CN115537920A - 一种二维过渡金属硫族化合物及其制备和应用 - Google Patents

一种二维过渡金属硫族化合物及其制备和应用 Download PDF

Info

Publication number
CN115537920A
CN115537920A CN202211345215.8A CN202211345215A CN115537920A CN 115537920 A CN115537920 A CN 115537920A CN 202211345215 A CN202211345215 A CN 202211345215A CN 115537920 A CN115537920 A CN 115537920A
Authority
CN
China
Prior art keywords
transition metal
substrate
beam source
source furnace
simple substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211345215.8A
Other languages
English (en)
Inventor
胡志宇
张帅
吴振华
罗思远
刘泽昆
刘妍
施慧烈
傅理夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202211345215.8A priority Critical patent/CN115537920A/zh
Publication of CN115537920A publication Critical patent/CN115537920A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及一种二维过渡金属硫族化合物及其制备和应用,利用硫族单质和过渡金属单质作为靶源,通过分子束外延技术,结合分步蒸发和后蒸发的策略,在衬底上进行气相沉积,从而得到高质量,大尺寸的二维过渡金属硫族化合物薄膜材料。与现有技术相比,本发明制备得到的薄膜形貌为少层平面结构、多层纳米棒结构或者多层纳米管结构,整个方法简单,高效,产物质量高,在高性能微纳器件、场效应晶体管、光电探测和集成电路等领域有着巨大的应用前景。

Description

一种二维过渡金属硫族化合物及其制备和应用
技术领域
本发明属于二维半导体材料技术领域,涉及一种二维过渡金属硫族化合物及其制备和应用。
背景技术
光电探测器在光通讯系统中对于将光信号转变成电信号起着重要作用,实现宽谱集成光电探测的能力对于提高现代通信和传感系统在安全、环境监测、光通信等方面的升级能力至关重要。
二维过渡金属硫族化合物光电探测器在从红外光到紫外光和太赫兹的光谱范围具有很高的响应速率。目前制备二维过渡金属硫族化合物的方法主要是机械剥离法,激光减薄法,化学气相沉积法等。但是,制备出高质量,大面积可控的二维过渡金属硫族化合物仍然是一个挑战,这也对二维过渡金属硫族化合物在光电探测领域的应用带来了很大的困难。
发明内容
本发明的目的就是为了提供一种二维过渡金属硫族化合物及其制备和应用。
本发明的目的可以通过以下技术方案来实现:
本发明的技术方案之一提供了一种二维过渡金属硫族化合物的制备方法,包括以下步骤:
(1)对衬底进行清洗和退火处理,得到具有原子级平整的表面;
(2)将经步骤(1)处理后的衬底固定在基底上,并置于分子束外延设备的腔体内;
(3)设置靶源为硫族单质的第一束源炉和靶源为过渡金属单质的第二束源炉,先使第二束源炉中的过渡金属单质受热蒸发,在衬底上沉积形成过渡金属单质薄膜,然后加热第一束源炉中的硫族单质,继续沉积,得到复合薄膜;
(4)对所得复合薄膜进行退火处理,即完成。
进一步地,衬底选择硅片<100>、银<111>、蓝宝石、云母片、碳化硅、砷化镓、石墨烯或高定向热解石墨。
进一步地,硫族单质可以为硫(S)、硒(Se)或碲(Te)。
进一步地,过渡金属单质可以为钨(W)、钒(V)、钼(Mo)、铌(Nb)、铂(Pt)或钯(Pd)。
进一步地,步骤(2)中,分子束外延设备中的基底温度为25~800℃,本体真空度为10-7~10-10pa。
更进一步地,步骤(2)中,基底还以0~20rad/min的旋转速度进行旋转。此处当旋转速度为0时,即表示基底不旋转,优选的,旋转速度不为0。
进一步的,步骤(3)中,第二束源炉和第一束源炉在蒸发沉积过程中的温度分别独立的为50~2000℃。
进一步地,步骤(3)中,第二束源炉中的过渡金属单质、第一束源炉中的硫族单质的沉积速度分别独立的为
Figure BDA0003916967760000021
沉积时间分别独立的为1~1000min。
进一步地,步骤(3)中得到的复合薄膜还继续在第一束源炉加热的条件下进行后蒸发处理。后蒸发时基底温度为100~800℃。
更进一步地,后蒸发处理过程中第一束源炉在蒸发沉积过程中的温度为50~2000℃,第一束源炉中的硫族单质的沉积速度为
Figure BDA0003916967760000022
沉积时间为0~200min。当后蒸发处理的时间为0时,即表示没有后蒸发处理这个过程。优选的,后蒸发处理时间不为0。
进一步地,步骤(4)中,退火处理的温度为25~500℃,时间为0~48h。
本发明的技术方案之二提供了一种二维过渡金属硫族化合物,其采用如上所述的制备方法制备得到。基于柯肯达尔效应,利用过渡金属单质气体和硫族单质气体在薄膜表面的扩散速度不同,调节反应过程和缺陷程度可以得到具有少层平面结构、多层纳米棒结构或者多层纳米管结构的二维过渡金属硫族化合物。
本发明的技术方案之三提供了一种二维过渡金属硫族化合物的应用,该二维过渡金属硫族化合物用于光电探测器领域中。
分子束外延生长是一个动力学过程,即受热蒸发的中性粒子(原子或者分子)在加热的衬底上沉积并吸附。吸附的原子或者分子在衬底表面发生迁移、分解,并融合到衬底或者外延层的晶格中,未能进入晶格的分子或者原子因热脱附而离开表面。利用分子束外延技术可以得到大面积高质量的二维材料。
本发明的二维过渡金属硫族化合物具有独特的电子、光学和能带性质,并且在空气中稳定性较好,可将其组装成场效应晶体管并应用在光电探测器领域。
与现有技术相比,本发明具有以下优点:
(1)分子束外延技术具有生长速率低的优势,可以精准控制厚度、结构和成分,有利于生长超晶格材料和外延薄膜材料。同时分子束外延技术的衬底温度较低,降低了界面热膨胀引起的晶格失配效应和衬底杂质对外延层自掺杂扩散的影响。利用分子束外延技术可以得到大面积的表面形貌好,均匀性好,纯度和完整性好的薄膜材料;
(2)分步蒸发法先在衬底上外延生长大面积连续的过渡金属单质B。随即蒸发的硫族单质A可以与衬底上的单质B发生反应,插入单质B的化学键中。后蒸发法可以调控薄膜材料中A和B的原子比例;本发明通过控制分步蒸发和后蒸发的过程,利用柯肯达尔效应,调控反应过程和缺陷程度,,得到少层平面结构、多层纳米棒结构或者多层纳米管结构。
(3)本发明简单,高效,产物质量高,制备的薄膜可以达到英寸级别,并且与传统硅基CMOS工艺兼容,完全满足大规模器件集成的应用;
(4)本发明的二维过渡金属硫族化合物光电探测器具有显著的光电流开/关比和快速的响应时间,在民用、军事、刑事侦查、医疗等领域的多光谱探测与成像有着巨大的应用前景等方面。
附图说明
图1是本发明提供的分子束外延装置示意图;
图2是本发明提供二维过渡金属硫族化合物的制备过程示意图。
图3是本发明提供的实施例1制备的多层纳米棒结构和实施例5制备的多层纳米管结构的二维过渡金属硫族化合物扫描电镜图。
图4是本发明提供的实施例5制备的多层纳米管结构的二维过渡金属硫族化合物的紫外光电子能谱图和表面电势。
图5是本发明提供的背栅型场效应晶体管光电探测器结构示意图。
图中标记说明:
1、真空腔体;2、旋转轴;3、基底;4、衬底;5、束源炉1;6、束源炉2;7、支撑架;8、过渡金属单质层;9、过渡金属硫族化合物层;10、二氧化硅/硅衬底;11、源极;12、漏极;13、光源。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明提供了一种二维过渡金属硫族化合物的制备方法,其分子束外延设备中进行,如图1所述,分子束外延设备包括真空腔体1、通过旋转轴2设置在真空腔体1顶端的基底3,真空腔体2的底部设有两个束源炉,分别为靶源为硫族单质的第一束源炉5和靶源为过渡金属单质的第二束源炉6,沉积制备时,在基底3上固定放置衬底4。
另外,基于上述分子束外延设备,本发明可以采用以下两种制备方式,具体参考图2所示:
如图2中(a)图所示,首先加热蒸发高纯过渡金属单质,使其原子或分子在衬底表面沉积吸附并融合到外延层的晶格中去,形成少层过渡金属单质层。随后加热蒸发高纯硫族单质,使其原子插入过渡金属单质层的原子之间形成过渡金属硫族化合物层。经过后蒸发处理得到最终的少层平面结构薄膜。
如图2中(b)图所示,首先加热蒸发高纯过渡金属单质,使其原子或分子在衬底表面沉积吸附并融合到外延层的晶格中去,经过长时间生长形成多层纳米棒结构过渡金属单质层。随后加热蒸发高纯硫族单质,使其原子插入过渡金属单质层的原子之间形成多层纳米棒结构过渡金属硫族化合物。过渡金属单质和硫族单质气体的扩散速度不一样,基于柯肯达尔效应,后处理的过程使得硫族单质气体在纳米棒结构的过渡金属硫族化合物中扩散形成缺陷,从而得到中空纳米管结构。
以下采用上述提及的分子束外延设备与具体工艺并结合具体实施例来对本发明进行更详细的说明。
实施例1:
参见图1所示,选用三寸硅片<100>作为衬底4,并用氢氟酸,丙酮,去离子水洗去衬底表面污渍。将衬底在100℃条件下真空退火12h。
将衬底固定在基底3上,并置于分子束外延设备真空腔体1内。将高纯硫族单质硒(Se)置于第一束源炉5中,将高纯过渡金属单质钯(Pd)置于第二束源炉6中。
利用机械泵、分子泵、离子泵、钛升华泵等对分子束外延设备腔体进行多级抽真空处理,使得本体真空度达到10-8pa。
设置基底温度500℃,基底旋转速度为0rad/min。
使用分步蒸发法沉积薄膜。首先关闭第一束源炉5,打开第二束源炉6。设置第二束源炉6的温度1157℃,沉积速度为
Figure BDA0003916967760000051
沉积时间40min,得到钯(Pd)层(即过渡金属单质层8)。然后关闭第二束源炉6,打开第一束源炉5。设置第一束源炉5的温度125℃,沉积速度为
Figure BDA0003916967760000052
沉积时间60min。硒(Se)原子插入钯(Pd)原子之间形成过渡金属硫族化合物硒化钯(即过渡金属硫族化合物层9)。
使用后蒸发法处理上述薄膜。关闭第二束源炉6,打开第一束源炉5。设置第一束源炉5的温度125℃,沉积速度为
Figure BDA0003916967760000053
沉积时间90min。
关闭第一束源炉5和第二束源炉6,对上述薄膜进行热退火处理。将基底3温度降至400℃,保温60min,继续降至300℃,保温60min,随后降至室温。
实施例2:
利用扫描电镜观察实施例1中的薄膜微观形貌(图3中a图所示)。
实施例3:
与实施例1相比,绝大部分都相同,除了本实施例中:衬底选用蓝宝石片。
实施例4:
与实施例1相比,绝大部分都相同,除了本实施例中:分步蒸发时,过渡金属单质钯(Pd)的沉积速度为
Figure BDA0003916967760000054
实施例5:
与实施例1相比,绝大部分都相同,除了本实施例中:后蒸发处理时,高纯硫族单质硒(Se)的沉积速度为
Figure BDA0003916967760000055
沉积时间200min。
实施例6:
测试实施例5中薄膜样品的微观形貌(图3中b图所示),光电子能谱及表面电势(图4)。
实施例7:
如图5所示,将实施例1所述薄膜转移到二氧化硅/硅衬底10上,通过电子束曝光技术制备图案电极,再利用电子束蒸发沉积钛和金作为电极(即分别得到源极11和漏极12),得到背栅型场效应晶体管。基于过渡金属硫族化合物优异的电子和光电特性,这种背栅型场效应晶体管可用于可见光-太赫兹的超宽谱高效探测。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种二维过渡金属硫族化合物的制备方法,其特征在于,包括以下步骤:
(1)对衬底进行清洗和退火处理,得到具有原子级平整的表面;
(2)将经步骤(1)处理后的衬底固定在基底上,并置于分子束外延设备的腔体内;
(3)设置靶源为硫族单质的第一束源炉和靶源为过渡金属单质的第二束源炉,先使第二束源炉中的过渡金属单质受热蒸发,在衬底上沉积形成过渡金属单质薄膜,然后加热第一束源炉中的硫族单质,继续沉积,得到复合薄膜;
(4)对所得复合薄膜进行退火处理,即完成。
2.根据权利要求1所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(2)中,分子束外延设备中的基底温度为25~800℃,本体真空度为10-7~10-10pa。
3.根据权利要求2所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(2)中,基底还以0~20rad/min的旋转速度进行旋转。
4.根据权利要求1所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(3)中,第二束源炉和第一束源炉在蒸发沉积过程中的温度分别独立的为50~2000℃。
5.根据权利要求1所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(3)中,第二束源炉中的过渡金属单质、第一束源炉中的硫族单质的沉积速度分别独立的为
Figure FDA0003916967750000011
沉积时间分别独立的为1~1000min。
6.根据权利要求1所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(3)中得到的复合薄膜还继续在第一束源炉加热的条件下进行后蒸发处理。
7.根据权利要求6所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,后蒸发处理过程中,基底温度为100~800℃,第一束源炉在蒸发沉积过程中的温度为50~2000℃,第一束源炉中的硫族单质的沉积速度为
Figure FDA0003916967750000012
沉积时间为0~200min。
8.根据权利要求1所述的一种二维过渡金属硫族化合物的制备方法,其特征在于,步骤(4)中,退火处理的温度为25~500℃,时间为0~48h。
9.一种二维过渡金属硫族化合物,其采用如权利要求1-8任一所述的制备方法制备得到,其特征在于,该二维过渡金属硫族化合物为少层平面结构、多层纳米棒结构或者多层纳米管结构。
10.如权利要求9所述的一种二维过渡金属硫族化合物的应用,其特征在于,该二维过渡金属硫族化合物用于光电探测器领域中。
CN202211345215.8A 2022-10-31 2022-10-31 一种二维过渡金属硫族化合物及其制备和应用 Pending CN115537920A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211345215.8A CN115537920A (zh) 2022-10-31 2022-10-31 一种二维过渡金属硫族化合物及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211345215.8A CN115537920A (zh) 2022-10-31 2022-10-31 一种二维过渡金属硫族化合物及其制备和应用

Publications (1)

Publication Number Publication Date
CN115537920A true CN115537920A (zh) 2022-12-30

Family

ID=84718359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211345215.8A Pending CN115537920A (zh) 2022-10-31 2022-10-31 一种二维过渡金属硫族化合物及其制备和应用

Country Status (1)

Country Link
CN (1) CN115537920A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486531A (zh) * 2018-02-01 2018-09-04 中国科学院物理研究所 一种二硒化钯二维晶态薄膜层的制备方法
CN110257906A (zh) * 2019-07-23 2019-09-20 西北工业大学 一种二维过渡金属硫族化合物晶体及其制备方法和用途
CN111206284A (zh) * 2020-02-21 2020-05-29 湖南大学 一种硒化钯单晶及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486531A (zh) * 2018-02-01 2018-09-04 中国科学院物理研究所 一种二硒化钯二维晶态薄膜层的制备方法
CN110257906A (zh) * 2019-07-23 2019-09-20 西北工业大学 一种二维过渡金属硫族化合物晶体及其制备方法和用途
CN111206284A (zh) * 2020-02-21 2020-05-29 湖南大学 一种硒化钯单晶及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李恩: "几种层状硫族化合物薄膜的外延生长与物性研究", 中国博士学位论文全文数据库 基础科学辑, vol. 2019, 15 January 2019 (2019-01-15), pages 005 - 125 *

Similar Documents

Publication Publication Date Title
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN105826362B (zh) 一种氧化镓纳米线阵列及其制备方法
CN104389016B (zh) 一种快速制备大尺寸单晶石墨烯的方法
CN103952682A (zh) 化学气相沉积生长单层二硫化钼的方法
CN108083339B (zh) 一种制备单层二维过渡金属硫化物材料的方法
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN106148911A (zh) 一种可控制备单层分形二硫化钼的方法
Wang et al. Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications
CN105839072B (zh) 一种化学气相沉积制备二硫化铼薄膜的方法
CN108660416A (zh) 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器
Kiriya et al. Morphological and spatial control of InP growth using closed-space sublimation
CN108732791A (zh) 一种极化率可控的可变波长二维旋光器件及其制备方法
WO2014174133A1 (es) Procedimiento para la producción controlada de grafeno a muy baja presión y dispositivo para llevar a cabo el procedimiento
CN110422841B (zh) 平面结构的不对称氧、硫通道实现ab堆积型双层石墨烯的逐层生长方法
CN101235537B (zh) 制备ZnMgO合金薄膜的方法
CN110373636B (zh) 一种硅化钼过渡金属化合物薄膜材料的制备方法
CN109706434B (zh) 一种固溶体纳米线及其制备方法和用途
CN110224035B (zh) 一种异质结、其制备方法和应用
CN115537920A (zh) 一种二维过渡金属硫族化合物及其制备和应用
CN106185897A (zh) 一种在多种基底上可控制备石墨烯纳米带的方法
CN113278949B (zh) 一种单层硫硒化钼合金组份可调的制备方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN115101404A (zh) 一种二维碲烯的局部减薄方法
CN111647848A (zh) 一种磁控溅射制备大面积CsPbBr3光电薄膜的方法和应用
CN112864260A (zh) SnSe2/H-TiO2异质结光电探测器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination