CN115536070A - 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料 - Google Patents

一种同时带有阴/阳离子空位的wo3镁离子电池正极材料 Download PDF

Info

Publication number
CN115536070A
CN115536070A CN202211207156.8A CN202211207156A CN115536070A CN 115536070 A CN115536070 A CN 115536070A CN 202211207156 A CN202211207156 A CN 202211207156A CN 115536070 A CN115536070 A CN 115536070A
Authority
CN
China
Prior art keywords
ion battery
magnesium ion
anion
cation
vacancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211207156.8A
Other languages
English (en)
Other versions
CN115536070B (zh
Inventor
丁诗琦
李镇江
田雨欣
陈健康
孟阿兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202211207156.8A priority Critical patent/CN115536070B/zh
Publication of CN115536070A publication Critical patent/CN115536070A/zh
Application granted granted Critical
Publication of CN115536070B publication Critical patent/CN115536070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种同时带有阴/阳离子空位的WO3镁离子电池正极材料,属于电池材料技术领域。将二水合钨酸钠和葡萄糖按1:1的摩尔比分别配置成浓度为0.25M的水溶液,并混合均匀,逐滴滴加1M的盐酸,调节混合溶液的PH值至2,在反应釜中,于180℃水热8h;分别用去离子水和乙醇清洗,烘干,得到镁离子电池正极材料VW‑O/WO3。本发明通过一步水热法实现了在WO3中同时构筑阴离子(氧)空位和阳离子(钨)空位,以暴露更多的活性位点,提高导电性,维持结构稳定,并促进镁离子扩散。由其作为正极材料组装的镁离子电池,具有高比容量,优异的循环稳定性和倍率性能,具有广阔的应用前景。

Description

一种同时带有阴/阳离子空位的WO3镁离子电池正极材料
技术领域
本发明涉及电池材料技术领域,具体涉及一种同时带有阴/阳离子空位的WO3镁离子电池正极材料。
背景技术
镁离子电池具有低成本、高理论比容量和高安全性等特点,已经引起了广泛关注,并表现出巨大的应用潜力。目前,镁离子电池发展的关键挑战之一是开发出具有高性能的宿主正极材料。六方相WO3是一种畸变的ReO3型结构,这是ABO3钙钛矿结构中缺少A位点阳离子的结果。其中六个O原子形成一个规则的八面体,W原子在其中心位置,并且相邻的WO6八面体通过边共享的方式实现晶格通道连接,有利于镁离子的插入(参见文献:One-stephydrothermal synthesis of 2D WO3 nanoplates@graphene nanocomposite withsuperior anode performance for lithium ion battery,Dang etal.Electrochim.Acta,2019,313,99-108)。因此,六方相WO3有望成为一种极具应用潜力的镁离子电池正极材料。然而,半导体WO3的导电性较差,这将引起镁离子在WO3中的扩散缓慢,从而不能充分利用活性位点等问题,WO3作为镁离子电池正极材料的电化学性能并不理想。因此,对WO3进行修饰改性以满足镁离子电池的发展需求,是一项有意义的研究工作。
在众多正极材料修饰策略中,空位工程在提高电化学性能的显著优势在于,可以同时调控活性材料的电子结构、活性位点数量以及导电性(参见文献:Recent progress ofvacancy engineering for electrochemical energy conversion relatedapplications,Wu et al.Adv.Funct.Mater.,2020,31,2009070)。无论是阴离子空位还是阳离子空位都可以改变电荷分布,进而影响材料的导电性以及带隙结构,并且重新分布的电子密度会加速电荷的转移,以提高电化学反应活性。此外,空位还可以为镁离子的吸附提供丰富的电化学活性位点,使电极材料在循环过程中表现出增强的电化学反应活性和比容量。在结构中同时存在的阳离子空位和阴离子空位,会使活性材料同时发挥出阳离子空位和阴离子空位的优势(参见文献:Layered double hydroxide nanosheets with multiplevacancies obtained by dry exfoliation as highly efficient oxygen evolutionelectrocatalysts,Wang et al.Angew.Chem.Int.Ed.Engl.,2017,56,5867-5871),通过阴离子/阳离子空位的协同作用,提供丰富的电子或声子,并且在镁离子占据活性位点时促进电荷的转移,同时保持结构的稳定性,以提升电化学性能。因此,在WO3中同时构筑阴离子空位和阳离子空位可以提高其储镁性能,然而,相关工作尚未见报道。
本发明通过一步水热法制得同时带有阴(氧)/阳(钨)离子空位的WO3(VW-O/WO3),并应用于镁离子电池正极材料,研究其电化学性能。电化学性能测试结果表明,在W空位和O空位的协同作用下,VW-O/WO3表现出优异的电化学循环性能和倍率性能,在0.05Ag-1的电流密度下,进行400个循环后,VW-O/WO3的比容量可以稳定维持在100mAh g-1左右,并且在电流密度达到0.5Ag-1时,表现出良好的倍率性能,对新型镁离子电池正极材料的开发具有重要意义。
发明内容
本发明的目的在于提供一种镁离子电池正极材料,尤其提供一种同时带有阴/阳离子空位的WO3镁离子电池正极材料,并探究其在镁离子电池中的应用,在W空位/O空位的协同作用下,VW-O/WO3表现出好的循环稳定性和高的倍率性能。
为实现上述发明目的,本发明所提供的VW-O/WO3中同时构筑了W空位/O空位,应用于镁离子电池正极材料的制备过程包括以下步骤:
1.按照摩尔比为1:1的比例分别称取二水合钨酸钠和葡萄糖,分别配置浓度为0.25M的水溶液,在室温下磁力搅拌至完全溶解,得到溶液A和B;
2.将溶液B倒入溶液A中,在室温下继续磁力搅拌至两种溶液完全混合;
3.在磁力搅拌的同时,向上述混合溶液中逐滴滴加浓度为1M的盐酸,调节至混合溶液的PH值为2;
4.将充分混合的混合溶液转移至100ml的反应釜中进行水热反应,水热反应温度为180℃,反应时间为8h,反应结束后随炉冷却至室温;
5.分别用去离子水和无水乙醇清洗3次,并通过离心收集到沉淀,将所得沉淀物放入干燥箱内干燥,烘干温度为60℃,烘干时间为12h,得到同时带有阴(氧)/阳(钨)离子空位的WO3(VW-O/WO3)。
本发明还提供了VW-O/WO3作为镁离子电池正极材料的应用,将所述VW-O/WO3制成正极片,并与金属镁负极材料、玻璃纤维隔膜和APC-THF电解液组装成扣式电池。将组装好的电池静置24h后,在CT2001A电池程控测试仪上进行电化学性能测试,测试电压窗口为0.2~2.1V,电流密度为0.05~0.5Ag-1
本发明提供的VW-O/WO3镁离子电池正极材料的优势在于:
1、采用本发明通过添加葡萄糖和制造酸性环境,在WO3中同时构筑出W空位和O空位,并且作为镁离子电池正极材料;
2、采用本发明制备的W空位/O空位同时存在的VW-O/WO3镁离子电池正极材料,W空位和O空位的协同作用,使VW-O/WO3暴露了更多的活性位点,提高了其导电性以及静电势,并维持结构稳定,并且W空位诱导的O-□-O结构提供富阴离子环境,有利于其吸附更多的镁离子,同时还可以减少结构中阳离子晶格与镁离子之间的排斥力,促进了镁离子的扩散,有利于提高镁离子电池电化学性能。
3、采用本发明制备的VW-O/WO3作为镁离子电池正极材料,表现出优异的电化学性能:在0.05A g-1的电流密度下实现400圈的循环寿命,并保持比容量在100mAh g-1左右;并且当电流密度达到0.5A g-1时,表现出良好的倍率性能。
以下结合附图对本发明的构思、结构及所产生的技术效果作进一步说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为实施例中所得VW-O/WO3镁离子电池正极材料的XRD图;
图2为实施例中所得VW-O/WO3镁离子电池正极材料的HRTEM照片;
图3为实施例中所得VW-O/WO3镁离子电池正极材料的O高分辨XPS图谱;
图4为实施例中所得VW-O/WO3镁离子电池正极材料的W高分辨XPS图谱;
图5为实施例中所得VW-O/WO3镁离子电池正极材料的EPR图;
图6为实施例中所得VW-O/WO3镁离子电池正极材料的循环性能曲线和倍率性能曲线;
具体实施方式
以下结合具体实施例对本发明作进一步详细的说明,但实施例不以任何方式限制本发明的范围。
实施例
一种同时带有阴/阳离子空位的WO3镁离子电池正极材料
分别称取5mmol的二水合钨酸钠和葡萄糖,将两种药品分别溶于20ml去离子水中,并在室温下充分搅拌至完全溶解,分别得到溶液A和B;将溶液B与溶液A进行充分混合,随后在磁力搅拌过程中,逐滴滴加浓度为1M的盐酸溶液,直至调整溶液的PH值为2。将充分混合的混合溶液转移至100ml的反应釜中进行水热反应,水热反应温度为180℃,反应时间为8h,反应结束后随炉冷却至室温;分别用去离子水和无水乙醇清洗3次,并通过离心收集产物,将所得产物放入干燥箱内中烘干,烘干温度为60℃,烘干时间为12h,得到同时带有W空位和O空位的WO3
XRD结果(图1)中的衍射峰均可以很好地对应于单斜相WO3,证明了经过水热反应后,WO3被成功构筑。在HRTEM图片(图2)中可以观察到明显的晶格条纹,其晶面间距为0.63nm,对应于单斜相WO3的(100)晶面,进一步证明了WO3的成功构筑。另外,在晶格条纹中可以观察到许多不连续的部分,可以初步推测产物中具有丰富的空位。O的高分辨XPS图谱(图3)中显示了缺陷氧的信号峰,同时W的高分辨XPS图谱(图4)显示了W同时具有+5价和+6价的化合价态,其中+5价W的存在也是由于O空位存在引起的,因此,XPS结果证明了O空位的存在。VW-O/WO3的EPR图谱(图5)显示在g=2.0035处具有较强的信号峰,进一步说明了VW-O/WO3中存在丰富的O空位,同时在g=1.9437处也可以观察到明显的信号峰,对应于W空位的产生,证明了在VW-O/WO3中同时存在W空位和O空位。
将合成的VW-O/WO3粉末作为正极活性材料,与炭黑和粘结剂(聚偏二氟乙烯PVDF)按质量比为6:3:1均匀混合,然后加入有机溶剂1-甲基-2-吡咯烷酮研磨,至粘稠状态。将泥浆用工字涂布器涂布在导电集流体碳纸上,随后放入60℃烘箱干燥12h。使用裁片机将烘干后的电极片裁成直径为12mm的圆片,作为镁离子电池的正极。将0.1mm厚的镁箔用砂纸除去表面的氧化层,并使用裁片机裁成直径为16mm的圆片,作为镁离子电池的负极,并以玻璃纤维滤膜为隔膜,0.4M的APC/THF为电解液,在氩气氛围的手套箱中组装成扣式电池。将组装的扣式电池静置24h后,在CT2001A电池程控测试仪上进行电化学性能测试,测试电压窗口为0.2~2.1V,电流密度为0.05~1A g-1
所得产物VW-O/WO3的电化学性能见说明书附图6,在0.05A g-1的电流密度下,VW-O/WO3实现了400圈循环,并且在循环过程中比容量保持在100mAh g-1左右。同时VW-O/WO3在电流密度从0.05A g-1逐渐提升至0.5A g-1时,比容量由95.5mAh g-1变化到37.7mAh g-1,并且当电流密度降到0.05A g-1时,比容量恢复到96mAh g-1,表现出了优异的倍率性能。

Claims (3)

1.一种同时带有阴/阳离子空位的WO3镁离子电池正极材料,其特征在于,其制备过程如下:
按1:1的摩尔比分别称取二水合钨酸钠和葡萄糖,分别配置浓度为0.25M的水溶液,持续磁力搅拌至完全溶解;将上述两种溶液混合,在磁力搅拌的条件下,逐滴滴加浓度为1M的盐酸,将混合溶液的PH值调节至2;将混合溶液转移至反应釜中进行水热反应,反应温度为180℃,反应时间为8h,待反应结束后随炉冷却;分别用去离子水和无水乙醇清洗3次,并通过离心收集产物,将所得产物干燥,得到VW-O/WO3正极材料;
将得到的VW-O/WO3作为正极材料组装成扣式镁离子电池,电化学性能测试的电压窗口为0.2~2.1V,电流密度为0.05~0.5Ag-1
2.根据权利要求1所述的一种同时带有阴/阳离子空位的WO3镁离子电池正极材料,其特征在于,通过添加葡萄糖和制造酸性环境,同时在WO3中构筑出阴离子(氧)空位和阳离子(钨)空位。
3.根据权利要求1所述的一种同时带有阴/阳离子空位的WO3镁离子电池正极材料,其特征在于,所得材料应用在镁离子电池中的比容量为100mAh g-1,循环寿命为400圈循环,并具有良好的倍率性能。
CN202211207156.8A 2022-09-30 2022-09-30 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料 Active CN115536070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211207156.8A CN115536070B (zh) 2022-09-30 2022-09-30 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211207156.8A CN115536070B (zh) 2022-09-30 2022-09-30 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料

Publications (2)

Publication Number Publication Date
CN115536070A true CN115536070A (zh) 2022-12-30
CN115536070B CN115536070B (zh) 2023-12-08

Family

ID=84731956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211207156.8A Active CN115536070B (zh) 2022-09-30 2022-09-30 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料

Country Status (1)

Country Link
CN (1) CN115536070B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151038A (ja) * 1989-11-07 1991-06-27 Nissan Chem Ind Ltd 酸化タングステン一酸化スズ複合ゾル及びその製造法
CN105826539A (zh) * 2016-06-02 2016-08-03 南阳师范学院 一种wo3-x/c复合材料、制备方法及其用途
CN106082344A (zh) * 2016-06-15 2016-11-09 中国科学技术大学 一种用于光催化有氧偶联的缺陷态三氧化钨的制备方法
CN106975476A (zh) * 2017-04-24 2017-07-25 陕西科技大学 一种高效三氧化钨微球光催化剂及其制备方法
CN110563043A (zh) * 2019-09-29 2019-12-13 上海交通大学 水热法一步制备碳膜包覆氧化钨纳米球的方法及其应用
CN111495401A (zh) * 2020-04-13 2020-08-07 常州工学院 一种氧缺陷的一水合三氧化钨/碳化钛纳米复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151038A (ja) * 1989-11-07 1991-06-27 Nissan Chem Ind Ltd 酸化タングステン一酸化スズ複合ゾル及びその製造法
CN105826539A (zh) * 2016-06-02 2016-08-03 南阳师范学院 一种wo3-x/c复合材料、制备方法及其用途
CN106082344A (zh) * 2016-06-15 2016-11-09 中国科学技术大学 一种用于光催化有氧偶联的缺陷态三氧化钨的制备方法
CN106975476A (zh) * 2017-04-24 2017-07-25 陕西科技大学 一种高效三氧化钨微球光催化剂及其制备方法
CN110563043A (zh) * 2019-09-29 2019-12-13 上海交通大学 水热法一步制备碳膜包覆氧化钨纳米球的方法及其应用
CN111495401A (zh) * 2020-04-13 2020-08-07 常州工学院 一种氧缺陷的一水合三氧化钨/碳化钛纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN115536070B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN111446437B (zh) 一种表面自重构改性富锂正极材料及其制备方法
CN112242526B (zh) 一种Mo掺杂VS4镁离子电池正极材料
CN104157858B (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
CN113381006B (zh) 一种复合正极材料及其制备方法和锂离子电池
CN104900861A (zh) 一种钛酸氢锂Li-H-Ti-O材料及其制备方法
CN105374997A (zh) 一种复合材料包覆镍锰酸锂的制备方法
CN107706404B (zh) 一种硒包覆二氧化锡/石墨烯纳米复合材料制备及其应用
CN107317019B (zh) 一种钠离子电池负极用碳酸亚铁/石墨烯复合材料及其制备方法与应用
CN113764208A (zh) 核壳结构的球形四氧化三铁-二氧化铈复合电极材料及其制备方法
CN103693690B (zh) 一种孔隙可控的三维多孔v2o5分级纳米盘及其制备方法和应用
CN107204427B (zh) 一种含钠的锂离子电池复合负极材料的制备方法
CN108767211B (zh) 电极材料的制备方法及其电极材料
CN108417824B (zh) 一种高性能锂电池负极材料碳包覆钛酸锂的制备方法
CN107591530B (zh) 一种钛酸锂负极材料的改性方法
CN114094063B (zh) 一种利用空腔前驱体与zif衍生物相结合制备电池负极材料的方法
CN113871582B (zh) 一种可用于填充导电材料的钠离子电池镍基正极材料
CN115536070B (zh) 一种同时带有阴/阳离子空位的wo3镁离子电池正极材料
CN110729474B (zh) 利用失效的钒电池电解液制取NaV6O15钠离子电池电极材料的方法
CN111211325B (zh) 一种锂离子电池负极材料及其制备方法与应用
Xu et al. Oxygen vacancies of NiMoO 4 nanoneedles on Ni foam for high-performance asymmetric supercapacitors
Vujković et al. Sodium-pillared vanadium oxides as next-gen materials: Does co-inserted water control the cyclic stability of vanadates in an aqueous electrolyte?
CN108376769B (zh) 一种锂离子电池复合正极材料的制备方法
CN105047895A (zh) H2Ti12O25、其制备方法与锂离子电池
CN109037607B (zh) 一种包覆锰酸锂复合材料的制备方法
CN114334483B (zh) 用于超级电容器的具有分级结构的锰基混合磷酸盐@四氧化三锰复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant