CN109175247A - 一种石墨烯微点阵结构增强铝基复合材料制备方法 - Google Patents

一种石墨烯微点阵结构增强铝基复合材料制备方法 Download PDF

Info

Publication number
CN109175247A
CN109175247A CN201811337470.1A CN201811337470A CN109175247A CN 109175247 A CN109175247 A CN 109175247A CN 201811337470 A CN201811337470 A CN 201811337470A CN 109175247 A CN109175247 A CN 109175247A
Authority
CN
China
Prior art keywords
graphene
lattice structure
dimensional lattice
deposited
aluminum matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811337470.1A
Other languages
English (en)
Inventor
赵冰
李志强
曾元松
刘宝胜
韩银龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Manufacturing Technology Institute
Original Assignee
AVIC Manufacturing Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Manufacturing Technology Institute filed Critical AVIC Manufacturing Technology Institute
Priority to CN201811337470.1A priority Critical patent/CN109175247A/zh
Publication of CN109175247A publication Critical patent/CN109175247A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种石墨烯微点阵结构增强铝基复合材料的制备方法。该方法首先制备金属三维点阵结构,在其表面沉积石墨烯,在沉积了石墨烯的金属三维点阵结构中填入铝合金粉末,通过振动以及压实并得到密实的混合结构,在外面包覆钢包套,对钢包套预制坯进行烘焙、真空封装,将封装后的预制坯放入到热等静压炉中实现铝合金粉末与沉积了石墨烯的金属三维点阵结构的复合,去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。本发明的方法使得石墨烯增强体具有有序三维架构,很好地解决了石墨烯增强体均匀分散的技术难题;本方法制备的成本低、效率高,适用于大批量生产和制备,具有良好的工业化应用前景。

Description

一种石墨烯微点阵结构增强铝基复合材料制备方法
技术领域
本发明涉及复合材料制备领域,具体地说是一种石墨烯微点阵结构增强铝基复合材料制备方法。
背景技术
三维点阵结构(Three Dimensional Lattice Structure)是由结点和结点间连接杆件单元组成的周期结构材料,其细观构型为三维网架体系,具有最优的力学性能和功能匹配,如图一所示。在此基础上,提出了三维有序架构的石墨烯微点阵(Graphene micro-lattice structure)的概念,其中点阵结构的筋条是石墨烯空心管,空心管壁由二维石墨烯薄膜层组成,厚度约为多层石墨烯的厚度,一般不超过10层,空心管的直径为0.1mm~1mm,空心管的长度为0.5mm~5mm,如图1所示。这种石墨烯微点阵结构是一种纳米/微米/毫米的多层级跨尺度有序结构,石墨烯微点阵结构内部空间99.99%是中空结构,密度低于0.9mg/cm3,只有相同体积同种材料重量的0.3~0.001%。石墨烯微点阵结构不仅具有超轻的特性,还具有优异的力学和物理性质,是基于“无缝连接和拓扑有序化”设计理念提出的一种具有前沿性的新型材料和结构,为解决石墨烯材料微观与宏观性能不一致技术难题提供了一个新的思路,代表了高性能二维材料未来发展的方向。因此,未来,石墨烯微点阵材料在高效散热、宽频隐身、电磁屏蔽、射频晶体管、超灵敏传感器、柔性透明导电薄膜、高性能锂离子电池和超级电容器等方面展现出巨大的应用潜力,特别是可以用于未来新一代飞行器的防雷击、吸波隐身、承载一体化的大尺寸蒙皮结构。
石墨烯是是一种二维材料,它具有优异的物理性能和力学性能,可以作为金属基复合材料的增强体,来提升金属材料的性能。近年来,碳质纳米材料包括石墨烯和碳纳米管因其高导热性、高阻尼性容量、高弹性模型、高机械性能和良好的自润滑性而成为重要的结构和功能新材料的增强体。石墨烯作为金属的增强体尤其独特的优势,例如,高温固有稳定性、高强度和刚度、优越的导电性和电导率。然而,由于石墨烯密度小、分散性差、熔态下与熔融金属界面张力及界面反应问题,很难把石墨烯融入金属中。目前常用的石墨烯增强金属基复合材料的制备方法主要有:粉末冶金法、化学沉积法、水热合法、溶胶-凝胶法等,但是这些方法都难于解决石墨烯增强金属基复合材料中存在的实现石墨烯均匀分散的技术难题,制备的金属基复合材料也就很难获得设计或要求的性能。
目前已有的石墨烯增强铝基复合材料存在的主要问题如下:第一,石墨烯增强体由于表面能较大,很容易在制备过程中产生聚集,导致制备的铝基复合材料性能降低;第二,石墨烯增强体在铝合金基体中无序排布,铝基复合材料性能的可设计性差;第三,采用现有制备方法,获得高性能的铝基复合材料的制造成本高,制备的复合材料力学性能不理想。
发明内容
本发明的目的就是解决以上技术中存在的问题,并为此提供一种石墨烯微点阵结构增强铝基复合材料制备方法。该方法解决石墨烯增强铝基复合材料存在的石墨烯分散均匀性性、性能可设计性的难题,在三维空间内具有有序架构,而且其石墨烯的几何参数具有可设计型,从而解决石墨烯有序分散的技术难题,制备出高性能的铝基复合材料。
为达到上述技术目的,本发明采用以下技术解决方案:
一种石墨烯微点阵结构增强铝基复合材料的制备方法,包括以下步骤:
步骤一,制备金属三维点阵结构;
步骤二,将金属三维点阵结构放入等离子化学气相沉积设备中,在温度为500℃~600℃温度范围内,在金属三维点阵结构的表面沉积石墨烯;
步骤三,在沉积了石墨烯的金属三维点阵结构中填入铝合金粉末,通过振动以及压实的方法使得铝合金粉末充满沉积了石墨烯的金属三维点阵结构的间隙中,并得到密实;
步骤四,在铝合金粉末和沉积了石墨烯的金属三维点阵结构的外面包覆钢包套;
步骤五,对钢包套预制坯进行烘焙;
步骤六,对钢包套预制坯进行真空封装;
步骤七,将封装后的预制坯放入到热等静压炉中实现铝合金粉末与沉积了石墨烯的金属三维点阵结构的复合;
步骤八,去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。
作为优选,所述步骤六中对钢包套预制坯进行真空封装的极限真空度为1.0×10- 3Pa。
作为优选,所述步骤七中热等静压炉的工艺参数为:温度500℃~600℃,压力100MPa~200MPa,时间2~6h。
作为优选,所述步骤一具体为:采用熔模铸造、激光选区熔覆的方法制备出一个铝合金三维点阵结构芯模,并对制得的铝合金三维点阵结构芯模进行表面清洗。
作为优选,所述步骤一具体为:采用光固化的方法,以光敏树脂为原材料,制备出一个树脂三维点阵结构芯模,采用化学镀的方法在树脂三维点阵结构的表面沉积一层镍合金,采用化学蚀刻液,将沉积了镍合金的树脂三维点阵结构的树脂芯模去除,制备出镍合金空心管的三维点阵结构。
作为优选,所述步骤一具体为:将铝合金单带连续通过预浸料中,将铝合金单带通过逐层堆垛,其中相邻层间的单带夹角为90度,将堆垛的多层单带形成的三维点阵结构放入钎焊炉中,温度为500℃~600℃,时间5min~15min,制备出铝合金单带形成的三维点阵结构。
本发明的创新之处及有益效果包括:
第一,通过化学气相沉积法,在金属三维点阵结构的表面沉积一层石墨烯微点阵结构,使得石墨烯增强体具有有序三维架构,很好地解决了石墨烯增强体均匀分散的技术难题;
第二,可以通过改变和优化石墨烯微点阵结构的几何参数,例如单元尺寸、筋条直径、筋条长度等几何参数,实现对石墨烯三维点阵结构的优化,从而可以优化石墨烯三维点阵结构增强的铝合金复合材料的力学性能,具有良好的可设计性;
第三,采用方案四可以制备出有序石墨烯增强铝基复合材料的具有复杂外形的蒙皮结构件;
第四,采用本申请的四种方法制备石墨烯微点阵结构增强铝合金复合材料,制备的成本低、效率高,适用于大批量生产和制备,具有良好的工业化应用前景。
附图说明
图1示出了与本发明相关的石墨烯微点阵及其空心筋条结构图。
具体实施方式
为了使本发明更容易被清楚理解,以下结合附图和实施例对本发明的技术方案作以详细说明。
实施例一:
1.采用熔模铸造、激光选区熔覆的方法制备出一个铝合金三维点阵结构芯模,
2.对制备的铝合金三维点阵结构芯模进行表现清洗,
3.将铝合金三维点阵结构放入等离子化学气相沉积设备中,在温度为500℃~600℃温度范围内,在铝合金三维点阵结构的表面沉积石墨烯,
4.在沉积了石墨烯的铝合金三维点阵结构中填入铝合金粉末,通过振动以及压实的方法使得铝合金粉末充满沉积了石墨烯的铝合金三维点阵结构的间隙中,并得到密实,
5.在铝合金粉末和沉积了石墨烯的铝合金三维点阵结构的外面包覆钢包套,
6.对钢包套预制坯进行烘焙,
7.对钢包套预制坯进行真空封装,其中封装的极限真空度为1.0×10-3Pa,
8.将封装后的预制坯放入到热等静压炉中,在工艺参数为:500℃~600℃/100MPa~200MPa/2h左右的工艺参数条件下,实现铝合金粉末与沉积了石墨烯的铝合金三维点阵结构的复合,
9.去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。
实施例二:
10.采用光固化的方法,以光敏树脂为原材料,制备出一个树脂三维点阵结构芯模,
11.采用化学镀的方法在树脂三维点阵结构的表面沉积一层镍合金,
12.采用化学蚀刻液,将沉积了镍合金的树脂三维点阵结构的树脂芯模去除,制备出镍合金空心管的三维点阵结构,
13.采用化学气相沉积法在镍合金空心管三维点阵结构的表面沉积多层石墨烯,
14.在沉积了石墨烯的镍合金三维点阵结构中填入铝合金粉末,通过振动以及压实的方法使得铝合金粉末充满沉积了石墨烯的镍合金三维点阵结构的间隙中,并得到密实,
15.在铝合金粉末和沉积了石墨烯的镍合金三维点阵结构的外面包覆钢包套,
16.对钢包套预制坯进行烘焙,
17.对钢包套预制坯进行真空封装,其中封装的极限真空度为1.0×10-3Pa,
18.将封装后的预制坯放入到热等静压炉中,在工艺参数为:500℃~600℃/100MPa~200MPa/4h左右的工艺参数条件下,实现铝合金粉末与沉积了石墨烯的镍合金三维点阵结构的复合,
19.去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。
实施例三:
20.采用轧制的方法制备出铝合金的单带,其中单带的截面尺寸为(3mm~5mm)×(0.2mm~0.5mm)方法,
21.将铝合金单带连续通过预浸料中,该预浸料可以实现单带之间的钎焊连接,
22.将铝合金单带通过逐层堆垛,其中相邻层间的单带夹角为90℃,
23.将堆垛的多层单带形成的三维点阵结构放入钎焊炉中,在温度为500℃~600℃/5min~15min,从而制备出铝合金单带形成的三维点阵结构,
24.采用化学气相沉积法在铝合金单带形成的三维点阵结构的表面沉积多层石墨烯,
25.在沉积了石墨烯的铝合金三维点阵结构中填入铝合金粉末,通过振动以及压实的方法使得铝合金粉末充满沉积了石墨烯的镍合金三维点阵结构的间隙中,并得到密实,
26.在铝合金粉末和沉积了石墨烯的铝合金三维点阵结构的外面包覆钢包套,
27.对钢包套预制坯进行烘焙,
28.对钢包套预制坯进行真空封装,其中封装的极限真空度为1.0×10-3Pa,
29.将封装后的预制坯放入到热等静压炉中,在工艺参数为:500℃~600℃/100MPa~200MPa/6h左右的工艺参数条件下,实现铝合金粉末与沉积了石墨烯的铝合金三维点阵结构的复合,
30.去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于包括以下步骤:
步骤一,制备金属三维点阵结构;
步骤二,将金属三维点阵结构放入等离子化学气相沉积设备中,在温度为500℃~600℃温度范围内,在金属三维点阵结构的表面沉积石墨烯;
步骤三,在沉积了石墨烯的金属三维点阵结构中填入铝合金粉末,通过振动以及压实的方法使得铝合金粉末充满沉积了石墨烯的金属三维点阵结构的间隙中,并得到密实的混合结构;
步骤四,在铝合金粉末和沉积了石墨烯的金属三维点阵结构的外面包覆钢包套;
步骤五,对钢包套预制坯进行烘焙;
步骤六,对钢包套预制坯进行真空封装;
步骤七,将封装后的预制坯放入到热等静压炉中实现铝合金粉末与沉积了石墨烯的金属三维点阵结构的复合;
步骤八,去除钢包套,加工出石墨烯三维点阵结构增强的铝基复合材料。
2.根据权利要求1所述的石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于:所述步骤六中对钢包套预制坯进行真空封装的极限真空度为1.0×10-3Pa。
3.根据权利要求1所述的石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于:所述步骤七中热等静压炉的工艺参数为:温度500℃~600℃,压力100MPa~200MPa,时间2~6h。
4.根据权利要求1所述的石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于所述步骤一具体为:采用熔模铸造、激光选区熔覆的方法制备出一个铝合金三维点阵结构芯模,并对制得的铝合金三维点阵结构芯模进行表面清洗。
5.根据权利要求1所述的石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于所述步骤一具体为:采用光固化的方法,以光敏树脂为原材料,制备出一个树脂三维点阵结构芯模,采用化学镀的方法在树脂三维点阵结构的表面沉积一层镍合金,采用化学蚀刻液,将沉积了镍合金的树脂三维点阵结构的树脂芯模去除,制备出镍合金空心管的三维点阵结构。
6.根据权利要求1所述的石墨烯微点阵结构增强铝基复合材料的制备方法,其特征在于所述步骤一具体为:将铝合金单带连续通过预浸料中,将铝合金单带通过逐层堆垛,其中相邻层间的单带夹角为90度,将堆垛的多层单带形成的三维点阵结构放入钎焊炉中,温度为500℃~600℃,时间5min~15min,制备出铝合金单带形成的三维点阵结构。
CN201811337470.1A 2018-11-09 2018-11-09 一种石墨烯微点阵结构增强铝基复合材料制备方法 Pending CN109175247A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811337470.1A CN109175247A (zh) 2018-11-09 2018-11-09 一种石墨烯微点阵结构增强铝基复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811337470.1A CN109175247A (zh) 2018-11-09 2018-11-09 一种石墨烯微点阵结构增强铝基复合材料制备方法

Publications (1)

Publication Number Publication Date
CN109175247A true CN109175247A (zh) 2019-01-11

Family

ID=64938783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811337470.1A Pending CN109175247A (zh) 2018-11-09 2018-11-09 一种石墨烯微点阵结构增强铝基复合材料制备方法

Country Status (1)

Country Link
CN (1) CN109175247A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644570A (zh) * 2019-10-16 2020-09-11 襄阳振本传动设备有限公司 前后环轴承内圈生产方法
CN112355277A (zh) * 2019-10-29 2021-02-12 沈阳铸造研究所有限公司 一种高熔点Kelvin结构点阵金属及其制备方法与应用
CN115026306A (zh) * 2022-05-05 2022-09-09 华南理工大学 一种异质异构铝基复合材料及其制备方法
WO2024094370A1 (en) * 2022-10-31 2024-05-10 Asml Netherlands B.V. A coated assembly with a brazed feature and a ceramic cvd coating; and processes of fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195197A (zh) * 2007-12-18 2008-06-11 西安交通大学 一种蜂窝环形点阵的成型方法
CN104692332A (zh) * 2014-12-31 2015-06-10 北京航空航天大学 一种采用模板法构筑空心管微点阵金属氧化物材料及其制备方法
CN104862508A (zh) * 2015-05-15 2015-08-26 中国航空工业集团公司北京航空材料研究院 一种铝基石墨烯复合材料的制备方法
CN107381555A (zh) * 2017-08-09 2017-11-24 华中科技大学 一种结构可控的三维石墨烯及其复合材料的制备方法
CN108034930A (zh) * 2017-11-22 2018-05-15 华中科技大学 一种石墨烯/金属复合材料及三维石墨烯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195197A (zh) * 2007-12-18 2008-06-11 西安交通大学 一种蜂窝环形点阵的成型方法
CN104692332A (zh) * 2014-12-31 2015-06-10 北京航空航天大学 一种采用模板法构筑空心管微点阵金属氧化物材料及其制备方法
CN104862508A (zh) * 2015-05-15 2015-08-26 中国航空工业集团公司北京航空材料研究院 一种铝基石墨烯复合材料的制备方法
CN107381555A (zh) * 2017-08-09 2017-11-24 华中科技大学 一种结构可控的三维石墨烯及其复合材料的制备方法
CN108034930A (zh) * 2017-11-22 2018-05-15 华中科技大学 一种石墨烯/金属复合材料及三维石墨烯的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644570A (zh) * 2019-10-16 2020-09-11 襄阳振本传动设备有限公司 前后环轴承内圈生产方法
CN112355277A (zh) * 2019-10-29 2021-02-12 沈阳铸造研究所有限公司 一种高熔点Kelvin结构点阵金属及其制备方法与应用
CN115026306A (zh) * 2022-05-05 2022-09-09 华南理工大学 一种异质异构铝基复合材料及其制备方法
WO2024094370A1 (en) * 2022-10-31 2024-05-10 Asml Netherlands B.V. A coated assembly with a brazed feature and a ceramic cvd coating; and processes of fabricating the same

Similar Documents

Publication Publication Date Title
CN109175247A (zh) 一种石墨烯微点阵结构增强铝基复合材料制备方法
Tang et al. 2D metal carbides and nitrides (MXenes) as high‐performance electrode materials for Lithium‐based batteries
CN105671354B (zh) 一种泡沫金刚石骨架增强铝基复合材料及其制备方法
CN105603265B (zh) 泡沫石墨烯骨架增强铝基复合材料及其制备方法
Dong et al. The synthesis, structure, morphology characterizations and evolution mechanisms of nanosized titanium carbides and their further applications
CN105603248B (zh) 一种泡沫石墨烯骨架增强铜基复合材料及制备方法
Sidhu et al. Metal matrix composites for thermal management: A review
Nahirniak et al. Challenges and future prospects of the MXene-based materials for energy storage applications
CN105779805B (zh) 泡沫金刚石骨架增强铜基复合材料及制备方法
Xu et al. Uniform nano-Sn/C composite anodes for lithium ion batteries
Su et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction
Langley et al. Flexible transparent conductive materials based on silver nanowire networks: a review
CN105779804A (zh) 一种泡沫骨架结构增强金属基复合材料及制备方法
Pang et al. Flexible transparent and free-standing silicon nanowires paper
Xia et al. Fabrication of the silver modified carbon nanotube film/carbon fiber reinforced polymer composite for the lightning strike protection application
CN105733192A (zh) 一种泡沫骨架增强聚合物基复合材料及其制备方法
Choudhary et al. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications
Zhao et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite
Xiang et al. Progress in application and preparation of silver nanowires
CN104401968B (zh) 一种基于3d打印泡沫金属制备立体石墨烯的方法
Wu et al. Size controllable, transparent, and flexible 2D silver meshes using recrystallized ice crystals as templates
CN105000542A (zh) 一种石墨烯-碳纳米管三维结构复合材料的制备方法
Xia et al. Polymer-derived Si-based ceramics: recent developments and perspectives
CN107381555A (zh) 一种结构可控的三维石墨烯及其复合材料的制备方法
Wang et al. A review: 3D printing of microwave absorption ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111

RJ01 Rejection of invention patent application after publication