CN115572153A - 一种高熵合金/陶瓷复合点阵结构的制备方法 - Google Patents

一种高熵合金/陶瓷复合点阵结构的制备方法 Download PDF

Info

Publication number
CN115572153A
CN115572153A CN202211337317.5A CN202211337317A CN115572153A CN 115572153 A CN115572153 A CN 115572153A CN 202211337317 A CN202211337317 A CN 202211337317A CN 115572153 A CN115572153 A CN 115572153A
Authority
CN
China
Prior art keywords
entropy alloy
ceramic
powder
lattice structure
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211337317.5A
Other languages
English (en)
Other versions
CN115572153B (zh
Inventor
陈永雄
平子龙
王荣
吴宇翔
邢悦
孔令超
梁秀兵
胡振峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Defense Technology Innovation Institute PLA Academy of Military Science
Original Assignee
National Defense Technology Innovation Institute PLA Academy of Military Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Defense Technology Innovation Institute PLA Academy of Military Science filed Critical National Defense Technology Innovation Institute PLA Academy of Military Science
Priority to CN202211337317.5A priority Critical patent/CN115572153B/zh
Publication of CN115572153A publication Critical patent/CN115572153A/zh
Application granted granted Critical
Publication of CN115572153B publication Critical patent/CN115572153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种高熵合金/陶瓷复合点阵结构的制备方法。本发明经选区激光熔化打印高熵合金点阵结构,利用凝胶注模成形工艺将金属/陶瓷复合浆料填充在点阵结构之间的缝隙中,然后整体进行振荡压力烧结,通过促进晶界滑动、塑性变形、颗粒重排和孤立气孔的去除,对材料的致密化有着关键作用,制备出晶粒尺寸小,高密度,高硬度和高强度的高熵合金/陶瓷复合体。本发明实现高熵合金/陶瓷强度和韧性等性能的有效协同,使得复合结构材料的综合力学性能得到最佳化;同时,基于异质多材料整体增材制造的金属/陶瓷一体化成形工艺,可使性质差异迥然的多组分材料一次性制造成形,实现异质材料复合结构的可设计与可制造。

Description

一种高熵合金/陶瓷复合点阵结构的制备方法
技术领域
本发明属于金属/陶瓷复合材料制备技术领域,具体涉及一种高熵合金/陶瓷复合点阵结构的制备方法。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
金属/陶瓷复合结构材料在冲击防护、隔热减震、表面耐磨等多种功能防护领域展现出巨大的应用优势,金属与陶瓷材料的复合正由当前简单的“机械混合”朝向结构“跨尺度可设计”的方向发展,特别是金属/陶瓷复合的三维点阵设计可赋予该类结构优异的超材料特性。但是,传统的机械装配及粘接式组合方法已经无法满足这种复杂三维点阵金属/陶瓷复合结构的成形要求,严重制约了该技术的深入发展。
通过凝胶注模法结合3D打印PLA牺牲模板法制备三维网络结构陶瓷,有望实现三维网络结构陶瓷增强体的结构可设计;其次经无压熔融浸渗金属,制备出三维网络结构金属/陶瓷复合材料。凝胶注模法虽解决了复杂三维点阵结构成形问题,但这种复合结构利用牺牲模板法在高温下热分解PLA模具,从而导致坯体强度降低;在熔融金属无压浸渗工艺中,由于金属熔体的表面张力较大,在复合过程中其与多孔陶瓷的润湿性较差,因而需要借助外力或通过界面改性等辅助手段来促使金属与陶瓷复合,一定程度上影响了该技术方案的推广应用。
发明内容
为了解决上述问题,本发明提供一种高熵合金/陶瓷复合点阵结构的制备方法,点阵结构采用选区激光熔化沉积高熵合金技术制得,复合体毛坯通过陶瓷/金属混合浆料凝胶注模工艺注凝成形,最终经振荡压力烧结,在同一烧结温升曲线下得到高硬度、高强韧和致密度良好的高熵合金/陶瓷复合体。本发明内容的核心在于解决三个关键技术问题。
一是采用选区激光熔化(SLM)3D打印设备制备出具有超材料特性的复合三维点阵结构,具有轻质、高强、多功能等优点。SLM技术利用高能量密度的激光束,按照三维模型数据将预置粉层进行选择性扫描,逐层熔化堆积,直到最终金属零件制备完成。SLM成形过程中使用的激光光斑较小,成形件表面精度和致密度相对较高,克服了零件表面精度差的缺陷。同时,SLM技术可制备工艺可控性好,胞元尺寸可在低至亚毫米高至厘米尺度内变化的复杂三维点阵金属结构。
二是由于传统的机械装配及粘接式组合方法已经无法满足这种复杂三维点阵金属/陶瓷复合结构的成形要求,亟需获得性能更优异的金属/陶瓷复杂结构的一体化成形新思路。本发明采用凝胶注模工艺注凝成形,可实现复杂形状高性能陶瓷复合材料零件的三维成形。解决了装配、粘结等工艺镶嵌陶瓷匹配度不足的问题。
三是确定了三维点阵金属/陶瓷复合结构的烧结工艺。利用振荡压力烧结炉进行烧结实验,该工艺烧结温度低、保温时间短和样品晶粒细小。振荡压力通过促进晶界滑动、塑性变形、颗粒重排和孤立气孔的去除,对材料的致密化有着关键作用。
为了实现上述目的,本发明提供如下技术方案:
本发明的第一方面,提供一种高熵合金/陶瓷复合点阵结构的制备方法,其包括如下步骤:
1)将高熵合金球形粉末通过选区激光熔化3D打印设备制备得到高熵合金三维点阵结构;
2)将陶瓷粉末以及金属粉末进行球磨混合,随后将含有有机单体、交联剂、去离子水、分散剂、消泡剂的预混液加入到球磨后的混合粉末中,利用引发剂-加热凝胶法制备复合陶瓷浆料,将复合陶瓷浆料进行搅拌匀化处理后进行真空消泡;
3)在2)得到的复合陶瓷浆料中加入引发剂,搅拌并再次真空消泡后在负压条件下快速注入步骤1)高熵合金三维点阵结构的孔隙当中,随后进行加热干燥处理,得到高熵合金/陶瓷复合坯体;
4)将干燥后的高熵合金/陶瓷复合坯体放入保护气氛脱脂炉中进行有机物烧除脱脂;
5)将脱脂后的高熵合金/陶瓷复合坯体置于振荡压力烧结炉中进行烧结处理得到高熵合金/陶瓷复合点阵结构。
如上所述,步骤1)高熵合金球形粉末包含Fe、Co、Cr、Ni、Mn、Al、Cu、Ti中的3种或3种以上元素作为主要组成元素,每种元素的摩尔比为5~35%,经熔炼、雾化制备而成的球形合金粉末,粉末粒径为15~53μm。
如上所述,步骤1)中,在选区激光熔化3D打印设备的粉缸中加入高熵合金球形粉末,依据构建的含有贯穿孔隙的三维点阵结构模型进行分层切片并设计打印工艺参数,而后选区激光熔化3D打印设备依据设定的程序和工艺参数进行增材制造,在完成高熵合金三维点阵结构的增材制造成形之后,将其从基板上切割分离下来备用。
如上所述,步骤1)含有贯穿孔隙的三维点阵结构模型中的单胞外包络最小尺寸为1×1×1mm3,单胞壁厚为0.3~5mm,贯穿孔隙占总体结构的体积比为20~80%。选区激光熔化3D打印包含工艺参数:工作腔充入氩气保护并控制氧气含量低于3500ppm,基板预热温度为100~120℃,激光平均功率密度40~100W/mm3,激光扫描速度1000~3000mm/s,铺粉层厚0.3~0.5mm。
如上所述,步骤2)陶瓷粉末为氧化铝、碳化硅或碳化钛中的一种或多种,陶瓷粉末粒径规格包含3~10μm和30~53μm两种规格;所述金属粉末为Fe、Co、Cr、Ni、Mn、Al、Cu、Ti中的一种以上金属单质或步骤1)中所述的一种高熵合金球形粉末,粉末粒径为15~53μm,金属粉末占球磨混合金属/陶瓷总体粉末的质量比为10~30%。
如上所述,步骤2)有机单体选用丙烯酰胺,交联剂选用N,N’-亚甲基双丙烯酰胺,分散剂选自聚丙烯酸盐、聚乙二醇、多聚磷酸盐、四甲基氢氧化铵和聚甲基丙烯酸盐中的一种,引发剂选用过硫酸铵。其中,有机单体占浆料各组分质量分数为4~6%,交联剂占浆料各组分质量分数为0.4~0.7%,分散剂占浆料各组分质量分数为0.6~0.9%,引发剂占浆料各组分质量分数为2~3%。
如上所述,步骤2)使用球磨机将陶瓷粉末及金属粉末进行球磨混合的时间为1~6h,使用磁力搅拌器将混合的复合陶瓷浆料搅拌0.5~3h,搅拌均匀后进行不少于0.5h的真空消泡,复合陶瓷浆料中金属和陶瓷混合粉末的固相含量不小于浆料总质量的40%。
如上所述,步骤3)放入水浴锅中进行加热干燥处理,加热干燥处理设置的水浴温度为40~45℃,时间20~40min。
如上所述,步骤4)高熵合金/陶瓷复合坯体在保护气氛脱脂炉中的升温速度控制在0.3~1℃/min,最高脱脂温度为400~600℃,脱脂保温时间为0.5~3h,保护气氛为纯度99.9%以上的工业氩气。
如上所述,步骤5)烧结处理为:首先由室温升至400~600℃然后保温,此时振荡压力线性增加至最高值;然后继续升温至高熵合金熔点温度以下100~300℃并保温,保温的同时持续施加最高振荡压力;最后振荡压力线性递减到0的同时烧结炉慢速降温至500~700℃后随炉冷却至室温。
如上所述,步骤5)脱脂后的高熵合金/陶瓷复合坯体在振荡压力烧结炉中以1~5℃/min的升温速度由室温升至400~600℃然后保温1~2h,此时振荡压力从0到40±10MPa呈线性增加;然后以5~10℃/min的升温速度继续升温至高熵合金熔点温度以下100~300℃并保温2~4h,同时施加40±10MPa的振荡压力;最后振荡压力从40±10到0MPa线性递减的同时,烧结炉以5~10℃/min的降温速度降温至500~700℃后随炉冷却至室温。
本发明的有益效果在于:
1.可以实现金属与陶瓷复合的三维点阵结构的高致密化制备,进而在亚毫米至厘米尺度内可对金属与陶瓷的组织结构进行编辑设计;
2.陶瓷、金属在强度、塑性、导热、导电等性能方面差异迥然,但经三维点阵复合制备之后,可实现1+1>2的高性能变化,甚至可实现超材料的可控制备;
3.工艺灵活,设计窗口宽泛,例如高熵合金材料成分及含量可在大范围内变化,都可满足金属与陶瓷在同一升温曲线下的高质量烧结致密化成形,进而使得材料、结构、性能的优化空间大大拓展。
4.工序间相互影响小,特别是3D打印金属点阵具有较高强度,可后续注浆脱脂及烧结中,不易发生塌陷、开裂等缺陷,材料组织与性能可控性好。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是高熵合金/陶瓷复合点阵结构制备流程图;
图2是高熵合金点阵结构示意图;
图3是高熵合金点阵结构注入复合浆料后的结构示意图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
实施例1:
本发明提供的一种FeCoCrNiAl高熵合金/碳化硅复合点阵结构材料的制备方法,包括以下步骤(如图1所示):
将粒径为15~53μm的FeCoCrNiAl高熵合金粉末放入真空干燥箱中,其中真空度小于10-5Pa、保温温度100℃及时间5h,冷却后利用200目振动筛去除杂质;供粉缸中放入高熵粉末并铺平,安装橡胶刮刀,将碳钢基板放入成型缸并使用刮刀调平;关闭腔门,设置氧气含量为3500ppm和活塞温度为120℃,待氧气含量达到3500ppm时开启循环过滤系统。使用三维建模软件构建点阵模型,结构为内凹六边形如图2所示,直径为28.98mm,高度为11.40mm;单胞边长均为3×3×3mm3,壁厚为0.60mm,贯穿孔隙占总体结构的体积比为60%。将三维模型导入多功能建模操作系统中,设置填充功率170W、填充速度1500mm/s、层厚0.03mm、线间距0.1mm及基板温度120℃,随后将工艺程序文件导入系统控制软件中进行点阵结构打印建造。高熵合金点阵结构注入复合浆料后的结构示意图如图3所示。建造的点阵结构具有特殊的力学性能,在单轴压力(拉力)作用下发生横向收缩(膨胀),其在抗剪承载力、抗断裂性、能量吸收和压陷阻力等方面比传统材料更有优势。
将试剂丙烯酰胺(AM)3.64g、N,N`-亚甲基双丙烯酰胺(MBAM)0.38g、四甲基氢氧化铵(TMAH)0.55g、聚乙烯吡络烷酮(PVP)0.41g及去离子水13.67g混合配制成预混液。
称取平均粒径3.82μm碳化硅粉末40g、粒径47.79μm碳化硅粉末20g及FeCoCrNiAl高熵合金粉末15g进行3h球磨混合。将预混液分别加入至混合粉末中,经磁力搅拌器工作1h,随后进行真空消泡,真空度小于0.8×10-5Pa,消泡不少于30min。
在消泡后的浆料中加入引发剂4.70g,磁力搅拌并真空消泡后注入FeCoCrNiAl高熵合金点阵结构,配制出固含量为56vol%的复合预制体,将复合预制体放入水浴锅中,设置温度为45℃,时间为30min,得到高熵合金/陶瓷复合坯体,后经96h常温干燥。
将干燥后的复合坯体放入高温真空管式炉中进行脱脂,以0.5℃/min升温速度由室温升至110℃并保温1h充分消除去离子水。再以0.5℃/min升温速度升至450℃并保温2h使分解产物中的残碳氧化排除,最后随炉冷却至室温。将脱脂后的复合坯体置于振荡压力烧结炉中进行烧结处理:以3℃/min升温速度由室温升至500℃,在500℃下保温1h,此时振荡压力从0到40±10MPa呈线性增加;然后以5℃/min的升温速度继续升温至1200℃,进一步,以2hz施加40±10MPa的振荡压力在1200℃保温2h;振荡压力从40±10到0MPa呈线性递减同时,烧结炉以5℃/min的降温速度降温至600℃,随后随炉冷却至室温,最终得到高熵合金/陶瓷复合点阵结构。
实施例2:
本发明提供一种制备FeCoCrNiMn高熵合金/碳化钛复合点阵结构的方法,包括以下步骤:
将粒径为15~53μm的FeCoCrNiMn高熵合金粉末放入真空干燥箱中,其中真空度小于10-5Pa、温度120℃及时间8h,冷却后利用200目振动筛去除杂质;供粉缸中放入高熵粉末并铺平,安装橡胶刮刀,将碳钢基板放入成型缸并使用刮刀调平;关闭腔门,设置氧气使能为3500ppm和活塞温度使能为100℃,待氧气含量达到3500ppm时开启循环过滤系统。使用三维建模软件构建点阵模型,结构为内凹六边形,直径为27.00mm,高度为10.00mm;单胞尺寸为1×1×1mm3,壁厚为0.20mm,贯穿孔隙占总体结构的体积比为70%。将三维模型导出stl格式并导入多功能建模操作系统中,设置填充功率130W、填充速度1500mm/s、层厚0.03mm、线间距0.12mm及基板温度100℃,随后导出bpf格式并导入系统控制软件中进行点阵结构建造。建造的点阵结构具有特殊的力学性能,在单轴压力(拉力)作用下发生横向收缩(膨胀),其在抗剪承载力、抗断裂性、能量吸收和压陷阻力等方面比传统材料更有优势。
将试剂丙烯酰胺(AM)9.12g、N,N`-亚甲基双丙烯酰胺(MBAM)0.94g、四甲基氢氧化铵(TMAH)1.37g、聚乙烯吡络烷酮(PVP)1.03g及去离子水34.10g混合配制成预混液。
称取平均粒径3.82μm碳化钛粉末100g、粒径47.79μm碳化钛粉末40g及FeCoCrNiMn高熵合金粉末38g进行4h球磨混合。将预混液分别加入至混合粉末中,经磁力搅拌器工作2h,随后进行真空消泡,真空度小于0.8×10-5Pa,消泡不少于30min。
在消泡后的浆料中加入引发剂4.70g,磁力搅拌并真空消泡后分别注入FeCoCrNiMn高熵合金点阵结构,配制出固含量为56vol%的复合预制体,将复合预制体放入水浴锅中,设置温度为40℃,时间为25min,得到高熵合金/陶瓷复合坯体,后经96h常温干燥。
将干燥后的复合坯体放入高温真空管式炉中进行脱脂,以0.3℃/min升温速度由室温升至100℃并保温1.5h充分消除去离子水。再以0.3℃/min升温速度升至500℃并保温3h使分解产物中的残碳氧化排除,最后随炉冷却至室温。将脱脂后的复合坯体置于振荡压力烧结炉中进行烧结处理:以2℃/min升温速度由室温升至600℃,在600℃下保温1h,此时振荡压力从0到30±10MPa呈线性增加;然后以8℃/min的升温速度继续升温至1500℃,进一步,以2hz施加30±10MPa的振荡压力在1500℃保温2h;振荡压力从30±10到0MPa呈线性递减同时,烧结炉以8℃/min的降温速度降温至600℃,随后随炉冷却至室温,最终得到高熵合金/陶瓷复合点阵结构。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高熵合金/陶瓷复合点阵结构的制备方法,其特征在于,包括如下步骤:
1)将高熵合金球形粉末通过选区激光熔化3D打印设备制备得到高熵合金三维点阵结构;
2)将陶瓷粉末以及金属粉末进行球磨混合,随后将含有有机单体、交联剂、去离子水、分散剂、消泡剂的预混液加入到球磨后的混合粉末中,利用引发剂-加热凝胶法制备复合陶瓷浆料,将复合陶瓷浆料进行搅拌匀化处理后进行真空消泡;
3)在2)得到的复合陶瓷浆料中加入引发剂,搅拌并再次真空消泡后在负压条件下快速注入步骤1)高熵合金三维点阵结构的孔隙当中,随后进行加热干燥处理,得到高熵合金/陶瓷复合坯体;
4)将干燥后的高熵合金/陶瓷复合坯体放入保护气氛脱脂炉中进行有机物烧除脱脂;
5)将脱脂后的高熵合金/陶瓷复合坯体置于振荡压力烧结炉中进行烧结处理得到高熵合金/陶瓷复合点阵结构。
2.根据权利要求1所述制备方法,其特征在于,步骤1)高熵合金球形粉末包含Fe、Co、Cr、Ni、Mn、Al、Cu、Ti中的3种或3种以上元素作为主要组成元素,每种元素的摩尔比为5~35%,经熔炼、雾化制备而成的球形合金粉末,粉末粒径为15~53μm。
3.根据权利要求1所述制备方法,其特征在于,步骤1)中,在选区激光熔化3D打印设备的粉缸中加入高熵合金球形粉末,依据构建的含有贯穿孔隙的三维点阵结构模型进行分层切片并设计打印工艺参数,而后选区激光熔化3D打印设备依据设定的程序和工艺参数进行增材制造,在完成高熵合金三维点阵结构的增材制造成形之后,将其从基板上切割分离下来备用;
优选的,步骤1)含有贯穿孔隙的三维点阵结构模型中的单胞外包络最小尺寸为1×1×1mm3,单胞壁厚为0.3~5mm,贯穿孔隙占总体结构的体积比为20~80%;选区激光熔化3D打印包含工艺参数:工作腔充入氩气保护并控制氧气含量低于3500ppm,基板预热温度为100~120℃,激光平均功率密度40~100W/mm3,激光扫描速度1000~3000mm/s,铺粉层厚0.3~0.5mm。
4.根据权利要求1所述制备方法,其特征在于,步骤2)陶瓷粉末为氧化铝、碳化硅或碳化钛中的一种或多种,陶瓷粉末粒径规格包含3~10μm和30~53μm两种规格;所述金属粉末为Fe、Co、Cr、Ni、Mn、Al、Cu、Ti中的一种以上金属单质或步骤1)中所述的一种高熵合金球形粉末,粉末粒径为15~53μm,金属粉末占球磨混合金属/陶瓷总体粉末的质量比为10~30%。
5.根据权利要求1所述制备方法,其特征在于,步骤2)有机单体选用丙烯酰胺,交联剂选用N,N’-亚甲基双丙烯酰胺,分散剂选自聚丙烯酸盐、聚乙二醇、多聚磷酸盐、四甲基氢氧化铵和聚甲基丙烯酸盐中的一种,引发剂选用过硫酸铵;其中,有机单体占浆料各组分质量分数为4~6%,交联剂占浆料各组分质量分数为0.4~0.7%,分散剂占浆料各组分质量分数为0.6~0.9%,引发剂占浆料各组分质量分数为2~3%。
6.根据权利要求1所述制备方法,其特征在于,步骤2)使用球磨机将陶瓷粉末及金属粉末进行球磨混合的时间为1~6h,使用磁力搅拌器将混合的复合陶瓷浆料搅拌0.5~3h,搅拌均匀后进行不少于0.5h的真空消泡,复合陶瓷浆料中金属和陶瓷混合粉末的固相含量不小于浆料总质量的40%。
7.根据权利要求1所述制备方法,其特征在于,步骤3)放入水浴锅中进行加热干燥处理,加热干燥处理设置的水浴温度为40~45℃,时间20~40min;
或,步骤4)高熵合金/陶瓷复合坯体在保护气氛脱脂炉中的升温速度控制在0.3~1℃/min,最高脱脂温度为400~600℃,脱脂保温时间为0.5~3h,保护气氛为纯度99.9%以上的工业氩气。
8.根据权利要求1所述制备方法,其特征在于,步骤5)烧结处理为:首先由室温升至400~600℃然后保温,此时振荡压力线性增加至最高值;然后继续升温至高熵合金熔点温度以下100~300℃并保温,保温的同时持续施加最高振荡压力;最后振荡压力线性递减到0的同时烧结炉慢速降温至500~700℃后随炉冷却至室温。
9.根据权利要求8所述制备方法,其特征在于,步骤5)脱脂后的高熵合金/陶瓷复合坯体在振荡压力烧结炉中以1~5℃/min的升温速度由室温升至400~600℃然后保温1~2h,此时振荡压力从0到40±10MPa呈线性增加;然后以5~10℃/min的升温速度继续升温至高熵合金熔点温度以下100~300℃并保温2~4h,同时施加40±10MPa的振荡压力;最后振荡压力从40±10到0MPa线性递减的同时,烧结炉以5~10℃/min的降温速度降温至500~700℃后随炉冷却至室温。
10.根据上述权利要求任一项所述制备方法制备得到的高熵合金/陶瓷复合点阵结构。
CN202211337317.5A 2022-10-28 2022-10-28 一种高熵合金/陶瓷复合点阵结构的制备方法 Active CN115572153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211337317.5A CN115572153B (zh) 2022-10-28 2022-10-28 一种高熵合金/陶瓷复合点阵结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211337317.5A CN115572153B (zh) 2022-10-28 2022-10-28 一种高熵合金/陶瓷复合点阵结构的制备方法

Publications (2)

Publication Number Publication Date
CN115572153A true CN115572153A (zh) 2023-01-06
CN115572153B CN115572153B (zh) 2023-07-21

Family

ID=84587542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211337317.5A Active CN115572153B (zh) 2022-10-28 2022-10-28 一种高熵合金/陶瓷复合点阵结构的制备方法

Country Status (1)

Country Link
CN (1) CN115572153B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119298A1 (fr) * 2007-03-30 2008-10-09 Xiaojun Zhang Nouvelle conception de segment d'outil diamant obtenu par brasage-frittage
US20120148794A1 (en) * 2008-04-24 2012-06-14 Siemens Power Generation, Inc. Cmc anchor for attaching a ceramic thermal barrier to metal
CN103113112A (zh) * 2013-02-04 2013-05-22 西安交通大学 一种金属增韧陶瓷基复合材料涡轮叶片的制备方法
DE102017205432A1 (de) * 2016-06-30 2018-01-04 Institut für Bioprozess- und Analysenmesstechnik e.V. Herstellung von Keramikstrukturen mittels Mehr-Photonenpolymerisation
CN108580903A (zh) * 2018-05-24 2018-09-28 华中科技大学 一种轻质金属基点阵隔热-承载结构及其成形方法
WO2021082277A1 (zh) * 2019-10-29 2021-05-06 沈阳铸造研究所有限公司 一种高熔点Kelvin结构点阵金属及其制备方法与应用
US20210260652A1 (en) * 2018-06-20 2021-08-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
WO2021228185A1 (zh) * 2020-05-14 2021-11-18 苏州大学 金属微点阵结构材料及其制备方法
CN114226755A (zh) * 2021-12-21 2022-03-25 清华大学 金属-陶瓷复合点阵制造方法及金属-陶瓷复合点阵结构
CN114959406A (zh) * 2022-07-05 2022-08-30 长沙理工大学 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119298A1 (fr) * 2007-03-30 2008-10-09 Xiaojun Zhang Nouvelle conception de segment d'outil diamant obtenu par brasage-frittage
US20120148794A1 (en) * 2008-04-24 2012-06-14 Siemens Power Generation, Inc. Cmc anchor for attaching a ceramic thermal barrier to metal
CN103113112A (zh) * 2013-02-04 2013-05-22 西安交通大学 一种金属增韧陶瓷基复合材料涡轮叶片的制备方法
DE102017205432A1 (de) * 2016-06-30 2018-01-04 Institut für Bioprozess- und Analysenmesstechnik e.V. Herstellung von Keramikstrukturen mittels Mehr-Photonenpolymerisation
CN108580903A (zh) * 2018-05-24 2018-09-28 华中科技大学 一种轻质金属基点阵隔热-承载结构及其成形方法
US20210260652A1 (en) * 2018-06-20 2021-08-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
WO2021082277A1 (zh) * 2019-10-29 2021-05-06 沈阳铸造研究所有限公司 一种高熔点Kelvin结构点阵金属及其制备方法与应用
WO2021228185A1 (zh) * 2020-05-14 2021-11-18 苏州大学 金属微点阵结构材料及其制备方法
CN114226755A (zh) * 2021-12-21 2022-03-25 清华大学 金属-陶瓷复合点阵制造方法及金属-陶瓷复合点阵结构
CN114959406A (zh) * 2022-07-05 2022-08-30 长沙理工大学 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭锐;周昊;刘荣忠;朱荣;姜炜;: "陶瓷棒填充点阵金属夹层结构的制备及抗侵彻实验", 复合材料学报, no. 04 *

Also Published As

Publication number Publication date
CN115572153B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
Kota et al. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties
CN103113124B (zh) 一种纤维增韧SiC陶瓷基复合材料三维构件的制备方法
EP2150368B1 (en) Direct to metal sintering of 17-4ph steel
CN111018537A (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
US11883978B2 (en) In situ synthesis, densification and shaping of non-oxide ceramics by vacuum additive manufacturing technologies
CN113979764B (zh) 基于增材的网格微结构陶瓷-金属复合制品的制备方法
KR102390062B1 (ko) 고 경도 3d 인쇄된 강철 제품
WO2007092363A2 (en) Hybrid slip casting-electrophoretic deposition (epd) process
CN109261967A (zh) 一种多孔钨材料的电子束分区扫描成形方法
CN110590369B (zh) 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法
CN108838404B (zh) 钛合金低成本近净成形方法
Aguirre et al. Review of additive manufacturing and densification techniques for the net-and near net-shaping of geometrically complex silicon nitride components
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
JP2011523592A (ja) 工作物、特に成形工具または成形工具部分を製造する方法および装置
CN109887769A (zh) 基于选区激光成型的梯度功能钨铜材料电触头及制备方法
CN111302811A (zh) 按需设计陶瓷骨架的陶瓷增强金属基复合材料的制备方法
Chen et al. Alumina-based ceramic mold with integral core and shell for hollow turbine blades fabricated by laser powder bed fusion
CN104117675B (zh) 一种多孔铝或铝合金基复合材料的制备方法
CN108997001B (zh) 一种透气砖用微孔陶瓷棒的制备方法
CN115572153B (zh) 一种高熵合金/陶瓷复合点阵结构的制备方法
CN113275590B (zh) 一种直写打印与加压烧结制备具有贯通型腔构件的方法
CN115247236A (zh) 一种具有双程记忆效应NiTiHf高温形状记忆合金及其4D打印方法与应用
CN115533080A (zh) 具备梯度孔隙率的多孔陶瓷增强金属复合装甲的制备方法
Lostado-Lorza et al. Tensile strength, elastic modulus and thermal conductivity of 3D-Printed components using bronze/PLA filament
CN115637346B (zh) 一种Al/SiC复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant