CN115521158A - 一种高透气性陶瓷纤维过滤管的制备方法 - Google Patents

一种高透气性陶瓷纤维过滤管的制备方法 Download PDF

Info

Publication number
CN115521158A
CN115521158A CN202211240909.5A CN202211240909A CN115521158A CN 115521158 A CN115521158 A CN 115521158A CN 202211240909 A CN202211240909 A CN 202211240909A CN 115521158 A CN115521158 A CN 115521158A
Authority
CN
China
Prior art keywords
ceramic fiber
filter tube
fiber filter
silica sol
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211240909.5A
Other languages
English (en)
Other versions
CN115521158B (zh
Inventor
仲兆祥
倪诗莹
邹栋
公衍民
邢卫红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202211240909.5A priority Critical patent/CN115521158B/zh
Publication of CN115521158A publication Critical patent/CN115521158A/zh
Application granted granted Critical
Publication of CN115521158B publication Critical patent/CN115521158B/zh
Priority to PCT/CN2023/116375 priority patent/WO2024078182A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Filtering Materials (AREA)

Abstract

本发明公开了一种高透气性陶瓷纤维过滤管的制备方法,以莫来石短纤维为骨料,添加玻璃纤维和硅溶胶作为烧结助剂,采用压滤成型工艺得到陶瓷纤维滤管生坯,依次通过冷冻干燥和热处理得到高透气性的陶瓷纤维过滤管。两种不同性质烧结助剂的结合使用能有效改善湿法成型技术制备的陶瓷纤维过滤管性能。同时,冷冻干燥处理能够阻断硅溶胶中的纳米颗粒由于毛细作用力向陶瓷纤维过滤管表面迁移的路径,从而使制备得的陶瓷纤维过滤管的性质更均匀。为制备高通量的陶瓷纤维膜提供了参考。

Description

一种高透气性陶瓷纤维过滤管的制备方法
技术领域
本发明涉及一种高透气性陶瓷纤维过滤管的制备方法,属于膜材料的制备领域。
背景技术
陶瓷纤维膜是以耐高温陶瓷纤维,如氧化铝纤维、硅酸铝纤维、莫来石纤维等为骨料制备的一类陶瓷过滤材料。陶瓷纤维之间通过相互桥连形成的三维网络状多孔结构,赋予了陶瓷纤维膜孔隙率高、热稳定性好、气体渗透性高的特点,使其成为最具发展前景的陶瓷膜材料之一。传统的陶瓷纤维过滤管通常是以湿法真空抽滤成型工艺制备的,然而由于负压的抽吸作用,容易造成纤维多孔陶瓷材料内部不均的问题,从而对陶瓷纤维膜的透气性产生不利影响。因此,如何改善陶瓷纤维过滤管的制备工艺,以制备高透气性的陶瓷纤维过滤管十分重要。
模具成型技术(包括干压成型、凝胶注模、压滤成型等)具备操作简单、高效的特点,在陶瓷纤维膜制备领域有广泛的应用前景。干压成型技术制备得到的陶瓷纤维过滤材料,虽然强度明显提高,但是由于成型压力较大,多孔纤维骨架结构会被压实而导致气体渗透性损失较大。Xu等人[Ceramics International, 2017, 43(1): 228-233]采用凝胶注模法,将莫来石纤维和烧结助剂添加到叔丁醇基的凝胶预混溶液中,在引发剂的作用下有机单体聚合使料浆凝固,从而得到高强度的生坯。王树海等人[现代陶瓷技术, 1995(04):19-25]介绍了压滤成型工艺的工艺原理以及浆料体系、工艺参数对成品性能的影响,指出在受到压力和摩擦阻力的影响下,固相颗粒的团聚性降低,增加了浆料的均匀性;分散度高的浆料成型的固化层因渗透系数低而成型缓慢,可能引起密度梯度导致整体均匀性不佳;较大的成型压力可以得到更均匀的陶瓷成品,然而压力过高往往会造成脱模及干燥过程中的开裂,比较理想的压力范围为1-4 MPa。
液相烧结助剂具有粒径小、分散性好的特点,可以均匀包裹在骨料表面和交叉点处,有助于促进低温烧结过程,溶胶以及陶瓷前驱体溶液均可以用于辅助多孔陶瓷烧结过程。Hai等人[Refractories and Industrial Ceramics, 2012, 53: 157-161]以聚碳硅烷为前驱体溶液,干燥后,在1000 ℃不添加任何烧结助剂的条件下烧结得到了纯质的碳化硅多孔陶瓷,平均孔隙率为33.4%,断裂强度~16 MPa,平均孔径为2.275 μm。依靠纤维连接点处少量无机溶胶形成的颈部连接强度较低,不利于陶瓷纤维膜的长时间使用,而低熔点的固体烧结助剂能够有效强化多孔材料的机械性能。Xu等人[Ceramics International,2017, 43(1): 228-233]考察了不同的固体烧结助剂(硅粉末、二氧化硅粉末以及硼硅混合物)对制备的纤维多孔陶瓷材料机械性能的影响。结果表明,在1500 °C烧结下,以硼硅混合物作为烧结助剂制备得到的多孔陶瓷纤维材料抗压强度最高,约为2.08 MPa。
发明内容
本发明的目的是为改进现有技术的缺陷而提出结合固态和液态两种不同性质的烧结助剂代替常见的液态烧结助剂制备陶瓷纤维过滤管,通过不同性质烧结助剂的使用,解决了纤维连接点处颈部连接弱的不足;同时以冷冻干燥技术处理生坯,有效提高陶瓷纤维管的均一性,制备出高透气性的陶瓷纤维过滤管。
本发明的技术方案为:一种高透气性陶瓷纤维过滤管的制备方法,其具体步骤如下:A首先将一定质量分数的硅溶胶与水按一定体积比混合并进行充分搅拌,随后加入莫来石短纤维、玻璃纤维,其中硅溶胶、莫来石短纤维和玻璃纤维的质量比为(30-45):(1.5-9):1,加入有机成型助剂并搅拌一定时间,搅拌一定时间后迅速注入压滤模具中,缓慢施加压力至水滤出后得到陶瓷纤维滤管生坯;B将脱模后的生坯放入冰箱冷冻12-24 h,再置于-60℃至-20 ℃环境中干燥12-24 h,随后经煅烧过程得到陶瓷纤维过滤管。
优选所述的硅溶胶的质量分数为20 wt%-40 wt%,其与水混合的体积比为1:(1.5-9);莫来石短纤维的长径比为50-200;有机成型助剂为聚乙烯醇(PVA)溶液,浓度为8 wt%-12 wt%,添加量为莫来石短纤维和玻璃纤维总质量的60%-80%。
优选所述的制膜液搅拌时间为3-10 min。
优选所述的压滤成型过程中的压力为2-4 MPa。
优选所述的煅烧过程为:将生坯在800-1400 ℃下煅烧,升温速率和降温速率控制在0.5-3 ℃/min,保温时间为1-3 h。
本发明制得的陶瓷纤维过滤管平均孔径为34.1-35.2 μm,孔隙率为74-75.2%,气体渗透率为642-787 m3·m-2·h-1·kPa-1,抗弯强度为1.86-2.88 MPa。
有益效果:
本发明通过结合硅溶胶和玻璃纤维两种性质不同的烧结助剂,以及通过煅烧前对生坯进行冷冻干燥处理,提高陶瓷纤维过滤管的均匀性,成功制备出透气性良好的陶瓷纤维过滤管,烧结温度的降低也降低了制备陶瓷纤维过滤管的烧结能耗。两种不同性质烧结助剂的结合使用能有效改善湿法成型技术制备的陶瓷纤维过滤管性能。同时,冷冻干燥处理能够阻断硅溶胶中的纳米颗粒由于毛细作用力向陶瓷纤维过滤管表面迁移的路径,从而使制备得的陶瓷纤维过滤管的性质更均匀。为制备高通量的陶瓷纤维膜提供了参考。
附图说明
图1是实例3中所使用的玻璃纤维的微观形貌SEM图。
图2是实例3中制备的陶瓷纤维滤管的宏观形貌图。
图3是实例3中制备的陶瓷纤维过滤管断面形貌、外表面以及中间局部放大的SEM图。
图4是实例3中制备的陶瓷纤维过滤管断裂后表面和断面的SEM图。
图5是实例3中制备的陶瓷纤维过滤管的孔径分布图。
图6是实例3中制备的陶瓷纤维过滤管与其他研究工作制备的陶瓷纤维膜的达西渗透率与孔隙度以及孔径之间的关系对比图。
具体实施方式
实施例1
首先将团聚的莫来石短纤维置于水中进行搅拌分散,过滤掉多余的水分后置于120 °C烘箱内烘干,得到分散性良好的短纤维(长径比为50)。然后将40 wt%硅溶胶与水按一定体积比混合并充分搅拌,其中硅溶胶:水=1:9,随后加入莫来石短纤维和玻璃纤维,使硅溶胶、莫来石短纤维和玻璃纤维的质量比为30:1.5:1,继续添加质量为上述两种纤维总质量60%的12 wt%PVA溶液,搅拌10 min后迅速注入压滤模具中,缓慢施加压力至2 MPa,待水滤出后得到陶瓷纤维滤管生坯,将脱模后的生坯放入冰箱冷冻24 h,置于-60 ℃真空冷冻干燥机中干燥24 h,然后在空气气氛下以0.5 ℃/min的速率升温至800 ℃并保温3 h,制备出的陶瓷纤维过滤管平均孔径为34.1 μm,孔隙率约为74 %,气体渗透性为642 m3·m-2·h-1·kPa-1,平均抗弯强度约为1.86 MPa。
实施例2
首先将团聚的莫来石短纤维置于水中进行搅拌分散,过滤掉多余的水分后置于120 °C烘箱内烘干,得到分散性良好的短纤维(长径比为200)。然后将35 wt%硅溶胶与水按一定体积比混合并充分搅拌,其中硅溶胶:水=1:4,随后加入莫来石短纤维和玻璃纤维,使硅溶胶、莫来石短纤维和玻璃纤维的质量比为35:2.33:1,继续添加质量为上述两种纤维总质量70%的10 wt%PVA溶液,搅拌8 min后迅速注入压滤模具中,缓慢施加压力至3 MPa,待水滤出后得到陶瓷纤维滤管生坯,将脱模后的生坯放入冰箱冷冻12 h,置于-50 ℃真空冷冻干燥机中干燥24 h,然后在空气气氛下以2 ℃/min的速率升温至1000 ℃并保温2 h,制备出的陶瓷纤维过滤管平均孔径为34.6 μm,孔隙率约为74.6 %,气体渗透性为680 m3·m-2·h-1·kPa-1,平均抗弯强度约为2.34 MPa。
实施例3
首先将团聚的莫来石短纤维置于水中进行搅拌分散,过滤掉多余的水分后置于120 °C烘箱内烘干,得到分散性良好的短纤维(长径比为100)。然后将30 wt%硅溶胶与水按一定体积比混合并充分搅拌,其中硅溶胶:水=1:2.33,随后加入莫来石短纤维和玻璃纤维,使硅溶胶、莫来石短纤维和玻璃纤维的质量比为40:4:1,继续添加质量为上述两种纤维总质量75%的10wt %PVA溶液,搅拌5 min后迅速注入压滤模具中,缓慢施加压力至3 MPa,待水滤出后得到陶瓷纤维滤管生坯,将脱模后的生坯放入冰箱冷冻24 h,置于-40 ℃真空冷冻干燥机中干燥12 h,然后在空气气氛下以2 ℃/min的速率升温至1200 ℃并保温2 h,制备出的陶瓷纤维过滤管平均孔径为35.2 μm,孔隙率约为75 %,气体渗透性为787 m3·m-2·h-1·kPa-1,平均抗弯强度约为2.68 MPa。
表1是本实例中制备的莫来石纤维管与文献中碳化硅颗粒陶瓷管的性能对比,莫来石纤维管具有明显的高透气性优势。图1是本实例中使用的玻璃纤维的微观形貌SEM图,玻璃纤维直径约为10 μm,平均长度约为60 μm。图2是本实例中制备的陶瓷纤维滤管的宏观形貌图,纤维滤管的长度80 mm,外径为39 mm,壁厚为12 mm。图3是本实例中制备的陶瓷纤维过滤管断面形貌、外表面以及中间局部放大的SEM图,陶瓷纤维过滤管中烧结助剂分布均匀。图4是本实例中制备的陶瓷纤维过滤管断裂后表面和断面的SEM图,大量的纤维延伸到断裂面外侧,结合烧结助剂在陶瓷纤维材料内部分散的均匀性,证明了纤维的桥连机制在断裂过程中起一定作用。图5是本实例中制备的陶瓷纤维过滤管的孔径分布图,孔径分布集中,平均孔径约为35.2 μm。图6是本实例中制备的陶瓷纤维过滤管与其他研究工作制备的陶瓷纤维膜的达西渗透率与孔隙度以及孔径之间的关系,可见本工作制备的陶瓷纤维过滤管透气性优于平均水平。
实施例4
首先将团聚的莫来石短纤维置于水中进行搅拌分散,过滤掉多余的水分后置于120 °C烘箱内烘干,得到分散性良好的短纤维(长径比为150)。然后将20 wt%硅溶胶与水按一定体积比混合并充分搅拌,其中硅溶胶:水=1:1.5,随后加入莫来石短纤维和玻璃纤维,使硅溶胶、莫来石短纤维和玻璃纤维的质量比为45:9:1,继续添加质量为上述两种纤维总质量80%的8 wt%PVA溶液,搅拌3 min后迅速注入压滤模具中,缓慢施加压力至4 MPa,待水滤出后得到陶瓷纤维滤管生坯,将脱模后的生坯放入冰箱冷冻12 h,置于-20 ℃真空冷冻干燥机中干燥24 h,然后在空气气氛下以3 ℃/min的速率升温至1400 ℃并保温1 h,制备出的陶瓷纤维过滤管平均孔径为34.8 μm,孔隙率约为75.2 %,气体渗透性为740 m3·m-2·h-1·kPa-1,平均抗弯强度约为2.88 MPa。
表1 实例3中制备的莫来石纤维管与文献中碳化硅颗粒陶瓷管的性能对比
Figure DEST_PATH_IMAGE002

Claims (6)

1.一种高透气性陶瓷纤维过滤管的制备方法,其特征在于,具体操作步骤如下:
A、将一定质量分数的硅溶胶与水按体积比混合后加入莫来石短纤维与玻璃纤维,其中硅溶胶、莫来石短纤维和玻璃纤维的质量比为(30-45):(1.5-9):1,加入有机成型助剂并搅拌一定时间,随后通过压滤成型法得到陶瓷纤维滤管生坯;选用的莫来石短纤维长径比为50-200;
B、将脱模后的生坯放入冰箱冷冻12-24 h,再置于-60 ℃至-20 ℃环境中干燥12-24h,随后经煅烧过程得到陶瓷纤维过滤管。
2.根据权利要求1所述的一种高透气性陶瓷纤维过滤管的制备方法,其特征在于:步骤A中所述硅溶胶的质量分数为20 wt%-40 wt%,其与水混合的体积比为1:(1.5-9)。
3.根据权利要求1所述的一种高透气性陶瓷纤维过滤管的制备方法,其特征在于:步骤A中所述的有机成型剂为聚乙烯醇(PVA)溶液,浓度为8 wt%-12 wt%,添加量为莫来石短纤维和玻璃纤维总质量的60%-80%。
4.根据权利要求1所述的一种高透气性陶瓷纤维过滤管的制备方法,其特征在于:制膜液搅拌时间为3-10 min。
5.根据权利要求1所述的一种高透气性陶瓷纤维过滤管的制备方法,其特征在于:压滤成型过程中的压力为2-4 MPa。
6.根据权利要求1所述的一种高透气性陶瓷纤维过滤管的制备方法,其特征在于:煅烧过程为将生坯在800-1400 ℃下煅烧,升温速率和降温速率控制在0.5-3 ℃/min,保温时间为1-3 h。
CN202211240909.5A 2022-10-11 2022-10-11 一种高透气性陶瓷纤维过滤管的制备方法 Active CN115521158B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211240909.5A CN115521158B (zh) 2022-10-11 2022-10-11 一种高透气性陶瓷纤维过滤管的制备方法
PCT/CN2023/116375 WO2024078182A1 (zh) 2022-10-11 2023-08-31 一种高透气性陶瓷纤维过滤管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211240909.5A CN115521158B (zh) 2022-10-11 2022-10-11 一种高透气性陶瓷纤维过滤管的制备方法

Publications (2)

Publication Number Publication Date
CN115521158A true CN115521158A (zh) 2022-12-27
CN115521158B CN115521158B (zh) 2023-08-18

Family

ID=84702086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211240909.5A Active CN115521158B (zh) 2022-10-11 2022-10-11 一种高透气性陶瓷纤维过滤管的制备方法

Country Status (2)

Country Link
CN (1) CN115521158B (zh)
WO (1) WO2024078182A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078182A1 (zh) * 2022-10-11 2024-04-18 南京工业大学 一种高透气性陶瓷纤维过滤管的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205029A (ja) * 2000-01-31 2001-07-31 Nichias Corp ケミカルフィルタ
US20070017196A1 (en) * 2005-07-25 2007-01-25 Choi Jong S Method for preparing ceramic filter and ceramic filter prepared by the same
US20070107395A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extruded porous substrate and products using the same
CN104513050A (zh) * 2013-09-29 2015-04-15 佛山市顺德区北航先进技术产业基地有限公司 一种无机纤维隔热材料及其制备方法
US20150225302A1 (en) * 2012-10-08 2015-08-13 Dow Global Technologies Llc Improved porous bodies comprised of mullite and methods of forming them
CN106146000A (zh) * 2016-07-05 2016-11-23 天津大学 莫来石纤维多孔隔热材料的制备方法
CN106187297A (zh) * 2016-08-26 2016-12-07 天津梦龙新能源技术有限公司 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN106747208A (zh) * 2016-12-05 2017-05-31 山东鲁阳节能材料股份有限公司 一种硅酸铝纤维板及其制备方法
CN107213680A (zh) * 2016-11-15 2017-09-29 重庆马谷纤维新材料有限公司 一种用于粗纤维板成型的压滤装置
CN108440008A (zh) * 2018-05-04 2018-08-24 南京工业大学 一种高孔隙率陶瓷过滤材料及其制备方法
CN108610086A (zh) * 2018-06-01 2018-10-02 哈尔滨工业大学 一种三维网络状多孔纤维质隔热材料的制备方法
CN110038368A (zh) * 2019-04-17 2019-07-23 合肥合意环保科技工程有限公司 一种陶瓷纤维滤管、制备方法及加压抽吸成型装置
CN111908932A (zh) * 2020-07-21 2020-11-10 山东工业陶瓷研究设计院有限公司 一种轻质高效防隔热一体化热防护材料及制备方法
CN112063308A (zh) * 2020-09-18 2020-12-11 山东鲁阳浩特高技术纤维有限公司 一种耐高温无机粘结剂及其制备方法
CN112892238A (zh) * 2019-11-15 2021-06-04 山东工业陶瓷研究设计院有限公司 一种连续玻璃纤维增强的陶瓷纤维过滤元件及制备方法
CN114315398A (zh) * 2022-01-18 2022-04-12 信阳中毅高热材料有限公司 一种高强度抗落渣陶瓷纤维板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1476481A (en) * 1974-01-28 1977-06-16 Whatman Ltd Filters
CA1057675A (en) * 1974-12-11 1979-07-03 Philip C. Kimball Filter tube and method of making same
US4376675A (en) * 1979-05-24 1983-03-15 Whatman Reeve Angel Limited Method of manufacturing an inorganic fiber filter tube and product
US4968467A (en) * 1989-07-10 1990-11-06 Industrial Filter & Pump Mfg. Co. Hot gas filter
CN101954246B (zh) * 2010-08-27 2013-04-03 清华大学 粉尘过滤用多孔陶瓷过滤管的双层非对称表面膜及制法
CN115521158B (zh) * 2022-10-11 2023-08-18 南京工业大学 一种高透气性陶瓷纤维过滤管的制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205029A (ja) * 2000-01-31 2001-07-31 Nichias Corp ケミカルフィルタ
US20070017196A1 (en) * 2005-07-25 2007-01-25 Choi Jong S Method for preparing ceramic filter and ceramic filter prepared by the same
US20070107395A1 (en) * 2005-11-16 2007-05-17 Bilal Zuberi Extruded porous substrate and products using the same
US20150225302A1 (en) * 2012-10-08 2015-08-13 Dow Global Technologies Llc Improved porous bodies comprised of mullite and methods of forming them
CN104513050A (zh) * 2013-09-29 2015-04-15 佛山市顺德区北航先进技术产业基地有限公司 一种无机纤维隔热材料及其制备方法
CN106146000A (zh) * 2016-07-05 2016-11-23 天津大学 莫来石纤维多孔隔热材料的制备方法
CN106187297A (zh) * 2016-08-26 2016-12-07 天津梦龙新能源技术有限公司 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN107213680A (zh) * 2016-11-15 2017-09-29 重庆马谷纤维新材料有限公司 一种用于粗纤维板成型的压滤装置
CN106747208A (zh) * 2016-12-05 2017-05-31 山东鲁阳节能材料股份有限公司 一种硅酸铝纤维板及其制备方法
CN108440008A (zh) * 2018-05-04 2018-08-24 南京工业大学 一种高孔隙率陶瓷过滤材料及其制备方法
CN108610086A (zh) * 2018-06-01 2018-10-02 哈尔滨工业大学 一种三维网络状多孔纤维质隔热材料的制备方法
CN110038368A (zh) * 2019-04-17 2019-07-23 合肥合意环保科技工程有限公司 一种陶瓷纤维滤管、制备方法及加压抽吸成型装置
CN112892238A (zh) * 2019-11-15 2021-06-04 山东工业陶瓷研究设计院有限公司 一种连续玻璃纤维增强的陶瓷纤维过滤元件及制备方法
CN111908932A (zh) * 2020-07-21 2020-11-10 山东工业陶瓷研究设计院有限公司 一种轻质高效防隔热一体化热防护材料及制备方法
CN112063308A (zh) * 2020-09-18 2020-12-11 山东鲁阳浩特高技术纤维有限公司 一种耐高温无机粘结剂及其制备方法
CN114315398A (zh) * 2022-01-18 2022-04-12 信阳中毅高热材料有限公司 一种高强度抗落渣陶瓷纤维板及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG ZOU等人: "Efficient construction of tubular mullite fiber membrane filter with high gas permeance for gas/solid filtration", 《SEPARATION AND PURIFICATION TECHNOLOGY 》, vol. 311, pages 1 - 9 *
MINGZHAO LIU等人: "Development of highly porous mullite whisker ceramic membranes for oil-in-water separation and resource utilization of coal gangue", 《SEPARATION AND PURIFICATION TECHNOLOGY》, vol. 237, pages 1 - 10 *
蔺锡柱;王艳艳;隋学叶;刘瑞祥;周长灵;程之强;刘福田;: "硅酸铝陶瓷纤维过滤管的制备与表征", 山东陶瓷, no. 05, pages 5 - 8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078182A1 (zh) * 2022-10-11 2024-04-18 南京工业大学 一种高透气性陶瓷纤维过滤管的制备方法

Also Published As

Publication number Publication date
WO2024078182A1 (zh) 2024-04-18
CN115521158B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
Yang et al. Recent developments in gelcasting of ceramics
CN108863394B (zh) 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
US8262957B2 (en) Ceramic porous body with communication macropores and process for producing the ceramic porous body
CN101966410B (zh) 耐高温陶瓷纤维气体过滤材料的制备方法
CN101322919B (zh) 微孔陶瓷分离膜的制备方法
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
WO2018019201A1 (zh) 一种泡沫陶瓷过滤器及其制造方法
CN105906370B (zh) 一种呈现孔径梯度分布的三维网络多孔陶瓷的制备方法
CN108176249B (zh) 一种碳化硅纳米纤维膜的制备方法
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
WO2024078182A1 (zh) 一种高透气性陶瓷纤维过滤管的制备方法
Chen et al. Fabrication of porous fibrous alumina ceramics by direct coagulation casting combined with 3D printing
US6528214B1 (en) Ceramic membrane
CN101905481B (zh) 用于陶瓷坯体制备的多孔陶瓷负压注浆成型装置及方法
JP2001261463A (ja) セラミックス多孔体及びその製造方法
Zhu et al. Dendritic porous alumina with high porosity by directional freeze casting using a binary solution for bacterial removal
JP4514274B2 (ja) 多孔質セラミック構造体の製造方法
JPH0677924B2 (ja) 成形型およびそれを用いたセラミックスの成形方法
Xu et al. Fabrication of high performance macroporous tubular silicon carbide gas filters by extrusion method
CN113999046A (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
CN111559918B (zh) 一种微乳液结合冷冻干燥制备多孔陶瓷坯体的方法
CN109956751B (zh) 环路热管及多孔氮化硅陶瓷的制备方法
CN111620698A (zh) 低热导率纳米纤维构架的多级孔陶瓷海绵材料及制备方法
CN111908906A (zh) 一种高气孔率的具有定向孔结构的多孔熔融石英及其制备方法
CN114133270B (zh) 中空平板陶瓷过滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant