CN109956751B - 环路热管及多孔氮化硅陶瓷的制备方法 - Google Patents

环路热管及多孔氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN109956751B
CN109956751B CN201910337702.1A CN201910337702A CN109956751B CN 109956751 B CN109956751 B CN 109956751B CN 201910337702 A CN201910337702 A CN 201910337702A CN 109956751 B CN109956751 B CN 109956751B
Authority
CN
China
Prior art keywords
sintering
speed
furnace
silicon nitride
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910337702.1A
Other languages
English (en)
Other versions
CN109956751A (zh
Inventor
胡海龙
岳建岭
黄小忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910337702.1A priority Critical patent/CN109956751B/zh
Publication of CN109956751A publication Critical patent/CN109956751A/zh
Application granted granted Critical
Publication of CN109956751B publication Critical patent/CN109956751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0605Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by sublimating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种环路热管以及多孔氮化硅陶瓷的制备方法,所述环路热管为多孔氮化硅陶瓷,孔隙率为50~70%、强度为10~30MPa、孔隙平均孔径在0.5~1μm。所述方法具体包括:以Si3N4粉为原料,添加烧结助剂,机械湿法球磨混合均匀成浆料;将浆料消泡、脱气后,于模具中低温冷冻固化、干燥;放入马弗炉中保温以去除有机物杂质;最后放置于烧结炉中高温烧结得到Si3N4多孔陶瓷管。本发明方法制备的陶瓷管具有高孔隙率、高强度和孔隙结构分布均匀等特点,能够取代金属环路热管满足高温条件下环路热管等领域的使用。

Description

环路热管及多孔氮化硅陶瓷的制备方法
技术领域
本发明属于多孔陶瓷技术领域,具体涉及一种多孔氮化硅陶瓷的制备方法及多孔氮化硅陶瓷环路热管。
背景技术
环路热管是毛细驱动、相变传热家族的又一成员,该项技术自70年代初开始便备受关注。近年来,随着环路热管与航天应用相结合,环路热管技术得到了迅速发展。环路热管,当工质选择得当,芯结构设计合理时,其传热能力将达到50kw/m,甚至更高。
最早在1989年,俄罗斯便将环路热管应用于Granat飞船上进行空间飞行试验,考验其长期工作下的能力和可靠性,最终取得了成功。1994年,俄罗斯又在Obzor空间飞船上成功的进行了温控试验。1997年,美国应用环路热管在STS-83、STS-87、STS-94进行了飞行试验。1999年,中国应用从俄罗斯引进的环路热管在中国风云-1号上进行镍镉电池的温控试验,效果良好。近年来,有关环路热管的研究也从不间断,胡雪蛟等人(中国专利,申请号CN 201310505756)讨论了一种环路热管毛细芯的制备方法,通过先冷压成型后气氛烧结的工艺一次性生产出长度可随模具闭合高度变化,带蒸汽移出槽道和中心通道的柱形毛细芯。栾涛等人(中国专利申请号 CN201110029700)利用高强度的纤细软纤维,采用纺织或编织的方法将软纤维织成片状纤维织物,构成了环路热管的柔性毛细芯。邹勇等人(中国专利申请号CN201110458093)对制备环路热管的蒸发器的方法进行了研究。吕宏等人(中国专利申请号CN201110449590)利用导热性能以及抗腐蚀性能较好的金属制备了环路热管,且制备的多孔毛细芯具有高可靠性能,高孔隙率,高渗透性能,耐腐蚀,孔径分布均匀的特点。
然而,以上航天试验和涉及的相关研究所用的环路热管都是不锈钢材质或金属的,虽然其在航天器热控系统方面,其热控特性和结构特性也都较好,然而当高温下应用时,其高温稳定和耐磨耐腐蚀等性能不能满足今后航天方面的进一步应用需求。
发明内容
本发明的目的在于提供一种新的环路热管,所述环路热管为多孔氮化硅陶瓷,孔隙率为50~70%优选65~70%、强度为10~30MPa、孔隙平均孔径在 0.5~1μm。
本发明的另一目的在于提供一种制备多孔氮化硅陶瓷的方法,所述方法采用无压烧结制备多孔氮化硅陶瓷,该方法以Si3N4粉料为原料,加入一定量的烧结助剂,以无水乙醇为分散剂,经球磨混合均匀后制成浆料,将浆料经过消泡、真空脱气后并静置,后倒入具有一定形状的磨具中进行冷冻,保证浆料完全固化。固化样品进行脱模,然后快速转移到冷冻干燥机中,在低温真空环境下进行干燥,形成素坯,然后于马弗炉中除去有机物,最后于高纯氮气气氛下通过常压烧结制备Si3N4多孔陶瓷管。该方法工艺简单,便于操作,得到的多孔陶瓷管具有孔隙结构分布均匀、孔隙率高、抗弯强度高等特点,能够取代金属环路热管满足高温下环路热管等领域的使用。
具体包括如下步骤:
步骤S1,以Si3N4粉为原料,添加烧结助剂,机械湿法球磨混合均匀成浆料,其中,所述烧结助剂包括Y2O3
步骤S2,将浆料进行消泡、真空脱气后,倒入模具中,于-48℃~-18℃的低温冷腔中完全冷冻固化;
步骤S3,将固化后的样品进行脱模,并快速转移至冷冻干燥机中,在 -70℃~-50℃温度、1~20Pa真空度下干燥得到坯体;
步骤S4,将坯体放入马弗炉中,在空气气氛下以2~5℃/min的速率升温至500~600℃,保温以去除有机物杂质,随炉冷却;
步骤S5,将去除有机物杂质后的坯体放置于烧结炉中,在高纯氮气气氛中,以3~5℃/min升温1500~1700℃进行烧结,烧结完毕降温至 600~1000℃,随炉冷却得到Si3N4多孔陶瓷管。
其中,步骤S1中,使用粒径为0.5~5微米、纯度85~95%的氮化硅粉为原料,用Si3N4球进行机械湿法球磨2~10h优选2~4h,其中,湿法球磨时以无水乙醇为分散剂,Si3N4粉料与烧结助剂:分散剂:Si3N4球的重量比为 1:0.8~1.2:0.8~2.5优选为1:1:1~2。Si3N4粉料:Y2O3的重量比为100:3~12,优选为100:8。
步骤S1中,原料还可以加入占Si3N4粉料3~6%的PVA的其他粘结剂、 2~5%的甘油作为膨化剂和1~4%NH4PAA作为消泡剂。
步骤S2中,于-30℃的低温冷腔中完全冷冻固化2~12h,优选8h。
步骤S3中,在-60℃温度、4Pa真空度下干燥6h~24h,优选12h。
步骤S5之前,去除有机物杂质后的坯体在放入烧结炉前,先放入石墨坩埚中,采用质量百分比为1%~30%:70%~99%的Si与Si3N4混合粉料进行埋粉,再置于烧结炉内烧结。
步骤S4中,将坯体放入马弗炉中,在空气气氛下以3℃/min的速率升温至500℃,保温1~2h优选2h以去除有机物杂质,随炉冷却。
步骤S5中,在0.02MPa~0.5MPa优选为0.05MPa~0.1MPa的高纯氮气气氛中,先以2~20℃/min优选以5~10℃/min升温至900~1200℃优选至 1000~1100℃,更优选至1100℃,再以3~5℃/min速率升温至1500~1700℃优选至1600~1690℃更优选至1680℃进行烧结1~4h优选1~2h更优选2h,烧结完毕以5~10℃/min优选以5℃/min速率降温至600~1000℃优选至 800℃,随炉冷却得到Si3N4多孔陶瓷管。
本发明的积极进步效果在于:首次提出了采用Si3N4粉料制备高性能 Si3N4的方法,得到的多孔陶瓷环路热管具有孔隙结构分布均匀、孔隙率高、抗弯强度高等特点,能够取代满足高温下环路热管等领域内的使用等特点,并且具备金属环路热管所不具备的耐高温、耐腐蚀等优点。本发明方法制备的Si3N4陶瓷管具有高孔隙率(≧65%)、高强度(≧10MPa)和孔隙结构分布均匀,平均孔径在0.5~1μm。
氮化硅多孔陶瓷由于具有高强高韧、耐磨、耐腐蚀和化学稳定性好等优点,在高温气体过滤、传感器、催化剂载体、分离膜、热绝缘材料等领域都表现出了广阔的应用前景。采用Si3N4粉料制备高性能Si3N4陶瓷的方法,得到的多孔陶瓷环路热管具有孔隙结构分布均匀、孔隙率高、抗弯强度高等特点,能够取代满足高温下环路热管等领域内的使用等特点,并且具备金属环路热管所不具备的耐高温、耐腐蚀等优点。
附图说明
图1为实施例2经常压烧结处理得到的Si3N4多孔陶瓷的典型低倍率断面微观结构图。
图2为实施例2经常压烧结处理得到的Si3N4多孔陶瓷的典型高倍率断面微观结构图。
图3为实施例2经常压烧结处理得到的Si3N4多孔陶瓷孔径分布图。横坐标为孔径大小,单位为纳米,纵坐标为增量浸润的体积分数,单位毫升每克。
具体实施方式
实施例1~3
步骤S1,制备浆料:以0.5~5微米、纯度85~95%氮化硅粉为原料,添加烧结助剂Y2O3,Si3N4粉料:Y2O3的重量比如表1所示,并添加其它的粘结剂、膨化剂和消泡剂,分别为PVA、甘油和NH4PAA,以无水乙醇为分散剂,用Si3N4球进行机械湿法混合均匀成分散良好、均匀稳定的陶瓷浆料。
步骤S2,制备素坯体:将浆料进行消泡、真空脱气后,倒入具有一定形状的模具中进行冷冻,于低温下冷冻保证浆料完全固化,将固化后的样品进行脱模。
步骤S3,然后快速转移至冷冻干燥机中,在低温真空下进行干燥。
步骤S4,坯体除有机物:将干燥后的坯体放入马弗炉中,在空气气氛下以V1速率升温至T1并保温t1时间,以除去其中含有的有机物。
常压烧结:在放入烧结炉前,先放入石墨坩埚中,采用质量百分比为 20%:50%的Si与Si3N4混合粉料进行埋粉,再置于烧结炉内烧结。将坯体放置于烧结炉中,在高纯P1氮气气氛中,以V2升温至T2,后以V3速率升温至T3,然后进行烧结,保温时间t3,烧结完毕以V4速率降温至T4,最后随炉冷却得到Si3N4多孔陶瓷管。
表 1 实施例1~3 Si3N4多孔陶瓷环路热管的制备工艺参数
Figure BDA0002039678210000041
Figure BDA0002039678210000051
实施例1~3性能测试数据如表2所示。
表2实施例1~3 Si3N4多孔陶瓷的性能测试数据
Figure BDA0002039678210000052
如图1、2所示,为实施例2经常压烧结处理得到的Si3N4多孔陶瓷的典型低倍率和高倍率断面微观结构图。图中所示,Si3N4多孔陶瓷具有较高的孔隙率和互相连通的开孔结构,结构分布均匀,棒状晶粒相互交错搭接,实现了微观结构均匀,高孔隙率和高强度的高性能Si3N4多孔陶瓷环路热管的制备。
如图3所示,为实施例2经常压烧结处理得到的Si3N4多孔陶瓷的孔径分布图。孔径呈正态分布,分布均匀,孔径大小为650nm之间。

Claims (14)

1.一种制备多孔氮化硅陶瓷的方法,其特征在于所述方法采用无压烧结制备多孔氮化硅陶瓷,具体包括如下步骤:
步骤S1,以Si3N4粉为原料,添加烧结助剂,机械湿法球磨混合均匀成浆料,其中,所述烧结助剂包括Y2O3
步骤S2,将浆料进行消泡、真空脱气后,倒入模具中,于-48℃~-18℃的低温冷腔中完全冷冻固化;
步骤S3,将固化后的样品进行脱模,并快速转移至冷冻干燥机中,在-70℃~-50℃温度、1~20Pa真空度下干燥得到坯体;
步骤S4,将坯体放入马弗炉中,在空气气氛下以2~5℃/min的速率升温至500~600℃,保温以去除有机物杂质,随炉冷却;
步骤S5,将去除有机物杂质后的坯体放置于烧结炉中,在高纯氮气气氛中,先以2~20℃/min升温至900~1200℃,再以3~5℃/min升温1600~1690℃进行烧结,烧结完毕降温至600~1000℃,随炉冷却得到Si3N4多孔陶瓷管;
步骤S1中,Si3N4粉料与烧结助剂:分散剂:Si3N4球的重量比为1:0.8~1.2:0.8~2.5;
步骤S1中,还加入占Si3N4粉料3~6%的PVA粘结剂、2~5%的甘油膨化剂和1~4%NH4PAA消泡剂;
步骤S5中,在0.05MPa~0.1MPa的高纯氮气气氛中进行烧结。
2.根据权利要求1所述的方法,其特征在于:步骤S1中,使用粒径为0.5~5微米、纯度85~95%的氮化硅粉为原料,用Si3N4球进行机械湿法球磨2~10h其中,湿法球磨时以无水乙醇为分散剂。
3.根据权利要求2所述的方法,其特征在于:步骤S1中,用Si3N4球进行机械湿法球磨2~4h,Si3N4粉料与烧结助剂:分散剂:Si3N4球的重量比为1:1:1~2;Si3N4粉料:Y2O3的重量比为100: 8。
4.根据权利要求1所述的方法,其特征在于:步骤S2中,于-30℃的低温冷腔中完全冷冻固化2~12h。
5.根据权利要求4所述的方法,其特征在于:步骤S2中,于-30℃的低温冷腔中完全冷冻固化8h。
6.根据权利要求1所述的方法,其特征在于:步骤S3中,在-60℃温度、4Pa真空度下干燥6h~24 h。
7.根据权利要求6所述的方法,其特征在于:步骤S3中,在-60℃温度、4Pa真空度下干燥12h。
8.根据权利要求1所述的方法,其特征在于:步骤S5之前,去除有机物杂质后的坯体在放入烧结炉前,先放入石墨坩埚中,采用质量百分比为1%~30%:70%~99%的Si与Si3N4混合粉料进行埋粉,再置于烧结炉内烧结。
9.根据权利要求1所述的方法,其特征在于:步骤S4中,将坯体放入马弗炉中,在空气气氛下以3℃/min的速率升温至500℃,保温1~2h以去除有机物杂质,随炉冷却。
10.根据权利要求9所述的方法,其特征在于:步骤S4中,保温2h以去除有机物杂质,随炉冷却。
11.根据权利要求1所述的方法,其特征在于:步骤S5中,在高纯氮气气氛中,先以2~20℃/min升温至900~1200℃,再以3~5℃/min速率升温至1600~1690℃进行烧结1~4h,烧结完毕以5~10℃/min速率降温至600~1000℃,随炉冷却得到Si3N4多孔陶瓷管。
12.根据权利要求11所述的方法,其特征在于:步骤S5中,在高纯氮气气氛中,先以5~10℃/min升温至1000~1100℃,再以3~5℃/min速率升温至1600~1690℃进行烧结1~2h,烧结完毕以5℃/min速率降温至800℃,随炉冷却得到Si3N4多孔陶瓷管。
13.根据权利要求12所述的方法,其特征在于:步骤S5中,先以5~10℃/min升温至1100℃,再以3~5℃/min速率升温至1680℃进行烧结2h,烧结完毕以5℃/min速率降温至800℃,随炉冷却得到Si3N4多孔陶瓷管。
14.一种环路热管,其特征在于所述环路热管为多孔氮化硅陶瓷,所述多孔氮化硅陶瓷采用权利要求1-13中任一项所述的方法制备得到;
所述多孔氮化硅陶瓷的孔隙率为65~70%、强度为10~30 MPa、孔隙平均孔径在0.5~1μm。
CN201910337702.1A 2019-04-25 2019-04-25 环路热管及多孔氮化硅陶瓷的制备方法 Active CN109956751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910337702.1A CN109956751B (zh) 2019-04-25 2019-04-25 环路热管及多孔氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910337702.1A CN109956751B (zh) 2019-04-25 2019-04-25 环路热管及多孔氮化硅陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109956751A CN109956751A (zh) 2019-07-02
CN109956751B true CN109956751B (zh) 2020-07-28

Family

ID=67026647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910337702.1A Active CN109956751B (zh) 2019-04-25 2019-04-25 环路热管及多孔氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109956751B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185725B (zh) * 2020-01-10 2021-07-23 中国矿业大学 一种环路热管用梯度孔径多孔铜吸液芯及其制备方法
CN115385699B (zh) * 2022-08-31 2023-11-24 山东工业陶瓷研究设计院有限公司 一种高温透波-主动冷却一体化材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605149A1 (de) * 1996-02-13 1997-08-14 Horst R Prof Dr Ing Maier Verfahren zur Herstellung poröser keramischer Strukturen
CN106066131A (zh) * 2016-07-22 2016-11-02 北京空间机电研究所 一种环路热管用多孔氮化硅毛细芯
CN108046828A (zh) * 2017-12-14 2018-05-18 西安交通大学 一种具有放射状结构的管状多孔陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605149A1 (de) * 1996-02-13 1997-08-14 Horst R Prof Dr Ing Maier Verfahren zur Herstellung poröser keramischer Strukturen
CN106066131A (zh) * 2016-07-22 2016-11-02 北京空间机电研究所 一种环路热管用多孔氮化硅毛细芯
CN108046828A (zh) * 2017-12-14 2018-05-18 西安交通大学 一种具有放射状结构的管状多孔陶瓷及其制备方法

Also Published As

Publication number Publication date
CN109956751A (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN100384781C (zh) 凝胶包裹-冷冻干燥工艺制备碳化硅多孔陶瓷的方法
CN101037345B (zh) 凝胶冷冻干燥法制备莫来石多孔陶瓷的方法
CN107188567B (zh) 一种高热导率氮化铝陶瓷的制备方法
CN109956751B (zh) 环路热管及多孔氮化硅陶瓷的制备方法
CN108178647A (zh) 一种轻质高强隔热莫来石纤维多孔陶瓷的制备方法
CN112390653B (zh) 一种基于冷冻浇注成型的陶瓷粉体制备方法
CN106830942B (zh) 一种多孔b4c陶瓷骨架及其冷冻注模工艺
CN115521158B (zh) 一种高透气性陶瓷纤维过滤管的制备方法
CN108101544B (zh) 一种层片状梯度多孔碳化硅陶瓷及其制备方法
CN111995422B (zh) 一种蜂窝状陶瓷材料的制备方法
CN112011151B (zh) 一种蜂窝状树脂材料的制备方法
CN105801146A (zh) 连续密度梯度化低密度多孔碳粘接复合材料及其制备方法
CN111056846B (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN108218467B (zh) 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
JP3124274B1 (ja) 複合気孔構造を有するセラミックス多孔体の製造方法
CN104945005A (zh) 一种具有中心对称结构的多孔材料及其制备方法
CN111320476A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备
CN107935628B (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN108484201A (zh) 一种低收缩率多孔氮化硅陶瓷及其制备方法
JP5429526B2 (ja) セラミックス多孔体の製造方法
CN111620698B (zh) 低热导率纳米纤维构架的多级孔陶瓷海绵材料及制备方法
CN116589299B (zh) 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用
CN105016773A (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN111116209B (zh) 一种定向多孔氮化硅蜂窝陶瓷及其快速制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant