CN110590369B - 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法 - Google Patents

一种连续梯度TiC多孔陶瓷及其模板压缩制备方法 Download PDF

Info

Publication number
CN110590369B
CN110590369B CN201911051800.5A CN201911051800A CN110590369B CN 110590369 B CN110590369 B CN 110590369B CN 201911051800 A CN201911051800 A CN 201911051800A CN 110590369 B CN110590369 B CN 110590369B
Authority
CN
China
Prior art keywords
sponge
porous ceramic
gradient
slurry
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911051800.5A
Other languages
English (en)
Other versions
CN110590369A (zh
Inventor
周洋
高文
胡文强
雷聪
张永辉
韩晓楠
李世波
黄振莺
李翠伟
于文波
翟洪祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201911051800.5A priority Critical patent/CN110590369B/zh
Publication of CN110590369A publication Critical patent/CN110590369A/zh
Application granted granted Critical
Publication of CN110590369B publication Critical patent/CN110590369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种连续梯度TiC多孔陶瓷及其模板压缩制备方法。该TiC多孔陶瓷两侧孔隙率分别为60~90%和80~95%,两侧密度差为20%~100%,期间连续过渡。其制备方法如下:将Ti粉、C粉、PVB和乙醇配制成料浆;选用一定孔径的聚氨酯海绵,将其裁切成梯形,放入一个宽度与梯形海绵上底尺寸相同的矩形框中,使梯形海绵由上到下产生程度不同的均匀压缩。以此海绵为模板,通过料浆浸渍法获得梯度多孔陶瓷坯体,再经无压烧结,即得到本发明的连续梯度TiC多孔陶瓷。本发明所制备的TiC多孔陶瓷呈连续梯度结构,两侧孔隙率可通过选择适当孔径的海绵、改变梯形海绵上下底的比例以及改变挂浆次数进行调控;本发明操作简单,结构可控性高,成本低廉。

Description

一种连续梯度TiC多孔陶瓷及其模板压缩制备方法
技术领域
本发明涉及多孔陶瓷及梯度功能材料领域,具体涉及一种连续梯度TiC多孔陶瓷及其模板压缩制备方法。
背景技术
多孔陶瓷材料是一种以气孔为主相的新型陶瓷材料,由于它具有比表面积大,导热率低,耐高温,耐磨损,气孔分布均匀以及气孔形状、大小可调的特点而广泛应用于生物、化工、能源、冶炼等众多领域。添加造孔剂可以制备形状复杂的多孔陶瓷材料,但是气孔分布不均匀;发泡法制备的多孔陶瓷材料气孔均匀,但多用于制备闭气孔产品;冷冻干燥工艺可制备孔结构较复杂的多孔陶瓷,该工艺控制简单、坯体烧成收缩小;有机泡沫浸渍法可制备具有三维网状骨架结构的陶瓷体,这是一种具有特殊增强类型的新型陶瓷,良好的过滤材料多使用这种结构,它具有压力损失小、表面积大、质量轻等优点。但以上方法制备的多孔陶瓷孔隙大小及分布受到限制,且呈均匀分布。
梯度功能材料由于其组分、结构呈连续变化,因而材料性质和功能也相应于组成和结构的变化而呈梯度变化。这种材料因其两侧功能的差异而在航空航天、交通运输、核能、电子、化学、生物医学及军工等领域发挥着重要的作用。梯度功能材料的制备主要分为气相法、液相法和固相法。其中气相法主要用于材料表面处理,其组织较疏松,且不能制备块体材料;液相法比较常见的是离心浇铸法,此方法可制备高密度大体积的材料,但对熔点较高的金属不适用;固相法主要有自蔓延高温合成法和粉末冶金法,能够制备较为均匀、致密的梯度功能材料,其中自蔓延高温合成法能源利用率高,但其控制参数较为严格,对材料成分有较大限制;粉末冶金法能够得到成分梯度分布的材料,但是其增强相只能是一维或二维,且其成分只能呈阶梯状分布,而非连续变化。发明专利“离心冷冻干燥技术制备梯度多孔陶瓷的方法”(申请号:CN201410105442.2,公开号:CN103896624A)通过离心旋转并定向冷冻,再经低压干燥和烧结得到孔隙率呈连续梯度变化的多孔陶瓷。该工艺制备的梯度多孔陶瓷材料呈“内疏外密”的仿生结构,孔隙率由内向外为连续梯度变化,具有残余应力小、力学性能和稳定性好的优点,但是所制备的梯度多孔陶瓷孔径微小,且各梯度层厚度较难控制。发明专利“仿生梯度多孔陶瓷材料的制备方法”(申请号:CN201310046286.2,公开号:CN103145438A)将陶瓷浆料经过冷冻后真空冷冻干燥,最后经过烧结,得到仿生梯度多孔陶瓷材料。该工艺制备的梯度多孔陶瓷具有良好的力学性能,但是工艺复杂,且闭孔较多,孔隙率较低。
目前已有的梯度多孔陶瓷的制备工艺过程繁琐,且较难实现三维连续梯度结构,孔径较小,可调范围小。本发明制备的连续梯度TiC多孔陶瓷具有三维连续梯度结构,孔径大小及梯度变化率能够在较大范围内可调,且其复合材料的性能及应用空间大大提高,甚至能够解决目前航空航天、军工以及交通运输领域很多技术难题。
发明内容
综合对比各种梯度功能材料及多孔陶瓷的制备方法,本发明提出一种连续梯度TiC多孔陶瓷及其模板压缩制备方法。
本发明的技术方案为:一种连续梯度TiC多孔陶瓷及其模板压缩制备方法,其特征在于:该TiC多孔陶瓷具有连续梯度结构,两侧孔隙率分别为60~90%和80~95%,两侧密度差为20%~100%,期间连续过渡,其制备方法包括以下步骤:
步骤1,模板选用及设计:选用适当孔径的聚氨酯海绵,按梯度结构要求计算海绵的最大压缩比例,设计出梯形海绵的尺寸;
步骤2,模板成型:按步骤1的设计裁切海绵,经预处理后,放入矩形框中,使海绵由上到下产生程度不同的均匀压缩,得到梯度海绵模板;
步骤3,配制料浆:称量一定量的Ti粉、C粉、PVB(聚乙烯醇缩丁醛)和乙醇,经球磨混合配制成料浆;
步骤4,挂浆成型:将步骤2)制备的梯度海绵模板放入步骤3)配制的料浆中进行浸渍,干燥后获得梯度TiC多孔陶瓷坯体;
步骤5,烧结:将步骤4)所得多孔陶瓷坯体放入高温炉中进行烧结,即得到连续梯度TiC多孔陶瓷。
本发明的技术特征还有:步骤1所述聚氨酯海绵为平板状,其孔径范围为25~60PPI(Pores Per Inch);所述梯形海绵上底与下底的长度比为1:1.2~2。
本发明的技术特征还有:步骤2所述的海绵预处理方法为:将海绵在浓度为10%的NaOH溶液中浸泡10h,之后放置于CMC(羟甲基纤维素钠)溶液中浸泡20h;所述矩形框的长度、宽度、厚度分别与梯形海绵的高度、上底长度、厚度相同,其材质可以是金属、陶瓷或石墨。
本发明的技术特征还有:步骤3所述的料浆配制方法为:按照C的重量百分比10~20wt.%称量Ti粉和C粉放入滚筒球磨机中干混4~8h,球料比为4:1;称量一定量的PVB和乙醇,配制成2~5wt.%的PVB乙醇溶液,按质量比1:1向混合后的干粉中加入PVB乙醇溶液,继续滚筒球磨8~24h,制得料浆。
本发明的技术特征还有:步骤4所述的挂浆成型方法为:将梯度模板完全浸入料浆,取出后通过挤压或离心旋转方式排出多余的料浆后干燥,重复上述步骤4~7次后,经室温干燥或烘箱加热干燥,获得连续梯度TiC多孔陶瓷坯体。
本发明的技术特征还有:步骤5所述烧结工艺条件为:烧结温度1400~1700℃,在真空或惰性气体保护下保温0.5~2小时。
本发明的TiC多孔陶瓷两侧孔隙率可通过选择适当孔径的海绵、改变梯形海绵上下底的比例以及改变挂浆次数进行调控,两侧孔隙率分别在60~90%和80~95%,两侧密度差在20%~100%间可调;本发明制备的连续梯度TiC多孔陶瓷可单独使用或作为金属基复合材料的增强体,应用于航空航天、军工、交通运输等领域的关键零部件生产。
附图说明
图1是本发明实施例中有机海绵模板示意图;
图2是本发明实施例中梯度模板示意图;
图3是本发明实施例二中梯度模板实物图;
图4是本发明实施例二制备的连续梯度TiC多孔陶瓷实物图。
其中,1是矩形框,2是挂浆后烧结前的梯度模板。
具体实施方式
下面结合附图及实施例,对本发明的具体实施方式进行说明。其中,全部实施例所用原料为Ti粉、C粉,所用聚氨酯海绵孔径范围为25~60PPI,梯形海绵上底长度30mm,厚度10mm,所用矩形框尺寸为30×60×10mm。
实施例一
选择25PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:1.2的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉88克、C粉12克,加入玛瑙球400克,滚筒球磨4h后获得混合粉体,称取PVB 4克、乙醇96毫升配制成4wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨20h得到均匀料浆;将梯度模板浸入浆料中,取出后通过离心旋转方式排除多余浆料,放入烘箱中干燥,如此浸渍4次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氩气保护下升温至1400℃保温2h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为90%和92%,两侧密度差为20.0%。
实施例二
选择25PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:1.5的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉85克、C粉15克,加入玛瑙球400克,滚筒球磨6h后获得混合粉体,称取PVB 3克、乙醇97毫升配制成3wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨12h得到均匀料浆;将梯度模板浸入浆料中,取出后通过挤压方式排除多余浆料,放入烘箱中干燥,如此浸渍7次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氩气保护下升温至1600℃保温1h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为79%和86%,两侧密度差为50.8%。
实施例三
选择35PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:2的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉80克、C粉20克,加入玛瑙球400克,滚筒球磨8h后获得混合粉体,称取PVB 5克、乙醇95毫升配制成5wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨8h得到均匀料浆;将梯度模板浸入浆料中,取出后通过离心旋转方式排除多余浆料,放入烘箱中干燥,如此浸渍6次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氮气保护下升温至1700℃保温0.5h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为74%和87%,两侧密度差为100.0%。
实施例四
选择50PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:1.7的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉90克、C粉10克,加入玛瑙球400克,滚筒球磨7h后获得混合粉体,称取PVB 2克、乙醇98毫升配制成2wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨24h得到均匀料浆;将梯度模板浸入浆料中,取出后通过挤压方式排除多余浆料,在室温下自然干燥,如此浸渍5次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氩气保护下升温至1500℃保温1.5h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为71%和83%,两侧密度差为71.3%。
实施例五
选择60PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:1.5的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉86克、C粉14克,加入玛瑙球400克,滚筒球磨5h后获得混合粉体,称取PVB 4克、乙醇96毫升配制成4wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨22h得到均匀料浆;将梯度模板浸入浆料中,取出后通过离心旋转方式排除多余浆料,在室温下自然干燥,如此浸渍4次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氩气保护下升温至1600℃保温1h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为82%和88%,两侧密度差为50.4%。
实施例六
选择60PPI的聚氨酯海绵为原始模板,按上底与下底的长度比为1:2的比例将其裁剪成梯形后,放入浓度为10%的NaOH溶液中浸泡10h,再放置于CMC(羟甲基纤维素钠)溶液中浸泡20h进行预处理;将预处理后的海绵放入矩形框中,使海绵由下底至上底产生程度不同的均匀压缩,得到梯度海绵模板,放置备用;称取Ti粉82克、C粉18克,加入玛瑙球400克,滚筒球磨6h后获得混合粉体,称取PVB 5克、乙醇95毫升配制成5wt.%PVB乙醇溶液,倒入混合粉体中继续滚筒球磨16h得到均匀料浆;将梯度模板浸入浆料中,取出后通过离心旋转方式排除多余浆料,放入烘箱中干燥,如此浸渍7次后获得连续梯度TiC多孔陶瓷坯体,再将坯体放入高温炉中,在氩气保护下升温至1650℃保温1h进行烧结,即得连续梯度TiC多孔陶瓷。
测得上述连续梯度TiC多孔陶瓷两侧孔隙率分别为60%和80%,两侧密度差为100.0%。
上面结合附图对本发明的实施例进行了说明,但上述说明并非对本发明的限制,本发明也不仅限于上述实施例。凡是在本发明的实质和原理范围内进行的变化、代替、添加、简化,组合等均视为等效的置换方式,也属于本发明的保护范围。

Claims (5)

1.一种连续梯度TiC多孔陶瓷的模板压缩制备方法,其特征在于:
(1)该TiC多孔陶瓷具有连续梯度结构,两侧孔隙率分别为60~90%和80~95%,两侧密度差为20%~100%,期间连续过渡;
(2)该制备方法包括以下步骤:
步骤1,模板选用及设计:选用适当孔径的聚氨酯海绵,按梯度结构要求计算海绵的最大压缩比例,设计出梯形海绵的尺寸;
步骤2,模板成型:按步骤1的设计裁切海绵,经预处理后,放入矩形框中,使海绵由上到下产生程度不同的均匀压缩,得到梯度海绵模板;
步骤3,配制料浆:称量一定量的Ti粉、C粉、PVB和乙醇,经球磨混合配制成料浆;
步骤4,挂浆成型:将步骤2)制备的梯度海绵模板放入步骤3)配制的料浆中进行浸渍,干燥后获得梯度TiC多孔陶瓷坯体;
步骤5,烧结:将步骤4)所得多孔陶瓷坯体放入高温炉中进行烧结,即得到连续梯度TiC多孔陶瓷;
其中,步骤1所述聚氨酯海绵为平板状,其孔径范围为25~60PPI;所述梯形海绵上底与下底的长度比为1∶1.2~2。
2.按照权利要求1所述的一种连续梯度TiC多孔陶瓷的模板压缩制备方法,其特征在于:步骤2所述的海绵预处理方法为:将海绵在浓度为10%的NaOH溶液中浸泡10h,之后放置于CMC溶液中浸泡20h;所述矩形框的长度、宽度、厚度分别与梯形海绵的高度、上底长度、厚度相同,其材质是金属、陶瓷或石墨。
3.按照权利要求1所述的一种连续梯度TiC多孔陶瓷的模板压缩制备方法,其特征在于:步骤3所述的料浆配制方法为:按照C的重量百分比10~20wt.%称量Ti粉和C粉放入滚筒球磨机中干混4~8h,球料比为4∶1;称量一定量的PVB和乙醇,配制成2~5wt.%的PVB乙醇溶液,按质量比1∶1向混合后的干粉中加入PVB乙醇溶液,继续滚筒球磨8~24h,制得料浆。
4.按照权利要求1所述的一种连续梯度TiC多孔陶瓷的模板压缩制备方法,其特征在于:步骤4所述的挂浆成型方法为:将梯度模板完全浸入料浆,取出后通过挤压或离心旋转方式排出多余的料浆后干燥,重复上述步骤4~7次后,经室温干燥或烘箱加热干燥,获得连续梯度TiC多孔陶瓷坯体。
5.按照权利要求1所述的一种连续梯度TiC多孔陶瓷的模板压缩制备方法,其特征在于:步骤5所述烧结工艺条件为:烧结温度1400~1700℃,在真空或惰性气体保护下保温0.5~2小时。
CN201911051800.5A 2019-10-31 2019-10-31 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法 Active CN110590369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911051800.5A CN110590369B (zh) 2019-10-31 2019-10-31 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911051800.5A CN110590369B (zh) 2019-10-31 2019-10-31 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法

Publications (2)

Publication Number Publication Date
CN110590369A CN110590369A (zh) 2019-12-20
CN110590369B true CN110590369B (zh) 2020-12-22

Family

ID=68852280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911051800.5A Active CN110590369B (zh) 2019-10-31 2019-10-31 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法

Country Status (1)

Country Link
CN (1) CN110590369B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233478B (zh) * 2020-01-20 2021-04-06 北京交通大学 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法
CN111943716A (zh) * 2020-08-20 2020-11-17 安徽工业大学 一种新型赤泥-粉煤灰基梯度结构多孔陶瓷的制备方法
CN112850799A (zh) * 2021-01-26 2021-05-28 河海大学 一种用于化学链制氢的双尺度多孔钙钛矿制备方法
CN113735616A (zh) * 2021-08-11 2021-12-03 吉林大学 一种孔径渐变的多孔陶瓷的制备方法
CN114318255B (zh) * 2021-12-09 2022-09-16 贵研铂业股份有限公司 一种由易氧化金属镀膜保护制备的高致密NiV合金溅射靶材及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162310A (en) * 1998-08-05 2000-12-19 Tseng; Shao-Chien Method for producing porous sponge like metal of which the shapes and sizes of pores are controllable
EP2123618A1 (en) * 2008-05-13 2009-11-25 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Ceramic foam with gradient of porosity in heterogeneous catalysis
CN106830980A (zh) * 2017-02-15 2017-06-13 莱芜市南洋多孔材料有限公司 一种采用泡沫浸渍‑高温烧结制备多孔碳化钛陶瓷的方法
CN109396446B (zh) * 2018-11-20 2020-10-30 山东科技大学 一种多级孔复合材料过滤体及其制备方法

Also Published As

Publication number Publication date
CN110590369A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110590369B (zh) 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法
Kieback et al. Processing techniques for functionally graded materials
Bonabi et al. Fabrication of metallic composite foam using ceramic porous spheres “Light Expanded Clay Aggregate” via casting process
CN111233478B (zh) 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法
Zamanian et al. The effect of particle size on the mechanical and microstructural properties of freeze‐casted macroporous hydroxyapatite scaffolds
CN104894418A (zh) 一种原位合成尖晶石晶须增强铝基复合泡沫及其制备方法
CN103602845B (zh) 一种孔隙率、孔径可控开孔泡沫铜的制备方法
CN106830942B (zh) 一种多孔b4c陶瓷骨架及其冷冻注模工艺
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN109516810A (zh) 一种基于p曲面的多孔碳化硅陶瓷的制备方法
CN109928756A (zh) 一种碳化硅增强碳基复合材料及制备方法
CN101994043A (zh) 一种高铌钛铝多孔金属间化合物梯度材料及其制备方法
CN113698215B (zh) 一种致密的层状碳化硅陶瓷及其制备方法
CN114192801B (zh) 一种基于增材制造的三维双连通结构复合材料的制备方法
CN115677364A (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
WO2011011603A2 (en) Glass encapsulated hot isostatic pressed silicon carbide
Sutygina et al. Manufacturing of open-cell metal foams by the sponge replication technique
Liu et al. A novel approach for developing boron carbide (B4C)/cyanate ester (CE) co-continuous Functionally Graded Materials (FGMs) with eliminated abrupt interfaces
Han et al. Fabrication of Ceramics with Complex Porous Structures by the Impregnate–Freeze‐Casting Process
CN108439990B (zh) 一种二硼化钛基陶瓷复合材料及其制备方法
Chen et al. Preparation of novel reticulated porous ceramics with hierarchical pore structures
CN105948810B (zh) 一种三维网状通孔复合材料及其制备
CN105272264B (zh) 一种复式双连续相SiC/Si复合材料的制备方法
KR100395036B1 (ko) 개포형 금속포움 제조방법
CN114622146B (zh) 一种涂层改性铌纤维增强钛铝基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant