WO2021082277A1 - 一种高熔点Kelvin结构点阵金属及其制备方法与应用 - Google Patents

一种高熔点Kelvin结构点阵金属及其制备方法与应用 Download PDF

Info

Publication number
WO2021082277A1
WO2021082277A1 PCT/CN2020/000022 CN2020000022W WO2021082277A1 WO 2021082277 A1 WO2021082277 A1 WO 2021082277A1 CN 2020000022 W CN2020000022 W CN 2020000022W WO 2021082277 A1 WO2021082277 A1 WO 2021082277A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
lattice metal
high melting
kelvin structure
metal
Prior art date
Application number
PCT/CN2020/000022
Other languages
English (en)
French (fr)
Inventor
娄延春
于波
魏彦鹏
杨全占
时坚
税国彦
高鹏
成京昌
苗治全
Original Assignee
沈阳铸造研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳铸造研究所有限公司 filed Critical 沈阳铸造研究所有限公司
Priority to EP20881782.5A priority Critical patent/EP4052817A4/en
Publication of WO2021082277A1 publication Critical patent/WO2021082277A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/005Casting metal foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/081Casting porous metals into porous preform skeleton without foaming
    • C22C1/082Casting porous metals into porous preform skeleton without foaming with removal of the preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of lattice metal preparation, and specifically relates to a high melting point Kelvin structure lattice metal and a preparation method thereof.
  • Lattice metal as a kind of porous metal, gets its name because it has a periodic and ordered structure and is similar to the lattice structure of crystals.
  • Lattice metal has the structural characteristics of light weight, high specific strength and high specific rigidity, as well as functional characteristics such as vibration reduction and noise reduction, and energy absorption. Therefore, it has received extensive attention from the international academic community and is considered to be the most promising new generation of lightweight One of the materials.
  • lattice metals with high melting point metals represented by steel materials and superalloys as the matrix exhibit more excellent comprehensive performance in terms of strength and temperature resistance, which can greatly broaden the breadth and application of lattice metal engineering. depth.
  • lattice metal unit structure In the research of lattice metal, the first problem faced is the choice of lattice metal unit structure.
  • Various representative topological configurations have been proposed. Among them, tetrahedron, pyramid, Kagome and other unit structures are the most widely used lattice unit structures, but lattice metals designed with the above unit structures generally have anisotropic characteristics, limited application conditions, and obviously insufficient applicability. Looking for a more isotropic lattice structure unit is an important research direction of lattice metals.
  • Kelvin combined with Plato’s hypothesis to propose a perfect porous structure the porous structure should be a polyhedral three-dimensional structure composed of 14 faces, including 8 hexahedrons and 6 tetrahedrons.
  • the structure has a high degree of symmetry.
  • the surface structure is named Kelvin structure.
  • Related theoretical calculations and numerical simulation results show that compared with other structures, the Kelvin structure has excellent mechanical isotropy and is an ideal unit structure for constructing lattice metals.
  • the lattice metal with the Kelvin structure as a unit and its preparation method have not been reported yet.
  • the preparation methods of lattice metal mainly include investment casting method, stamping forming method, metal wire weaving method and so on.
  • the stamping forming method and the wire weaving method have higher requirements for the ductility of the base material, the optional range is narrow, and the prepared lattice metal pass structure is limited.
  • the investment casting method uses high molecular polymer material as the precursor of the lattice material. By coating the refractory ceramic slurry and sintering at high temperature, the polymer is decomposed to obtain the lattice material ceramic preform. The molten metal is poured into the mold, and the ceramic preform is removed after solidification to obtain lattice metal.
  • the cell size of the lattice metal prepared by the investment casting method can be as small as a few millimeters.
  • the main advantage of this method is that the hole structure has good manufacturing adaptability and can realize the design requirements of the complex lattice structure.
  • the investment casting method can obtain high-porosity lattice metal, which meets the practical needs of light weight to the greatest extent, and the investment casting method has become one of the best technological methods for preparing lattice metal.
  • the current use of investment casting to prepare lattice metals is mainly based on low-melting aluminum alloys, and the prefabricated materials such as gypsum are not suitable for the process requirements of high-melting metals.
  • the traditional lattice metal is generally anisotropic due to its unit structure, which leads to its limited application conditions.
  • the strength and temperature resistance of the low-melting matrix lattice metal are insufficient, and the preform material used for its preparation.
  • the high-temperature strength and releasability of the high-melting point matrix metal can not meet the technological requirements of the preparation of the matrix metal, which greatly limits the application and promotion of the matrix metal.
  • the present invention provides a high melting point Kelvin structure lattice metal and a preparation method thereof.
  • One of the objectives of the present invention is to solve the general anisotropy of the unit structure adopted by the current lattice metal, which leads to application conditions. Due to the problem of limitation and insufficient adaptability, the design concept of lattice metal with Kelvin structure which tends to be more isotropic is proposed.
  • Another purpose of the present invention is to solve the problem that the current lattice materials based on low melting point metals are insufficient in strength and temperature resistance, resulting in a narrow application range of lattice metals.
  • the high melting point Kelvin structure lattice metal is finally prepared, which broadens the breadth and depth of the application of lattice metal.
  • the technical scheme of the present invention is based on the adaptive design of the Kelvin structure lattice metal for the casting process, develops a new ceramic preform material, and uses indirect 3D printing combined with a precision casting process to prepare the high melting point Kelvin structure lattice metal.
  • the described adaptive design of the casting process based on the Kelvin structure lattice metal is to design the tetrahedral Kelvin structure into a Kelvin structure lattice metal unit with a prismatic structure as the main body, and use three-dimensional modeling software for parametric modeling , By adjusting the length-diameter ratio of the pore ridges, the range of design parameters of the pore structure suitable for the casting process is determined, and the effective control of the porosity of the high melting point Kelvin structure lattice metal is realized.
  • the present invention specifically provides a lattice metal with a high melting point Kelvin structure.
  • the lattice metal is a three-dimensional Kelvin structure expanded from a basic unit.
  • the material of the three-dimensional Kelvin structure is a high melting point metal material, and the basic unit is
  • the high melting point metal materials include steel materials and high-temperature alloy materials.
  • the prism diameter of the high melting point Kelvin structure lattice metal ranges from 2 to 10 mm, the aspect ratio ranges from 1.2 to 3.0, and the adjustable porosity of the lattice structure ranges from 58% to 92%.
  • the compressive stress-strain curve of the high melting point Kelvin structure lattice metal has a plastic yield platform and has the same mechanical properties in three directions in space;
  • the high melting point Kelvin structure lattice metal is used in aerospace lightweight, high-temperature resistant components, ships, automobiles, vibration reduction and noise reduction, and energy-absorbing energy-absorbing equipment.
  • the method for preparing the high melting point Kelvin structure lattice metal of the present invention includes the following steps;
  • Step 1 Use the selected area laser sintering process to prepare the high melting point Kelvin structure lattice metal precursor.
  • the three-dimensional model STL file processing parameters are surface roughness 0.04 ⁇ 0.1mm, and the triangular facets are reduced and merged to 0.03 ⁇ 0.06 mm.
  • the laser sintering process parameters of the selected area are a single layer thickness of 0.2mm, a scanning speed of 4000mm/s, a starting layer sintering temperature of 110-120°C, and a general layer (except the starting layer) sintering temperature of 90-100°C.
  • the material of the selective laser sintering process is polystyrene.
  • Step 2 Use quartz glass as the matrix to prepare a ceramic preform of high melting point Kelvin structure lattice metal, and take overall consideration of the chemical stability, thermal stability, wettability and releasability of the ceramic preform material, and creatively form a The formula system and firing process of the new ceramic preform material.
  • the formulation system of the ceramic preform is as follows: the ceramic skeleton is quartz glass, the mass fraction of which is 48-55%; the sintering aid is corundum sand and kaolin, the mass fractions of which are 12-16% and 1-3%, respectively; stable;
  • the agent is silicon powder with a mass fraction of 0.5 to 1.5%;
  • the binder is a silica sol with a mass fraction of 29.2 to 31.9%;
  • the defoaming agent is organic silicon with a mass fraction of 0.12 to 0.16%;
  • the surfactant is The fatty alcohol polyoxyethylene ether has a mass fraction of 0.13 to 0.18%, and then the ceramic preform is slurried and sintered.
  • the forming process of the ceramic preform material is as follows: the green ceramic preform is prepared by a slurry process, and the slurry is dried at room temperature for 8-12 hours after each slurry, and the number of slurry layers is 10-12 until the ceramic slurry is coated The entire precursor body is then formed into a gating system, and the traditional precision casting mold shell material Shangdian soil-Shangdian sand is used to implement the outer shell hanging process.
  • the sintering system of the ceramic preform material is: formulating the sintering system of the ceramic preform according to the DSC curve, the heating rate is 50°C/h when the sintering temperature is less than 500°C, and the heating rate is 250°C/h when the temperature is greater than 500°C,
  • the maximum sintering temperature is 1000 ⁇ 1050°C, and the sintering temperature is 1000 ⁇ 1050°C for 4h.
  • DSC curve refers to the temperature curve obtained by differential scanning calorimetry.
  • Step 3 Use the ProCAST process simulation software to perform numerical simulations of the filling process, solidification process, casting thermal stress, solidification microstructure of the above-mentioned high melting point Kelvin structure lattice metal, and optimize the process parameters; use the vacuum gravity casting process to prepare the high melting point Kelvin For structural lattice metal, the casting process parameters are: the preheating temperature of the ceramic preform is 900-1000°C, the pouring temperature is 50-200°C above the alloy liquidus, and the vacuum degree is less than 200Pa.
  • the high melting point metals include steel materials and high-temperature alloy materials.
  • Step 4 Removal of high melting point Kelvin structure lattice cermet preform material.
  • the high-pressure de-coring kettle is used to remove the ceramic preform material.
  • the chemical corrosive agent is potassium hydroxide.
  • the removal process parameters are: the temperature is set to 280 ⁇ 400°C, the pressure of the inner tank is 0.15 ⁇ 0.35MPa, and the removal time is 4h.
  • Parametric modeling was carried out using three-dimensional modeling software, and a Kelvin structure lattice metal unit with a prismatic structure as the main body was designed. By adjusting the diameter and aspect ratio of the prism, the casting process design and the casting process of the high melting point Kelvin structure lattice metal were realized. Effective control of porosity. Based on the indirect 3D printing technology combined with the precision casting process, the high melting point Kelvin structure lattice metal is prepared. The developed new ceramic preform material formula system and firing process ensure the high temperature strength and releasability of the ceramic preform.
  • the high melting point Kelvin structure lattice metal has more isotropic mechanical properties, and has higher strength, stiffness and temperature resistance, which greatly expands the application space of lattice metal.
  • Figure 1a is the design model of the lattice metal unit of the Kelvin structure.
  • Figure 1b is a three-dimensional structure design model of a lattice metal with a high melting point Kelvin structure.
  • Figure 2 is a flow chart of the preparation process of a lattice metal with a high melting point Kelvin structure.
  • Figure 3 is the DSC curve of the ceramic preform material of the high melting point Kelvin structure lattice metal.
  • Figure 4 is the sintering schedule curve of the ceramic preform material of the high melting point Kelvin structure lattice metal.
  • Figure 5 is a diagram of a ceramic preform of a lattice metal with a high melting point Kelvin structure.
  • Figure 6 is a sample diagram of a lattice metal with a high melting point Kelvin structure.
  • Figure 7 is the three-direction compressive stress-strain curve of the Kelvin structure lattice metal space with 304 stainless steel as the matrix.
  • This embodiment is to design and prepare a Kelvin structure lattice metal with a porosity of 58% and a matrix of 304 stainless steel;
  • the Kelvin structure lattice metal unit adopts three-dimensional modeling software for casting process adaptability design, and a three-dimensional Kelvin structure lattice metal with prism 101 as the main body is designed Unit 100, the diameter of the prism 101 is 2mm, the length of the prism 101 is 2.4mm, and the aspect ratio of the prism is 1.2.
  • the three-dimensional design model of the lattice metal with Kelvin structure as shown in Figure 1b, the design model of the lattice metal with the high melting point Kelvin structure
  • the size of the outer contour is 48 ⁇ 27 ⁇ 27mm, and the porosity is 58%.
  • FIG. 2 it is a process flow chart of the preparation of high melting point Kelvin structure lattice metal.
  • the preparation of Kelvin structure lattice metal with 304 stainless steel as the matrix by indirect 3D printing combined with precision casting technology includes the following steps:
  • Step 201 Prepare a high melting point Kelvin structure lattice metal precursor by a selective laser sintering process.
  • the processing parameter of the three-dimensional model STL file is a surface roughness of 0.05 mm, and the triangular facets are reduced and merged by 0.04 mm.
  • the laser sintering process parameters of the selected area are a single layer thickness of 0.2mm, a scanning speed of 4000mm/s, a starting layer sintering temperature of 120°C, and a general layer sintering temperature of 90°C.
  • the material of the selective laser sintering process is polystyrene.
  • Step 202 Prepare a ceramic preform of high melting point Kelvin structure lattice metal by using quartz glass as a matrix.
  • the formula of the ceramic preform of high melting point Kelvin structure lattice metal is: the ceramic skeleton is quartz glass with a mass fraction of 48%; The burning agent is corundum sand and kaolin, the mass fractions of which are 16% and 3%, respectively; the stabilizer is silicon micropowder, whose mass fraction is 0.8%; the binder is silica sol, whose mass fraction is 31.9%; the defoaming agent is The organic silicon has a mass fraction of 0.12%; the surfactant is a fatty alcohol polyoxyethylene ether with a mass fraction of 0.15%.
  • the forming process of the ceramic preform material is as follows: the green ceramic preform is prepared by the slurry process, and the slurry is dried at room temperature for 8 hours after each slurry, and the number of slurry layers is 10, until the ceramic slurry covers the entire precursor. After the gating system is set up, the traditional shell material Shangdian soil and Shangdian sand are used to implement the outer shell hanging process.
  • the sintering system of the ceramic preform material is as follows: the sintering system of the ceramic preform is formulated according to the DSC curve of the ceramic preform material.
  • the DSC curve of the ceramic preform is shown in Fig. 3, and the curve of the ceramic preform is stable before 1000°C.
  • At 1079 ⁇ 10°C there is an exothermic peak in the DSC curve, which can be determined because the quartz glass began to transform to ⁇ cristobalite and exothermic during devitrification. Therefore, the maximum sintering temperature cannot exceed 1079 ⁇ 10°C.
  • the sintering system of the ceramic preform is formulated according to the DSC curve of the ceramic preform as shown in Figure 4.
  • the heating rate is 50°C/h
  • the heating rate is 250°C/h
  • the highest sintering temperature is 1000 DEG C
  • the holding time is 4 hours.
  • Step 203 Use ProCAST process simulation software to perform numerical simulations of filling process, condensing behavior, casting thermal stress, and condensing microstructure of the above-mentioned Kelvin structure lattice metal casting process of 304 stainless steel as the matrix to guide the implementation process of the casting process.
  • the Kelvin structure lattice metal based on 304 stainless steel is prepared by vacuum gravity casting process.
  • the casting process parameters are: the preheating temperature of the ceramic preform is 950°C, the alloy casting temperature is 1555°C, and the vacuum degree is less than 200Pa.
  • Step 204 The ceramic preform material is removed using a high-pressure core removal kettle, the chemical corrosive agent is potassium hydroxide, and the removal process parameters are: the temperature is set to 280°C, the pressure of the inner tank is 0.15MPa, and the removal time is 4h , And finally obtain the high melting point Kelvin structure lattice metal as shown in Figure 6.
  • the chemical corrosive agent is potassium hydroxide
  • the removal process parameters are: the temperature is set to 280°C, the pressure of the inner tank is 0.15MPa, and the removal time is 4h , And finally obtain the high melting point Kelvin structure lattice metal as shown in Figure 6.
  • This embodiment is to design and prepare a Kelvin structure lattice metal with a porosity of 82% and a matrix of 304 stainless steel;
  • the said Kelvin structure lattice metal unit adopts three-dimensional modeling software for casting process adaptability design, and the three-dimensional Kelvin structure lattice metal unit 100 with prism 101 as the main body is designed.
  • the diameter of prism 101 is 3mm, and the length of prism 101 is 6mm.
  • the aspect ratio of the prism is 2.
  • the outer contour size of the high melting point Kelvin structure lattice metal three-dimensional design model is 119 ⁇ 68 ⁇ 68 mm, and the porosity is 82%.
  • FIG. 2 it is a process flow chart of the preparation of high melting point Kelvin structure lattice metal. Using indirect 3D printing combined with precision casting process to prepare Kelvin structure lattice metal with 304 stainless steel as the matrix, it includes the following steps:
  • Step 201 Prepare a high melting point Kelvin lattice metal precursor by a selective laser sintering process.
  • the processing parameter of the three-dimensional model STL file in the selective laser sintering process is a surface roughness of 0.04 mm, and a reduction of 0.03 mm is used for the triangular facets.
  • the laser sintering process parameters of the selected area are a single layer thickness of 0.2mm, a scanning speed of 4000mm/s, a starting layer sintering temperature of 110°C, and a general layer sintering temperature of 100°C.
  • the material of the selective laser sintering process is polystyrene.
  • Step 202 Prepare a ceramic preform of a high melting point Kelvin structure lattice metal using quartz glass as a matrix.
  • the ceramic preform of the high melting point Kelvin structure lattice metal is formulated as follows: the ceramic skeleton is quartz glass with a mass fraction of 51%; The agent is corundum sand and kaolin, the mass fraction of which is 14% and 2% respectively; the stabilizer is silica powder, the mass fraction of which is 1.5%; the binder is silica sol, the mass fraction of which is 31.2%; the defoaming agent is organic The mass fraction of silicon is 0.15%; the surfactant is fatty alcohol polyoxyethylene ether, and the mass fraction is 0.18%.
  • the forming process of the green ceramic preform is as follows: the green ceramic preform is prepared by a slurry process, and the slurry is dried at room temperature for 9 hours after each slurry, and the number of slurry layers is 10, until the ceramic slurry covers the entire precursor , And then set up a pouring system, using the traditional mold shell material Shangdian Shang-Shangdian sand to carry out the outer shell hanging process.
  • the sintering system in the firing process of the ceramic preform material is: formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, and formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, and the sintering temperature is less than When the temperature is 500°C, the heating rate is 50°C/h, when the temperature is greater than 500°C, the heating rate is 250°C/h, the highest sintering temperature is 1030°C, and the holding time is 4h. After cooling in the furnace, a high melting point Kelvin structure lattice metal ceramic is obtained Prefab.
  • Step 203 Use the ProCAST process simulation software to perform numerical simulation of the filling process, solidification behavior, casting thermal stress, and solidification microstructure of the above-mentioned 304 stainless steel matrix metal casting process with the Kelvin structure to guide the implementation process of the casting process.
  • the Kelvin structure lattice metal based on 304 stainless steel is prepared by vacuum gravity casting process.
  • the casting process parameters are: the preheating temperature of the ceramic preform is 1000°C, the alloy casting temperature is 1555°C, and the vacuum degree is less than 200Pa.
  • Step 204 Use a high-pressure core removal kettle to remove the ceramic preform material, the chemical corrosive agent is potassium hydroxide, and the removal process parameters are: the temperature is set to 300°C, the pressure of the inner tank is 0.25 MPa, and the removal time is 4 hours. Finally, a 304 stainless steel Kelvin structure lattice metal with a porosity of 82% is obtained.
  • Figure 7 shows the compressive stress-strain curves of the Kelvin structure lattice metal in three directions in space.
  • the Kelvin structure lattice metal with 304 stainless steel as the matrix obtained in this example has an obvious plastic yield platform, and the platform stress is 10 MPa. It has the same mechanical properties in three directions in space.
  • This embodiment is to design and prepare a Kelvin structure lattice metal with a porosity of 88% and a matrix of 304 stainless steel;
  • the said Kelvin structure lattice metal unit adopts three-dimensional modeling software for casting process adaptability design.
  • a three-dimensional Kelvin structure lattice metal unit 100 with prism 101 as the main body is designed.
  • the prism 101 has a diameter of 10 mm and a prism 101 length of 30 mm.
  • the aspect ratio of the prism is 3.0.
  • the outer contour size of the high melting point Kelvin structure lattice metal three-dimensional design model is 594 ⁇ 339 ⁇ 339 mm, and the porosity is 92%.
  • FIG. 2 it is a process flow chart of the preparation of high melting point Kelvin structure lattice metal. Using indirect 3D printing combined with precision casting process to prepare Kelvin structure lattice metal with 304 stainless steel as the matrix, it includes the following steps:
  • Step 201 Prepare a high melting point Kelvin structure lattice metal precursor by a selective laser sintering process.
  • the processing parameter of the three-dimensional model STL file in the selective laser sintering process is a surface roughness of 0.06 mm, and the triangular facets are reduced and merged by 0.05 mm.
  • the laser sintering process parameters of the selected area are a single layer thickness of 0.2mm, a scanning speed of 4000mm/s, a starting layer sintering temperature of 110°C, and a general layer sintering temperature of 95°C.
  • the material of the selective laser sintering process is polystyrene.
  • Step 202 Prepare a ceramic preform of a high melting point Kelvin structure lattice metal using quartz glass as a matrix.
  • the ceramic preform of the high melting point Kelvin structure lattice metal is formulated as follows: the ceramic skeleton is quartz glass with a mass fraction of 55%; The agent is corundum sand and kaolin, the mass fraction of which is 12% and 1%, respectively; the stabilizer is silica powder, and the mass fraction is 0.5%; the binder is silica sol, the mass fraction of which is 31.2%; the defoaming agent is organic The mass fraction of silicon is 0.16%; the surfactant is fatty alcohol polyoxyethylene ether, and the mass fraction is 0.16%.
  • the forming process of the green ceramic preform is as follows: the green ceramic preform is prepared by a slurry process, and the slurry is dried at room temperature for 12 hours after each slurry, and the number of slurry layers is 12, until the ceramic slurry covers the entire precursor , And then set up a pouring system, using the traditional mold shell material Shangdian Shang-Shangdian sand to carry out the outer shell hanging process.
  • the sintering system of the ceramic preform material is: formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, and when the sintering temperature is less than 500°C ,
  • the heating rate is 50°C/h, when the temperature is greater than 500°C, the heating rate is 250°C/h, the highest sintering temperature is 1050°C, and the holding time is 4h.
  • a ceramic preform of high melting point Kelvin structure lattice metal is obtained.
  • Step 203 Use the ProCAST process simulation software to perform numerical simulation of the filling process, solidification behavior, casting thermal stress, and solidification microstructure of the above-mentioned 304 stainless steel matrix metal casting process with the Kelvin structure to guide the implementation process of the casting process.
  • the Kelvin structure lattice metal based on 304 stainless steel is prepared by vacuum gravity casting process.
  • the casting process parameters are: the preheating temperature of the ceramic preform is 900°C, the alloy casting temperature is 1555°C, and the vacuum degree is less than 200Pa.
  • Step 204 Use a high-pressure core removal kettle to remove the ceramic preform material, the chemical corrosive agent is potassium hydroxide, and the removal process parameters are: the temperature is set at 400°C, the inner tank pressure is 0.35MPa, and the removal time is 4h Finally, a 304 stainless steel Kelvin structure lattice metal with a porosity of 88% is obtained.
  • This embodiment is to design and prepare a Kelvin structure lattice metal with a porosity of 82% K418 superalloy as a matrix;
  • the three-dimensional modeling software to design the casting process adaptability of Kelvin structure lattice metal based on K418 superalloy, and design the three-dimensional Kelvin structure lattice metal unit 100 with prism 101 as the main body.
  • the diameter of prism 101 is 5mm, and the diameter of prism 101 is 101.
  • the length is 10 mm, the prism aspect ratio is 2, and the porosity is 82%.
  • the outer contour size of the Kelvin structure lattice metal with K418 superalloy as the matrix is 198 ⁇ 113 ⁇ 113 mm.
  • FIG. 2 it is a process flow chart of the preparation of high melting point Kelvin structure lattice metal.
  • Using indirect 3D printing combined with precision casting process to prepare K418 superalloy as the matrix Kelvin structure lattice metal includes the following steps:
  • a high melting point Kelvin lattice metal precursor is prepared by a selected laser sintering process, characterized in that the three-dimensional model STL file processing parameter is a surface roughness of 0.1 mm, and the triangular facets are reduced and merged by 0.06 mm.
  • the laser sintering process parameters of the selected area are a single layer thickness of 0.2mm, a scanning speed of 4000mm/s, a starting layer sintering temperature of 120°C, and a general layer sintering temperature of 90°C.
  • the material of the selective laser sintering process is polystyrene.
  • Step 202 Prepare a ceramic preform of high melting point Kelvin lattice metal by using quartz glass as a matrix.
  • the ceramic preform is formulated as follows: the ceramic skeleton is quartz glass with a mass fraction of 52.5%; the sintering aid is corundum sand and kaolin , Its mass fractions are 15% and 2%, respectively; the stabilizer is silicon micropowder, its mass fraction is 1%; the binder is silica sol, its mass fraction is 29.2%; the defoamer is organic silicon, its mass fraction is 0.13%; the surfactant is fatty alcohol polyoxyethylene ether with a mass fraction of 0.13%.
  • the forming process of the ceramic preform is as follows: the green ceramic preform is prepared by the slurry process. After each slurry is dried at room temperature for 10 hours, the number of slurry layers is 11, until the ceramic slurry covers the entire precursor, and then it is assembled and poured.
  • the system adopts the traditional shell material Shangdian Shang-Shangdian sand to carry out the outer shell hanging process.
  • the sintering system of the ceramic preform material is: formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, formulating the sintering system of the ceramic preform according to the DSC curve of the ceramic preform, and when the sintering temperature is less than 500°C ,
  • the heating rate is 50°C/h, when the temperature is greater than 500°C, the heating rate is 250°C/h, the highest sintering temperature is 1030°C, and the heat preservation is 4h.
  • a ceramic preform of high melting point Kelvin structure lattice metal is obtained.
  • Step 203 Use the ProCAST process simulation software to perform numerical simulations of the filling process, solidification behavior, casting thermal stress, and solidification microstructure of the K418 superalloy as the matrix Kelvin structure lattice metal casting process to guide the implementation of the specific casting process.
  • the Kelvin structure lattice metal based on K418 superalloy is prepared by vacuum gravity casting process.
  • the casting process parameters are: the preheating temperature of the ceramic preform is 930°C, the pouring temperature is 1550°C, and the vacuum degree is less than 200Pa.
  • Step 204 the removal of the ceramic preform material, the removal of the ceramic preform material is carried out by using a high-pressure core removal kettle, the chemical corrosive agent is potassium hydroxide, and the removal process parameters are: the temperature is set to 300°C, and the pressure of the inner tank is 0.25MPa, the removal time is 4h.
  • the chemical corrosive agent is potassium hydroxide
  • the removal process parameters are: the temperature is set to 300°C, and the pressure of the inner tank is 0.25MPa, the removal time is 4h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种高熔点Kelvin结构点阵金属,该点阵金属为由基本单元拓展而成的三维立体Kelvin结构,三维立体Kelvin结构的材质为高熔点金属材料,基本单元为以棱柱(101)结构为主体的Kelvin结构点阵金属单元(100),高熔点Kelvin结构点阵金属的孔隙率范围为58%~92%。以及一种该点阵金属的制备方法与应用。采用间接3D打印结合精密铸造工艺制备高熔点的Kelvin结构点阵金属,制备的高熔点Kelvin结构点阵金属拥有趋向各向同性的力学性能,且具有更高的强度、刚度和耐温性能,极大地拓展了点阵金属的应用空间。

Description

一种高熔点Kelvin结构点阵金属及其制备方法与应用 技术领域
本发明属于点阵金属制备技术领域,具体的涉及一种高熔点Kelvin结构点阵金属及其制备方法。
背景技术
点阵金属作为多孔金属的一种,因具有周期有序的结构且与晶体点阵构型类似而得名。2001年,在多孔泡沫金属力学行为和变形模式研究的启发下,加州大学Evans教授、剑桥大学Ashby教授、麻省理工学院Gibson教授、哈佛大学Hutchinson教授等提出了轻质点阵结构的概念。点阵金属具有质量轻、比强度大、比刚度高的结构特点以及减振降噪、缓冲吸能等功能特性,因此受到国际学术界的广泛关注,被认为是最具前景的新一代轻量化材料之一。其中,以钢铁材料、高温合金为代表的高熔点金属为基体的点阵金属,在强度、耐温性能等方面展现出更加优异的综合性能,可以极大地拓宽点阵金属工程化应用的广度和深度。
在点阵金属的研究中,首先面临的问题是点阵金属单元结构的选择,人们提出过各式各样的代表性拓扑构型。其中,四面体、金字塔、Kagome等单元结构是应用最多的点阵单元结构,但是采用上述单元结构设计的点阵金属普遍具有各向异性的特点,应用工况受限,适用性明显不足。寻求一种更加趋向于各向同性的点阵结构单元是点阵金属重要的研究方向。开尔文结合柏拉图假说提出完美多孔结构的设想:多孔结构应该是由14个面组成的多面体三维结构,其中包含8个六面体和6个四面体,该结构具有高度的对称性,他提出的正十四面体结构被命名为Kelvin结构。相关理论计算和数值模拟结果表明,相比于其他结构,Kelvin结构具有优异的力学各向同性,是构筑点阵金属的理想单元结构。 但由于Kelvin结构复杂的空间拓扑构型,使得以Kelvin结构为单元的点阵金属及其制备方法尚未见报道。
点阵金属的制备方法主要有熔模铸造法、冲压成型法、金属丝编织法等。其中,冲压成型法和金属丝编织法对基体材料的延展性有较高的要求,可选范围较窄,且制备的点阵金属孔型结构受限。熔模铸造法以高分子聚合物材料作为点阵材料的前驱体,通过涂覆耐火陶瓷浆料并在高温下烧结,使聚合物分解从而得到点阵材料陶瓷预制体,结合熔模铸造工艺将金属熔体浇注到铸型中,凝固后将陶瓷预制体脱除从而获得点阵金属。熔模铸造法制备点阵金属的胞元尺寸可以小到几个毫米,该方法的主要优点是孔结构的制造适应性好,可以实现复杂点阵结构的设计要求。同时,熔模铸造法可以获取高孔隙率的点阵金属,最大限度地满足轻量化的现实需求,熔模铸造法成为制备点阵金属的最佳工艺方法之一。但是,目前采用熔模铸造法制备点阵金属,主要是以低熔点的铝合金为主,而其采用的石膏等预制体材料并不适合高熔点金属的工艺要求。另一方面,Kelvin等复杂孔型结构在制备过程中金属基体与陶瓷材料网络互穿,若采用刚玉、氧化锆等传统型壳材料又难以脱除。可见,寻求一种具有高温强度且易于脱除的陶瓷预制体材料是制备高熔点Kelvin结构点阵金属的关键。
以上分析可以看出,传统点阵金属由于单元结构普遍具有各向异性的特点导致其应用工况受限,同时低熔点基体点阵金属的强度和耐温性能不足,且其制备所用预制体材料的高温强度和脱除性不能满足高熔点基体点阵金属制备的工艺要求,极大地限制了点阵金属的应用和推广。
发明内容
针对上述问题,本发明提供了一种高熔点Kelvin结构点阵金属及其制备方法,本发明的目的之一是解决目前点阵金属所采用的单元结构普遍具有各向异 性的特点导致应用工况受限,适应性不足的问题,提出了更加趋向于各向同性的Kelvin结构点阵金属设计理念。本发明的另一目的是解决目前以低熔点金属为基体的点阵材料强度和耐温性能不足导致点阵金属应用范围较窄的问题,通过研制适用于高熔点金属且易于脱除的陶瓷预制体材料,最终制备出高熔点的Kelvin结构点阵金属,拓宽点阵金属应用的广度和深度。
本发明的技术方案是基于Kelvin结构点阵金属进行铸造工艺的适应性设计,研制新型陶瓷预制体材料,并采用间接3D打印结合精密铸造工艺制备高熔点Kelvin结构点阵金属。
所述的基于Kelvin结构点阵金属进行铸造工艺的适应性设计,是将十四面体的Kelvin结构,设计成棱柱结构为主体的Kelvin结构点阵金属单元,采用三维造型软件进行参数化建模,通过调整孔棱长径比,确定适用铸造工艺的孔型结构设计参数范围,并实现高熔点Kelvin结构点阵金属孔隙率的有效调控。
本发明具体提供一种高熔点Kelvin结构点阵金属,该点阵金属为由基本单元拓展而成的三维立体Kelvin结构,所述三维立体Kelvin结构的材质为高熔点金属材料,所述基本单元为以棱柱101结构为主体的Kelvin结构点阵金属单元100,所述Kelvin结构点阵金属单元100的棱柱101为实体,所述Kelvin结构点阵金属单元100除棱柱101之外的其余部分均为虚体,相邻两个Kelvin结构点阵金属单元100之间均有一个棱柱101重合,所述高熔点Kelvin结构点阵金属的孔隙率范围为58%~92%。
所述高熔点金属材料包括钢铁材料和高温合金材料。
所述高熔点Kelvin结构点阵金属的棱柱直径范围为2~10mm,长径比范围为1.2~3.0,可调控的点阵结构的孔隙率范围为58%~92%。
所述高熔点Kelvin结构点阵金属的压缩应力-应变曲线具有塑性屈服平台, 在空间的三个方向具有相同的力学性能;
所述高熔点Kelvin结构点阵金属应用于航空航天轻量化、耐高温部件,船舶、汽车减振降噪、缓冲吸能设备中。
本发明制备所述高熔点Kelvin结构点阵金属的方法,包含以下步骤;
步骤一、采用选区激光烧结工艺制备高熔点Kelvin结构点阵金属前驱体,所述选区激光烧结工艺中三维模型STL文件处理参数为表面粗糙度0.04~0.1mm,三角形面片缩减合并为0.03~0.06mm。选区激光烧结工艺参数为单层厚度0.2mm,扫描速度为4000mm/s,起始层烧结温度为110~120℃,一般层(除起始层外)烧结温度为90~100℃。选区激光烧结工艺的材料为聚苯乙烯。
步骤二、采用石英玻璃为基体制备高熔点Kelvin结构点阵金属的陶瓷预制体,统筹考虑陶瓷预制体材料的化学稳定性、热稳定性、润湿性和可脱除性,创造性地形成一种新型陶瓷预制体材料的配方体系和焙烧工艺。
所述陶瓷预制体的配方体系为:陶瓷骨架为石英玻璃,其质量分数为48~55%;助烧剂为刚玉砂和高岭土,其质量分数分别为12~16%和1~3%;稳定剂为硅微粉,其质量分数为0.5~1.5%;粘结剂为硅溶胶,其质量分数为29.2~31.9%;消泡剂为有机硅,其质量分数为0.12~0.16%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.13~0.18%,然后对陶瓷预制体进行挂浆和烧结。
所述陶瓷预制体材料的成形工艺为:采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥8~12h,挂浆层数为10~12层,直至陶瓷浆料包覆整个前驱体,然后组建浇注系统,采用传统精密铸造模壳材料上店土-上店砂进行外层挂壳工艺实施。
所述陶瓷预制体材料的烧结制度为:根据DSC曲线制定陶瓷预制体的烧结制度,烧结温度在小于500℃时升温速率为50℃/h,温度大于500℃时升温速率 为250℃/h,最高烧结温度为1000~1050℃,在烧结温度为1000~1050℃下保温4h。DSC曲线是指采用差示扫描量热法获得的温度曲线。
步骤三、采用ProCAST工艺模拟软件对上述高熔点Kelvin结构点阵金属进行充型过程、凝同行为、铸造热应力、凝固微观组织的数值模拟,优化工艺参数;采用真空重力铸造工艺制备高熔点Kelvin结构点阵金属,铸造工艺参数为:陶瓷预制体预热温度为900~1000℃,浇注温度为合金液相线以上50~200℃,真空度小于200Pa。所述的高熔点金属包括钢铁材料、高温合金材料。
步骤四、高熔点Kelvin结构点阵金属陶瓷预制体材料的脱除,采用高压脱芯釜进行陶瓷预制体材料的脱除,化学腐蚀剂为氢氧化钾,其脱除工艺参数为:温度设定为280~400℃,内胆压力为0.15~0.35MPa,脱除时间为4h。
本发明的优点及有益效果是:
采用三维造型软件进行了参数化建模,设计了以棱柱结构为主体的Kelvin结构点阵金属单元,通过调整棱柱直径和长径比,实现了高熔点Kelvin结构点阵金属的铸造工艺性设计和孔隙率的有效调控。基于间接3D打印技术结合精密铸造工艺,制备了高熔点Kelvin结构点阵金属。研制的新型陶瓷预制体材料配方体系和焙烧工艺,保证了陶瓷预制体的高温强度和脱除性。高熔点Kelvin结构点阵金属拥有更加趋向于各向同性的力学性能,且具有更高的强度、刚度和耐温性能,极大地拓展了点阵金属的应用空间。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1a为Kelvin结构点阵金属单元设计模型。
图1b为高熔点Kelvin结构点阵金属三维结构设计模型。
图2为高熔点Kelvin结构点阵金属制备工艺流程图。
图3为高熔点Kelvin结构点阵金属的陶瓷预制体材料的DSC曲线。
图4为高熔点Kelvin结构点阵金属的陶瓷预制体材料的烧结制度曲线。
图5为高熔点Kelvin结构点阵金属的陶瓷预制体图。
图6为高熔点Kelvin结构点阵金属样品图。
图7为304不锈钢为基体的Kelvin结构点阵金属空间三个方向的压缩应力-应变曲线。
其中,棱柱101、Kelvin结构点阵金属单元100。
具体实施方式
下面将结合附图对本发明的制备方法进行详细描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
本实施例是设计与制备以孔隙率为58%的以304不锈钢为基体的Kelvin结构点阵金属;
如图1a所示,为Kelvin结构点阵金属单元设计模型,所述Kelvin结构点阵金属单元是采用三维造型软件进行铸造工艺适应性设计,设计出以棱柱101为主体的三维Kelvin结构点阵金属单元100,其棱柱101直径为2mm,棱柱101长度为2.4mm,棱柱长径比为1.2,Kelvin结构点阵金属三维设计模型,如图1b所示,所述高熔点Kelvin结构点阵金属设计模型的外轮廓尺寸为48×27×27mm,孔隙率为58%。
如图2所示,为高熔点Kelvin结构点阵金属制备工艺流程图,采用间接3D 打印结合精密铸造工艺制备304不锈钢为基体的Kelvin结构点阵金属,包括以下步骤:
步骤201、采用选区激光烧结工艺制备高熔点Kelvin结构点阵金属前驱体,选区激光烧结工艺中三维模型STL文件处理参数为表面粗糙度0.05mm,同时对三角形面片采用0.04mm的缩减合并。选区激光烧结工艺参数为单层厚度0.2mm,扫描速度为4000mm/s,起始层烧结温度为120℃,一般层烧结温度为90℃。选区激光烧结工艺的材料为聚苯乙烯。
步骤202、采用石英玻璃为基体制备高熔点Kelvin结构点阵金属的陶瓷预制体,高熔点Kelvin结构点阵金属的陶瓷预制体的配方为:陶瓷骨架为石英玻璃,其质量分数为48%;助烧剂为刚玉砂和高岭土,其质量分数分别为16%和3%;稳定剂为硅微粉,其质量分数为0.8%;粘结剂为硅溶胶,其质量分数为31.9%;消泡剂为有机硅,其质量分数为0.12%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.15%。
所述陶瓷预制体材料的成形工艺为:采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥8h,挂浆层数为10层,直至陶瓷浆料包覆整个前驱体。组建浇注系统后,采用传统模壳材料上店土和上店砂进行外层挂壳工艺实施。
陶瓷预制体材料的烧结制度为:根据陶瓷预制体材料的DSC曲线制定陶瓷预制体的烧结制度,所述陶瓷预制体的DSC曲线如图3所示,陶瓷预制体在1000℃之前曲线平稳,基本无吸热放热发生,可以判定陶瓷预制体材料没有发生晶型转变。在1079±10℃,DSC曲线出现了一个放热峰,可判定是由于石英玻璃开始向α方石英发生转变,反玻璃化过程中放热,因此最高烧结温度不能超过1079±10℃。根据所述陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度如图4所示,烧结温度在小于500℃时升温速率为50℃/h,烧结温度大于500℃时 升温速率为250℃/h,最高烧结温度为1000℃,保温4h,随炉冷却后最终获得如图5所示的高熔点Kelvin结构点阵金属的陶瓷预制体。
步骤203、采用ProCAST工艺模拟软件对上述304不锈钢为基体的Kelvin结构点阵金属铸造下艺进行充型过程、凝同行为、铸造热应力、凝同微观组织的数值模拟,指导铸造工艺实施过程。采用真空重力铸造工艺制备以304不锈钢为基体的Kelvin结构点阵金属,铸造工艺参数为:陶瓷预制体预热温度为950℃,合金浇注温度为1555℃,真空度小于200Pa。
步骤204、采用高压脱芯釜进行陶瓷预制体材料的脱除,化学腐蚀剂为氢氧化钾,其脱除工艺参数为:温度设定为280℃,内胆压力为0.15MPa,脱除时间为4h,最终获得如图6所示的高熔点Kelvin结构点阵金属。
实施例2
本实施例是设计与制备孔隙率为82%的以304不锈钢为基体的Kelvin结构点阵金属;
所述Kelvin结构点阵金属单元是采用三维造型软件进行铸造工艺适应性设计,设计出以棱柱101为主体的三维Kelvin结构点阵金属单元100,其棱柱101直径为3mm,棱柱101长度为6mm,棱柱长径比为2。所述高熔点Kelvin结构点阵金属三维设计模型的外轮廓尺寸为119×68×68mm,孔隙率为82%。
如图2所示,为高熔点Kelvin结构点阵金属制备工艺流程图,采用间接3D打印结合精密铸造工艺制备304不锈钢为基体的Kelvin结构点阵金属,包括以下步骤:
步骤201、采用选区激光烧结工艺制备高熔点Kelvin点阵金属前驱体,选区激光烧结工艺中的三维模型STL文件处理参数为表面粗糙度0.04mm,同时对三 角形面片采用0.03mm的缩减合并。选区激光烧结工艺参数为单层厚度0.2mm,扫描速度为4000mm/s,起始层烧结温度为110℃,一般层烧结温度为100℃。选区激光烧结工艺的材料为聚苯乙烯。
步骤202、采用石英玻璃为基体制备高熔点Kelvin结构点阵金属的陶瓷预制体,高熔点Kelvin结构点阵金属的陶瓷预制体配方为:陶瓷骨架为石英玻璃,其质量分数为51%;助烧剂为刚玉砂和高岭土,其质量分数分别为14%和2%;稳定剂为硅微粉,其质量分数为1.5%;粘结剂为硅溶胶,其质量分数为31.2%;消泡剂为有机硅,其质量分数为0.15%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.18%。
所述陶瓷预制体生坯的成形工艺为:采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥9h,挂浆层数为10层,直至陶瓷浆料包覆整个前驱体,然后组建浇注系统,采用传统模壳材料上店上-上店砂进行外层挂壳工艺实施。
所述陶瓷预制体材料的焙烧工艺中烧结制度为:根据陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度,根据所述陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度,烧结温度在小于500℃时,升温速率为50℃/h,温度大于500℃时,升温速率为250℃/h,最高烧结温度为1030℃,保温4h,随炉冷却后获得高熔点Kelvin结构点阵金属的陶瓷预制体。
步骤203、采用ProCAST工艺模拟软件对上述304不锈钢为基体的Kelvin结构点阵金属铸造工艺进行充型过程、凝固行为、铸造热应力、凝固微观组织的数值模拟,指导铸造工艺实施过程。采用真空重力铸造工艺制备以304不锈钢为基体的Kelvin结构点阵金属,铸造工艺参数为:陶瓷预制体预热温度为1000℃,合金浇注温度为1555℃,真空度小于200Pa。
步骤204、采用高压脱芯釜进行陶瓷预制体材料的脱除,化学腐蚀剂为氢氧 化钾,其脱除工艺参数为:温度设定为300℃,内胆压力为0.25MPa,脱除时间为4h,最终获得孔隙率为82%的304不锈钢Kelvin结构点阵金属。如图7所示为Kelvin结构点阵金属在空间三个方向的压缩应力-应变曲线,本实例所获得的304不锈钢为基体的Kelvin结构点阵金属具有明显的塑性屈服平台,平台应力为10MPa,在空间三个方向具有相同的力学性能。
实施例3
本实施例是设计与制备孔隙率为88%的以304不锈钢为基体的Kelvin结构点阵金属;
所述Kelvin结构点阵金属单元是采用三维造型软件进行铸造工艺适应性设计,设计出以棱柱101为主体的三维Kelvin结构点阵金属单元100,其棱柱101直径为10mm,棱柱101长度为30mm,棱柱长径比为3.0。所述高熔点Kelvin结构点阵金属三维设计模型的外轮廓尺寸为594×339×339mm,孔隙率为92%。
如图2所示,为高熔点Kelvin结构点阵金属制备工艺流程图,采用间接3D打印结合精密铸造工艺制备304不锈钢为基体的Kelvin结构点阵金属,包括以下步骤:
步骤201、采用选区激光烧结工艺制备高熔点Kelvin结构点阵金属前驱体,选区激光烧结工艺中的三维模型STL文件处理参数为表面粗糙度0.06mm,同时对三角形面片采用0.05mm的缩减合并。选区激光烧结工艺参数为单层厚度0.2mm,扫描速度为4000mm/s,起始层烧结温度为110℃,一般层烧结温度为95℃。选区激光烧结工艺的材料为聚苯乙烯。
步骤202、采用石英玻璃为基体制备高熔点Kelvin结构点阵金属的陶瓷预制体,高熔点Kelvin结构点阵金属的陶瓷预制体配方为:陶瓷骨架为石英玻璃, 其质量分数为55%;助烧剂为刚玉砂和高岭土,其质量分数分别为12%和1%;稳定剂为硅微粉,其质量分数为0.5%;粘结剂为硅溶胶,其质量分数为31.2%;消泡剂为有机硅,其质量分数为0.16%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.16%。
所述陶瓷预制体生坯的成形工艺为:采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥12h,挂浆层数为12层,直至陶瓷浆料包覆整个前驱体,然后组建浇注系统,采用传统模壳材料上店上-上店砂进行外层挂壳工艺实施。
所述陶瓷预制体材料的烧结制度为:根据陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度,根据所述陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度,烧结温度在小于500℃时,升温速率为50℃/h,温度大于500℃时,升温速率为250℃/h,最高烧结温度为1050℃,保温4h,随炉冷却后获得高熔点Kelvin结构点阵金属的陶瓷预制体。
步骤203、采用ProCAST工艺模拟软件对上述304不锈钢为基体的Kelvin结构点阵金属铸造工艺进行充型过程、凝固行为、铸造热应力、凝固微观组织的数值模拟,指导铸造工艺实施过程。采用真空重力铸造工艺制备以304不锈钢为基体的Kelvin结构点阵金属,铸造工艺参数为:陶瓷预制体预热温度为900℃,合金浇注温度为1555℃,真空度小于200Pa。
步骤204、采用高压脱芯釜进行陶瓷预制体材料的脱除,化学腐蚀剂为氢氧化钾,其脱除工艺参数为:温度设定为400℃,内胆压力为0.35MPa,脱除时间为4h,最终获得孔隙率为88%的304不锈钢Kelvin结构点阵金属。
实施例4
本实施例是设计与制备以孔隙率为82%的K418高温合金为基体的Kelvin结 构点阵金属;
采用三维造型软件进行以K418高温合金为基体的Kelvin结构点阵金属的铸造工艺适应性设计,设计出以棱柱101为主体的三维Kelvin结构点阵金属单元100,其棱柱101直径为5mm,棱柱101长度为10mm,棱柱长径比为2,孔隙率为82%,所述以K418高温合金为基体的Kelvin结构点阵金属外轮廓尺寸为198×113×113mm。
如图2所示,为高熔点Kelvin结构点阵金属制备工艺流程图,采用间接3D打印结合精密铸造工艺制备K418高温合金为基体的Kelvin结构点阵金属,包括以下步骤:
步骤201、采用选取激光烧结工艺制备高熔点Kelvin点阵金属前驱体,其特征在于,三维模型STL文件处理参数为表面粗糙度0.1mm,同时对三角形面片采用0.06mm的缩减合并。选区激光烧结工艺参数为单层厚度0.2mm,扫描速度为4000mm/s,起始层烧结温度为120℃,一般层烧结温度为90℃。选区激光烧结工艺的材料为聚苯乙烯。
步骤202、采用石英玻璃为基体制备高熔点Kelvin点阵金属的陶瓷预制体,陶瓷预制体的配方为:陶瓷骨架为石英玻璃,其质量分数为52.5%;助烧剂为刚玉砂和高岭上,其质量分数分别为15%和2%;稳定剂为硅微粉,其质量分数为1%;粘结剂为硅溶胶,其质量分数为29.2%;消泡剂为有机硅,其质量分数为0.13%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.13%。
陶瓷预制体的成形工艺为:采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥10h,挂浆层数为11层,直至陶瓷浆料包覆整个前驱体,然后组建浇注系统,采用传统模壳材料上店上-上店砂进行外层挂壳工艺实施。
所述陶瓷预制体材料的烧结制度为:根据陶瓷预制体的DSC曲线制定陶瓷 预制体的烧结制度,根据所述陶瓷预制体的DSC曲线制定陶瓷预制体的烧结制度,烧结温度在小于500℃时,升温速率为50℃/h,温度大于500℃时升温速率为250℃/h,最高烧结温度为1030℃,保温4h,随炉冷却后获得高熔点Kelvin结构点阵金属的陶瓷预制体。
步骤203、采用ProCAST工艺模拟软件对上述K418高温合金为基体的Kelvin结构点阵金属铸造工艺进行充型过程、凝固行为、铸造热应力、凝固微观组织的数值模拟,指导具体铸造工艺实施。采用真空重力铸造工艺制备以K418高温合金为基体的Kelvin结构点阵金属,铸造工艺参数为:陶瓷预制体预热温度为930℃,浇注温度为1550℃,真空度小于200Pa。
步骤204、陶瓷预制体材料的脱除,采用高压脱芯釜进行陶瓷预制体材料的脱除,化学腐蚀剂为氢氧化钾,其脱除工艺参数为:温度设定为300℃,内胆压力为0.25MPa,脱除时间为4h。

Claims (12)

  1. 一种高熔点Kelvin结构点阵金属,其特征在于,该点阵金属为由基本单元拓展而成的三维立体Kelvin结构,所述三维立体Kelvin结构的材质为高熔点金属材料,所述基本单元为以棱柱(101)结构为主体的Kelvin结构点阵金属单元(100),所述Kelvin结构点阵金属单元(100)的棱柱(101)为实体,所述Kelvin结构点阵金属单元(100)除棱柱(101)之外的其余部分均为虚体,相邻两个Kelvin结构点阵金属单元(100)之间均有一个棱柱(101)重合,所述高熔点Kelvin结构点阵金属的孔隙率范围为58%~92%。
  2. 根据权利要求1所述的高熔点Kelvin结构点阵金属,其特征在于,所述高熔点金属材料包括钢铁材料和高温合金材料。
  3. 根据权利要求1所述的高熔点Kelvin结构点阵金属,其特征在于,所述棱柱(101)的直径为2~10mm,棱柱长径比为1.2~3.0。
  4. 根据权利要求1所述的高熔点Kelvin结构点阵金属,其特征在于,所述该点阵金属压缩应力-应变曲线有塑性屈服平台,且在空间的三个方向具有相同的力学性能。
  5. 一种如权利要求1-4中任一权利要求所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,具体包括以下步骤:
    步骤一、采用选区激光烧结工艺制备高熔点Kelvin点阵金属前驱体;
    步骤二、采用石英玻璃为基体制备高熔点Kelvin结构点阵金属的新型陶瓷预制体,并对陶瓷预制体材料进行挂浆和焙烧;
    步骤三、采用ProCAST工艺模拟软件对所述高熔点Kelvin结构点阵金属的铸造工艺进行充型过程、凝固行为、铸造热应力、凝固微观组织的数值模拟,指导铸造工艺实施过程,并采用真空重力铸造工艺制备高熔点Kelvin结构点阵金属;
    步骤四、采用高压脱芯釜进行陶瓷预制体材料的脱除。
  6. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤一中选区激光烧结工艺具体参数如下:制备三维模型STL文件处理参数为表面粗糙度0.04~0.1mm,三角形面片缩减合并参数为0.03~0.06mm,选区激光烧结工艺单层厚度为0.2mm,扫描速度为4000mm/s,起始层烧结温度为110~120℃,一般层烧结温度为90~100℃,选区激光烧结工艺的材料为聚苯乙烯。
  7. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤二中高熔点Kelvin结构点阵金属的陶瓷预制体的配方为:陶瓷骨架为石英玻璃,其质量分数为48~55%;助烧剂为刚玉砂和高岭土,其质量分数分别为12~16%和1~3%;稳定剂为硅微粉,其质量分数为0.5~1.5%;粘结剂为硅溶胶,其质量分数为29.2~31.9%;消泡剂为有机硅,其质量分数为0.12~0.16%;表面活性剂为脂肪醇聚氧乙烯醚,其质量分数为0.13~0.18%。
  8. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤二中挂浆为采用挂浆工艺制备陶瓷预制体生坯,每次挂浆后常温下干燥8~12h,挂浆层数为10~12层,直至陶瓷浆料包覆整个前驱体。
  9. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤二中焙烧为根据DSC曲线制定陶瓷预制体的烧结制度,烧结温度小于500℃时升温速率为50℃/h,烧结温度大于500℃时升温速率为250℃/h,最高烧结温度为1000~1050℃,在烧结温度为1000~1050℃下保温4h。
  10. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤三中真空重力铸造的工艺参数为:陶瓷预制体预热温度为900~1000℃,浇注温度为合金液相线以上50~200℃,真空度小于200Pa。
  11. 根据权利要求5所述高熔点Kelvin结构点阵金属的制备方法,其特征在于,所述步骤四脱除过程中化学腐蚀剂为氢氧化钾,其脱除工艺参数为:温度设定为280~400℃,内胆压力为0.15~0.35MPa,脱除时间为4h。
  12. 一种如权利要求1-4任一所述的高熔点Kelvin结构点阵金属的应用,其特征在于,高熔点Kelvin结构点阵金属应用于航空航天轻量化、耐高温部件,船舶、汽车减振降噪、缓冲吸能设备中。
PCT/CN2020/000022 2019-10-29 2020-01-16 一种高熔点Kelvin结构点阵金属及其制备方法与应用 WO2021082277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20881782.5A EP4052817A4 (en) 2019-10-29 2020-01-16 HIGH MELVIN STRUCTURE METAL LATTICE, METHOD FOR PREPARING IT AND APPLICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911034471.3 2019-10-29
CN201911034471.3A CN112355277B (zh) 2019-10-29 2019-10-29 一种高熔点Kelvin结构点阵金属及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021082277A1 true WO2021082277A1 (zh) 2021-05-06

Family

ID=74516476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000022 WO2021082277A1 (zh) 2019-10-29 2020-01-16 一种高熔点Kelvin结构点阵金属及其制备方法与应用

Country Status (3)

Country Link
EP (1) EP4052817A4 (zh)
CN (1) CN112355277B (zh)
WO (1) WO2021082277A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260424A (zh) * 2021-11-29 2022-04-01 重庆交通大学绿色航空技术研究院 基于液态金属的晶格结构超材料的制备方法
CN114433789A (zh) * 2022-01-27 2022-05-06 清华大学 一种易脱芯陶瓷型芯及其制备方法
CN114799207A (zh) * 2022-03-31 2022-07-29 西安航天发动机有限公司 一种金属发汗材料复杂预制件的成形方法
CN115572153A (zh) * 2022-10-28 2023-01-06 中国人民解放军军事科学院国防科技创新研究院 一种高熵合金/陶瓷复合点阵结构的制备方法
EP4194126A1 (fr) * 2021-12-08 2023-06-14 Commissariat à l'énergie atomique et aux énergies alternatives Piece comportant une structure poreuse et son procede de fabrication

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441702A (zh) * 2021-05-27 2021-09-28 中国科学院工程热物理研究所 一种具备强耐磨特性的双合金贯穿结构及其制备方法
CN113802030A (zh) * 2021-10-14 2021-12-17 上海交通大学 一种稀土高温合金构筑材料及其超限精密铸造方法
CN115958203B (zh) * 2022-10-19 2023-06-20 中国机械总院集团沈阳铸造研究所有限公司 一种具有减振特性的变密度点阵金属
CN116104893B (zh) * 2023-01-03 2023-07-28 中国机械总院集团沈阳铸造研究所有限公司 一种高阻尼变刚度点阵复合结构减振器及其制备方法
CN117840387A (zh) * 2024-03-08 2024-04-09 苏州美迈快速制造技术有限公司 一种蒙皮点阵结构的精密铸造模具及生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083819A (ja) * 1996-09-09 1998-03-31 Toyota Motor Corp 電極用多孔質金属基材及びその製造方法
EP2420316A1 (en) * 2010-03-17 2012-02-22 Samsung Electronics Co., Ltd. Porous oxide catalyst and method of preparing the porous oxide catalyst
CN104646669A (zh) * 2013-11-25 2015-05-27 广州中国科学院先进技术研究所 生物医用多孔纯钛植入材料及其制备方法
CN105033188A (zh) * 2015-05-22 2015-11-11 中国科学院固体物理研究所 一种基于3d打印技术的铝基点阵材料及其制备方法
CN108330313A (zh) * 2017-12-31 2018-07-27 重庆楠婧琳科技开发有限公司 金属点阵材料制造方法
CN109022882A (zh) * 2018-07-16 2018-12-18 昆明理工大学 一种陶瓷颗粒增强金属基体空间点阵复合材料的制备方法
CN109632603A (zh) * 2019-01-04 2019-04-16 长沙理工大学 一种泡沫金属的比表面积计算方法及系统
CN110042267A (zh) * 2019-04-28 2019-07-23 西北有色金属研究院 一种点阵结构镍基海绵材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939155A1 (de) * 1999-08-20 2001-02-22 Pore M Gmbh Verfahren und Vorrichtung zur Herstellung von Glitternetzstrukturen
US8728387B2 (en) * 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
DE102006017104A1 (de) * 2006-04-10 2007-10-11 Kurtz Gmbh Verfahren zur Herstellung von offenporigen Bauteilen aus Metall, Kunststoff oder Keramik mit geordneter Schaumgitterstruktur
US10384394B2 (en) * 2017-03-15 2019-08-20 Carbon, Inc. Constant force compression lattice
US10646915B2 (en) * 2017-11-21 2020-05-12 Honeywell International Inc. Shell metal core box structure and method
CN108101519A (zh) * 2017-12-19 2018-06-01 西安交通大学 一种用于复杂结构零件定向凝固成形的陶瓷铸型制备方法
CN109175247A (zh) * 2018-11-09 2019-01-11 中国航空制造技术研究院 一种石墨烯微点阵结构增强铝基复合材料制备方法
CN109365787A (zh) * 2018-11-22 2019-02-22 中国科学院合肥物质科学研究院 一种负泊松比铝基点阵结构及其制备方法
CN109261967B (zh) * 2018-11-30 2020-04-24 西北有色金属研究院 一种多孔钨材料的电子束分区扫描成形方法
CN110014153A (zh) * 2019-04-24 2019-07-16 同济大学 一种利用3d打印制备周期性铝合金晶格结构的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083819A (ja) * 1996-09-09 1998-03-31 Toyota Motor Corp 電極用多孔質金属基材及びその製造方法
EP2420316A1 (en) * 2010-03-17 2012-02-22 Samsung Electronics Co., Ltd. Porous oxide catalyst and method of preparing the porous oxide catalyst
CN104646669A (zh) * 2013-11-25 2015-05-27 广州中国科学院先进技术研究所 生物医用多孔纯钛植入材料及其制备方法
CN105033188A (zh) * 2015-05-22 2015-11-11 中国科学院固体物理研究所 一种基于3d打印技术的铝基点阵材料及其制备方法
CN108330313A (zh) * 2017-12-31 2018-07-27 重庆楠婧琳科技开发有限公司 金属点阵材料制造方法
CN109022882A (zh) * 2018-07-16 2018-12-18 昆明理工大学 一种陶瓷颗粒增强金属基体空间点阵复合材料的制备方法
CN109632603A (zh) * 2019-01-04 2019-04-16 长沙理工大学 一种泡沫金属的比表面积计算方法及系统
CN110042267A (zh) * 2019-04-28 2019-07-23 西北有色金属研究院 一种点阵结构镍基海绵材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4052817A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260424A (zh) * 2021-11-29 2022-04-01 重庆交通大学绿色航空技术研究院 基于液态金属的晶格结构超材料的制备方法
EP4194126A1 (fr) * 2021-12-08 2023-06-14 Commissariat à l'énergie atomique et aux énergies alternatives Piece comportant une structure poreuse et son procede de fabrication
CN114433789A (zh) * 2022-01-27 2022-05-06 清华大学 一种易脱芯陶瓷型芯及其制备方法
CN114433789B (zh) * 2022-01-27 2023-08-25 清华大学 一种易脱芯陶瓷型芯及其制备方法
CN114799207A (zh) * 2022-03-31 2022-07-29 西安航天发动机有限公司 一种金属发汗材料复杂预制件的成形方法
CN115572153A (zh) * 2022-10-28 2023-01-06 中国人民解放军军事科学院国防科技创新研究院 一种高熵合金/陶瓷复合点阵结构的制备方法
CN115572153B (zh) * 2022-10-28 2023-07-21 中国人民解放军军事科学院国防科技创新研究院 一种高熵合金/陶瓷复合点阵结构的制备方法

Also Published As

Publication number Publication date
CN112355277B (zh) 2022-02-08
EP4052817A4 (en) 2023-04-26
CN112355277A (zh) 2021-02-12
EP4052817A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021082277A1 (zh) 一种高熔点Kelvin结构点阵金属及其制备方法与应用
Zhang et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation
Wan et al. Fabrication, properties, and applications of open-cell aluminum foams: A review
Li et al. Research and application of functionally gradient materials
CN109365787A (zh) 一种负泊松比铝基点阵结构及其制备方法
CN105033188A (zh) 一种基于3d打印技术的铝基点阵材料及其制备方法
US9719176B2 (en) Thermal barrier materials and coatings with low heat capacity and low thermal conductivity
US6615899B1 (en) Method of casting a metal article having a thinwall
CN105803271B (zh) 一种基于slm成形的铝基纳米复合材料及其制备方法
CN108107071B (zh) 一种单晶高温合金再结晶倾向的评价方法
Sun et al. Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology
Lu et al. Review of main manufacturing processes of complex hollow turbine blades: This paper critically reviews conventional and advanced technologies used for manufacturing hollow turbine blades
CN103252448B (zh) 一种用于单晶叶片制造的薄壁高强度模壳制备方法
CN104690256B (zh) 控制镍基高温合金台阶状铸件杂晶缺陷的定向凝固方法
Jiang et al. A new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys
CN103231025A (zh) 一种可控壁厚的定向凝固铸型的制备方法
CN105290313B (zh) 一种提高钛铝合金精密铸造氧化物陶瓷型壳退让性的方法
CN107138726B (zh) 一种具有点阵冷却结构的导向叶片制备方法
Wang et al. A novel method of indirect rapid prototyping to fabricate the ordered porous aluminum with controllable dimension variation and their properties
CN112743088A (zh) 一种菱形十二面体钛合金点阵结构、夹层结构及制造方法
CN102744366A (zh) 钛铝基及铌硅基合金定向凝固熔模精铸模壳的制备方法
CN107365951B (zh) 一种Fe基非晶合金零件及其制备方法
CN113463187B (zh) 一种轻量化点阵结构单晶高温合金铸件的制备方法
CN105108054A (zh) 一种精密铸件制壳用过渡层涂料及其制备方法
CN111604470B (zh) 一种超薄壁铸件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881782

Country of ref document: EP

Effective date: 20220530