIF复合材料水溶液用超纯水稀释100倍后,取10微升滴加到325目碳支持膜通网上,干燥后,利用透射电镜进行表征。结果如图1a所示,AuNC@ZIF荧光复合材料具有典型的菱形十二面体形状,平均直径为230±20nm。AuNCs主要被包裹在复合材料内部区域(图1b)。
实施例2:AIE活性水凝胶的制备及性能评价
通过扩散杂交方法将AuNCs@ZIF复合材料嵌入到水凝胶体系中。在构建刺激响应性水凝胶时,通过戊二醛交联的牛血清白蛋白和Ca(II)介导的海藻酸钠连接的自分选缔合物获得了双网络结构。两种凝胶剂的自分选聚集可以增强分子间的协同作用,提高交联强度。
首先,使用石英滑块制作用于铸造凝胶圆盘的主模,主模保持两排直径为7mm、深度为0.9mm的孔,以形成凝胶盘。将牛血清白蛋白(超纯水溶解,200μL、质量分数为4.5%)、海藻酸钠(超纯水溶解,1000μL、质量分数为1%)、戊二醛(超纯水溶解,100μL、质量分数为0.5%)进行双交联反应8min得到水凝胶。使用移液管将水凝胶和AuNCs@ZIF复合材料溶液装入上述主模的孔中(水凝胶与AuNCs@ZIF荧光复合材料水溶液的体积用量比例为10:1),然后将其浸入CaCl2(0.01M)溶液中3min,得到水凝胶盘;使用镊子手动将水凝胶盘从主模的孔中取出,放置到载玻片(76.2mm×25.4mm)上,从而得到基于AIE效应农药便携化检测的荧光水凝胶。
结果如图2所示,水凝胶胶盘为圆片形状处于湿润状态,圆片的厚度测量为0.35±0.04mm(图2a),双网络水凝胶具有密集的三维网络(图2b),水凝胶的透射光谱(图2c)表明在固定AuNCs@ZIF的过程中,光阻断率几乎没有变化。在两周贮存期间仍然具有亮度荧光(图2d),表明水凝胶盘具有优良的长期储存稳定性。此外,水凝胶圆盘与罗丹明B(RhB)标记的牛血清白蛋白(电阴性)、肌红蛋白(电中性)和细胞色素(电阳性)三种蛋白分别共孵育,进行蛋白质吸附试验以评估水凝胶盘的抗污染能力。结果表明在与RhB标记的上述3种蛋白分别孵育30分钟后,在保持相对清洁表面的双网络水凝胶盘上没有观察到红色发射信号,然而海藻酸钠单水凝胶圆盘呈现RhB的红色荧光,揭示了用BSA和海藻酸钠的双网络水凝胶对非特异性蛋白质吸附的优异抗性(图2e),交联牛血清白蛋白的表面钝化和水凝胶的亲水生物界面充分保证了水凝胶盘具有良好的抗污性能。
实施例3:基于AIE效应的荧光水凝胶用于毒死蜱检测
将毒死蜱标准溶液用超纯水进行稀释,得到不同浓度的毒死蜱溶液(25μL,浓度为0.5,1.0,2.5,5.0,50,500,1000,10000ng/mL)和1.0U/mL的AChE(10μL)混合均匀,孵育20min,得到溶液A。然后,将硫代乙酰胆碱水溶液(ATCh,50mmol/L,10μL)和HEPES缓冲液(pH=8,10mmol/L,5μL)加入到溶液A中,并在37℃孵育20min得到反应溶液。将20μL反应溶液滴加到凝胶盘上,将水凝胶盘放入由3D打印附件和智能手机组成的自制便携式设备中,应用发光二极管(发射光为365nm,长度为8cm,直径为1.5cm,功率为150mW)照射水凝胶盘,通过智能手机采集水凝胶盘图像,使用商业软件ImageJ直接分析图像的色坐标(包括红色通道R、绿色通道G和蓝色通道B),即可获得不同浓度毒死蜱对应的色坐标,从而建立“色坐标-毒死蜱浓度”的标准关系曲线。
结果如图3所示,AIE活性水凝胶盘的优异性质有利于制造精确可靠的基于生物酶的农药传感器。图3a为自制便携化装置示意图,本发明自制的便携式装置尺寸为188mm×95mm×50mm(长×宽×高),包含发光二极管(发射光为365nm,长度为8cm,直径为1.5cm,功率为150mW)和智能手机(收集水凝胶盘图像)。该便携式装置可以通过智能手机拍照功能直接记录水凝胶盘图像,使用商业软件ImageJ直接分析图像的色坐标(包括红色通道R、绿色通道G和蓝色通道B),即可获得不同浓度毒死蜱对应的色坐标。具体而言,AuNCs@ZIF对乙酰胆碱酯酶(AChE)水解产物硫代胆碱(TCh)表现出较差的稳定性,使得ZIF-8的框架结构分解,AIE效应减弱;当毒死蜱存在时可特异抑制AChE活性,阻断ZIF-8的框架结构分解,毒死蜱间接调节金纳米粒子的AIE效应,同时伴随着水凝胶盘可区分的荧光颜色变化(图3b)。结果如图3所示,随着毒死蜱浓度的增加(0.5~10000ng/mL),水凝胶圆片荧光颜色由蓝色变为红色(图3b),并通过图像处理算法可以将荧光颜色信号分成三个基本颜色代码(RGB:红色,绿色,蓝色),在最佳条件下,水凝胶盘的蓝色通道信号和红色信号信号逐渐增强(图3c),色坐标和毒死蜱浓度(0.5~10000ng/mL)之间的拟合曲线方程:y=0.9736+0.2399x,其中x为Log[毒死蜱浓度],y为色坐标响应值,检测限(LOD)为0.2ng/mL(图3d)。
实施例4:荧光水凝胶用于实际样品中的毒死蜱检测
为了验证水凝胶圆盘的实际应用能力,考察了水凝胶盘对毒死蜱农药的加标回收效果。将梨、苹果和橙子经榨汁机加工并用超纯水稀释10倍,然后按照毒死蜱终浓度分别为0.01、0.1和1μg/mL的比例将毒死蜱溶液加入到上述实际样品中;将加标样品1g与10mL乙腈混合,并超声提取10min,再振荡25min,并在4000rpm下离心10min;所得有机相用PBS缓冲液(10.0mmol/L,pH=8.0)稀释2倍,将20μL稀释后溶液滴加到实施例2得到的水凝胶盘上,再使用实施例3所述的自制便携式设备采集水凝胶盘图像,获得对应的色坐标值,代入实施例3获得的“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到实际样品溶液中的毒死蜱浓度。
进一步研究水凝胶盘在两周内表现出良好的稳定性(图4a),表明其适合于储存和运输。为了评价水凝胶盘的实用性和可靠性,对含有不同浓度毒死蜱的果汁(梨、苹果和橙)进行了3次水凝胶盘分析。如图4b和表1所示,回收率(计算方法为测定的浓度除以加标的浓度,乘以100%)在89.70%至114.69%之间,相对标准偏差低于5.37%,这意味着水凝胶盘检测毒死蜱具有良好的准确度与精密度。
表1:应用本发明制备的便携化荧光水凝胶检测实际样品中的毒死蜱(n=3)
Figure BDA0003886065090000081
实施例5:荧光水凝胶用于毒死蜱在白菜中降解残留的监测:
了解农药的降解行为有助于微调农药用量,这对于提高农药利用效率和减少农药接触,特别是对于农业可持续发展具有重要指导意义。本发明评估了水凝胶圆盘在使用便携式装置及时监测大白菜中农药降解方面的性能。两组大白菜在室温、适宜光照等相同条件下培养10天,一组喷洒毒死蜱标准溶液(1.0mg/mL),另一组作为对照;喷洒农药后,在第2、3、4、5、6、7、10和14天采摘10g大白菜;在采摘样品加入10mL乙腈和0.5g NaCl中,然后超声处理10min,振荡25min,并在4000rpm下离心10min,所得有机相用PBS缓冲液(10.0mmol/L,pH=8.0)稀释2倍,将20μL稀释后溶液滴加到实施例2得到的水凝胶盘上,再使用实施例3所述的自制便携式设备采集水凝胶盘图像,获得对应的色坐标值,代入实施例3获得的“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到毒死蜱浓度。
结果如图5所示,通过现场记录水凝胶盘的荧光颜色来监测大白菜叶片中的毒死蜱残留水平(如图5a),表明喷施后叶片中毒死蜱残留量为14.5μg/mL;随着时间延长,叶片中色坐标响应值随着变化从黄色到蓝色而增加,表明残留物已逐渐降解。毒死蜱在叶片中的降解遵循拟一级动力学规律,方程式为y=97.92e-0 . 945x(图5b,x为降解时间,y为毒死蜱的检测浓度),其半衰期(T1/2)为2.75天。因此,水凝胶盘对于毒死蜱检测具有灵敏、方便、快捷的定量性能。本发明制备的荧光水凝胶盘具有良好的灵敏度、准确度和稳定性,有利于了解农药降解过程和判断农产品的可靠采摘期,为农药相关食品安全风险评估提供强有力的设备支持。

Claims (6)

1.一种基于AIE效应农药便携化检测荧光水凝胶的制备方法,其步骤如下:
A、AuNCs溶液的制备:
将四氯金酸水溶液(HAuCl4,20mmol/L)与超纯水、谷胱甘肽水溶液(GSH,100mmol/L)按体积比10:87:3混合,然后在20~30℃下搅拌3~8min,再在60~80℃下加热20~30h,得到黄色AuNCs溶液;然后用1kDa透析袋透析10~15h,得到AuNCs溶液,冷冻抽干得到AuNCs固体粉末;超纯水溶解配置1mg/mL的AuNCs溶液,4℃储存备用;
B、AuNCs@ZIF荧光复合材料的制备:
将Zn(OAc)2·2H2O水溶液(10mg/mL)和2-甲基咪唑水溶液(HmIM,100mg/mL)和AuNCs水溶液(1mg/mL)溶液按照1:1:1(体积比)的混合,然后室温下在300~600转/min下搅拌20~40min,再在5000~8000转/min下离心3~8min,将得到的浅黄色沉淀用超纯水洗涤3~5次,冷冻抽干得到AuNCs@ZIF荧光复合材料,超纯水溶解配置AuNCs@ZIF荧光复合材料水溶液(5mg/mL),4℃储存备用;
C、毒死蜱检测水凝胶圆盘的制备
将质量分数为3.5~9.5%的牛血清白蛋白水溶液、质量分数为1~10%的海藻酸钠水溶液、质量分数为0.1~5%的戊二醛水溶液按照2:10:1的体积比进行双交联反应5~10min得到水凝胶;使用移液管将水凝胶和AuNCs@ZIF荧光复合材料水溶液装入上述凝胶盘中,水凝胶与AuNCs@ZIF荧光复合材料水溶液的体积用量比例为10:1,然后将其浸入0.01M CaCl2溶液中浸泡2~5min,得到双网络水凝胶盘;将双网络水凝胶盘从凝胶盘中取出后置于载玻片上,从而得到基于AIE效应农药便携化检测的荧光水凝胶。
2.如权利要求1所述的一种基于AIE效应农药便携化检测荧光水凝胶的制备方法,其特征在于:步骤C中,是使用石英滑块制作一个用于铸造凝胶圆盘的主模,主模保持两排直径为7mm、深度为0.9mm的孔,以形成凝胶盘。
3.一种基于AIE效应农药便携化检测荧光水凝胶,其特征在于:是由权利要求1或2所述的方法制备得到。
4.权利要求3所述的一种基于AIE效应农药便携化检测荧光水凝胶在现场快速检测毒死蜱中的应用。
5.如权利要求4所述的一种基于AIE效应农药便携化检测荧光水凝胶在现场快速检测毒死蜱中的应用,其特征在于:是将毒死蜱标准溶液用超纯水进行稀释,得到0.5ng/mL~10000ng/mL不同浓度的毒死蜱溶液,与1.0U/mL乙酰胆碱酯酶水溶液按体积比5:2混合均匀,孵育20~30min,得到溶液A;再将50mmol/L硫代乙酰胆碱水溶液和pH=8、10mmol/LHEPES缓冲液加入到溶液A中并在30~40℃下孵育20~30min得到反应溶液,硫代乙酰胆碱水溶液、HEPES缓冲液和溶液A的体积用量比例为2:1:7;孵育完成后将5~25μL反应溶液滴加到荧光水凝胶盘上;然后将水凝胶盘放入由3D打印附件和智能手机组成的便携式设备中,应用发光二极管照射水凝胶盘,通过智能手机采集水凝胶盘图像,使用软件ImageJ直接分析图像的色坐标,获得不同浓度毒死蜱对应的色坐标,从而建立“色坐标-毒死蜱浓度”的标准关系曲线;利用上述便携式设备采集未知毒死蜱浓度溶液的水凝胶盘图像,获得对应的色坐标值,代入该“色坐标-毒死蜱浓度”的标准关系曲线,即可计算得到实际样品溶液中的毒死蜱浓度。
6.如权利要求5所述的一种基于AIE效应农药便携化检测荧光水凝胶在现场快速检测毒死蜱中的应用,其特征在于:用于毒死蜱农药在白菜中的降解残留监测。
CN202211245711.6A 2022-10-12 2022-10-12 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用 Active CN115584035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211245711.6A CN115584035B (zh) 2022-10-12 2022-10-12 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211245711.6A CN115584035B (zh) 2022-10-12 2022-10-12 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115584035A true CN115584035A (zh) 2023-01-10
CN115584035B CN115584035B (zh) 2024-05-28

Family

ID=84779578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211245711.6A Active CN115584035B (zh) 2022-10-12 2022-10-12 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115584035B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948634A (zh) * 2023-07-25 2023-10-27 曲阜师范大学 温度响应型发光mof及其制备方法和应用
CN117587097A (zh) * 2024-01-15 2024-02-23 北京航空航天大学 一种乙酰胆碱酯酶复合水凝胶光子晶体传感器和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991201A (zh) * 2019-04-11 2019-07-09 大连理工大学 一种定位在zif-8表面的金纳米簇用于提高其荧光强度及检测的特异选择性的方法
CN111189822A (zh) * 2020-02-17 2020-05-22 吉林大学 目标响应式水凝胶与智能手机集成的有机磷农药现场定量检测平台
CN114062333A (zh) * 2021-10-09 2022-02-18 华南农业大学 Zif-8包覆金纳米簇复合材料的应用、有机磷的检测方法
CN114371158A (zh) * 2022-01-29 2022-04-19 吉林大学 一种用于有机磷农药降解监测水凝胶试剂盒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991201A (zh) * 2019-04-11 2019-07-09 大连理工大学 一种定位在zif-8表面的金纳米簇用于提高其荧光强度及检测的特异选择性的方法
CN111189822A (zh) * 2020-02-17 2020-05-22 吉林大学 目标响应式水凝胶与智能手机集成的有机磷农药现场定量检测平台
CN114062333A (zh) * 2021-10-09 2022-02-18 华南农业大学 Zif-8包覆金纳米簇复合材料的应用、有机磷的检测方法
CN114371158A (zh) * 2022-01-29 2022-04-19 吉林大学 一种用于有机磷农药降解监测水凝胶试剂盒的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAN ZHANG等: ""Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides"", 《FOOD CHEMISTRY》, vol. 326, 15 April 2020 (2020-04-15), pages 126813, XP086156848, DOI: 10.1016/j.foodchem.2020.126813 *
PREETI KUKKAR等: ""Colorimetric biosensing of organophosphate pesticides using enzymatic nanoreactor built on zeolitic imdiazolate-8"", 《MICROCHEMICAL JOURNAL》, vol. 166, 5 April 2021 (2021-04-05), pages 106242 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948634A (zh) * 2023-07-25 2023-10-27 曲阜师范大学 温度响应型发光mof及其制备方法和应用
CN117587097A (zh) * 2024-01-15 2024-02-23 北京航空航天大学 一种乙酰胆碱酯酶复合水凝胶光子晶体传感器和方法
CN117587097B (zh) * 2024-01-15 2024-04-16 北京航空航天大学 一种乙酰胆碱酯酶复合水凝胶光子晶体传感器和方法

Also Published As

Publication number Publication date
CN115584035B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN115584035B (zh) 基于aie效应的农药便携化检测荧光水凝胶、制备方法及其应用
Zhang et al. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants
Cheng et al. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances
Zhang et al. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu2+-based metal-organic frameworks as signal reporting
Yang et al. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers
Cheng et al. Recent applications of hydrogels in food safety sensing: Role of hydrogels
CN104459132B (zh) 一种基于金电沉积和Au@Ag/CuO-GS为标记物的胰腺癌免疫传感器的制备方法及应用
Hsu et al. A serological point-of-care test for Zika virus detection and infection surveillance using an enzyme-free vial immunosensor with a smartphone
Yan et al. Flexible aggregation-induced emission-active hydrogel for on-site monitoring of pesticide degradation
CN113884475A (zh) 基于铕掺杂碳量子点比率荧光探针的四环素检测方法
CN110632142A (zh) 一种基于金钯-石墨烯量子点复合材料的电化学生物传感器的制备方法及其应用
Kukkar et al. A critical review on the metal sensing capabilities of optically active nanomaterials: Limiting factors, mechanism, and performance evaluation
CN114062347B (zh) 一种聚集态银纳米颗粒的柔性水凝胶sers芯片
CN109030802B (zh) 一种一体化颗粒型固定化酶生物传感器及其制备方法和应用
Wang et al. Bio-inspired Maillard-Like reactions enable a simple and sensitive assay for colorimetric detection of methylglyoxal
Lin et al. Application of nanomaterials for coping with mycotoxin contamination in food safety: From detection to control
CN113030064A (zh) 一种表面增强拉曼散射基底及其制备方法和应用
CN110487778B (zh) 基于水凝胶构建的辉光型化学发光传感器及其制备方法和应用
CN110987897B (zh) 一种用于气体检测的表面增强拉曼散射基底材料及其制备方法
Chua et al. Recent advances in aggregation-induced emission (AIE)-based chemosensors for the detection of organic small molecules
CN114371158A (zh) 一种用于有机磷农药降解监测水凝胶试剂盒的制备方法
CN108181304B (zh) 一种水中汞离子浓度的检测方法
Mohiuddin et al. A review of sensing applications of molecularly imprinted fluorescent carbon dots for food and biological sample analysis
CN112341582B (zh) 一种检测水中钯离子的共价有机框架荧光试纸及其制备方法
Sun et al. Electrospun nanofibers containing CdTe@ ZnNi-MOF for electrochemiluminescent determination of chlorpyrifos

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant