CN115472784A - 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用 - Google Patents

一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用 Download PDF

Info

Publication number
CN115472784A
CN115472784A CN202210982202.5A CN202210982202A CN115472784A CN 115472784 A CN115472784 A CN 115472784A CN 202210982202 A CN202210982202 A CN 202210982202A CN 115472784 A CN115472784 A CN 115472784A
Authority
CN
China
Prior art keywords
sodium
positive electrode
carbonate
additive
nati
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210982202.5A
Other languages
English (en)
Other versions
CN115472784B (zh
Inventor
王�华
郭林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210982202.5A priority Critical patent/CN115472784B/zh
Publication of CN115472784A publication Critical patent/CN115472784A/zh
Application granted granted Critical
Publication of CN115472784B publication Critical patent/CN115472784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用。本发明以贫钠的NaTi2(PO4)3为原料,通过正极补钠添加剂的方法,首次在电池内部原位生成富钠相Na3Ti2(PO4)3正极,避免了传统液相合成过程中因Na3Ti2(PO4)3对水、氧敏感造成电极材料制备存储困难等问题。在分步补钠的过程中,正极补钠添加剂在高电压下分解以提供额外的钠离子,不仅可以生成Na3Ti2(PO4)3正极,还可以弥补负极侧SEI膜或其他副反应损耗的钠离子。基于本发明制备的钠离子电池表现出优异的充放电比容量、循环稳定性和倍率性能。本发明的制备工艺操作简便、成本低廉,适用于大规模工业化生产。

Description

一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用
技术领域
本发明涉及新能源技术领域,更具体的说是涉及一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用。
背景技术
在双碳战略目标的新时代大背景下,构建清洁低碳、安全高效的能源体系是现阶段的主要任务之一。然而风能、太阳能等清洁能源具有波动性、间歇性与随机性等特点,因此亟需储能器件对能源进行存储。锂离子电池由于其高能量密度、循环寿命长等优点而备受关注,但由于锂储量低,资源分布不均匀,我国80%的锂资源依赖进口,锂离子电池的成本逐年升高。此外,锂离子电池的安全隐患也难以满足大规模储能的应用需求。与锂同主族的钠在地壳中的储量高达2.36%,成本低廉,且钠离子电池的内阻相比锂离子电池更高,在短路等安全性测试中瞬间发热量少、温升更低,因此,钠离子电池具备大规模储能应用的发展潜力。
Na3Ti2(PO4)3具有钠超离子导体(NASICON)结构,由于其坚固的三维框架结构和高比容量,有望提高钠离子电池的循环寿命。然而,Na3Ti2(PO4)3的空气稳定性很差,这是因为它极易与水、氧发生反应,反应方程式如下:2Na3Ti2(PO4)3+O2+2H2O→2NaTi2(PO4)3+4Na++4OH-,因此,在材料存储与电极制备的过程中均需要使用保护气以防止材料氧化,增大了电池的生产成本。与其结构相似的NaTi2(PO4)3在经过补钠后可转化为Na3Ti2(PO4)3,反应方程式为:NaTi2(PO4)3+2Na+→Na3Ti2(PO4)3,且NaTi2(PO4)3空气稳定性好,易合成,因此可以对NaTi2(PO4)3进行补钠处理原位生成Na3Ti2(PO4)3,从而实现高稳定性、长循环寿命的钠离子电池。
目前补钠的方法主要有电化学预处理法、金属钠直接接触法、化学喷涂法和正极补钠添加剂法。电化学预处理法需要将电极材料组装半电池进行充放电形成SEI膜后,拆解电池再组装全电池;金属钠直接接触法需要在惰性氛围中将电极材料与金属钠直接接触,使金属钠渗透进材料中,但这些方法操作复杂、成本高,不利于大规模工业化生产。使用有机溶剂喷涂于电极表面也可以有效补钠,但预浸渍再烘干的处理工艺增大了操作难度和生产成本。正极补钠添加剂在电池充电时发生电化学反应释放钠离子,这种方法操作简便,可以有效提高钠离子电池的容量,是现阶段最具有大规模生产前景的方法。
因此,采用高容量的正极补钠添加剂添加于NaTi2(PO4)3中,在电池充放电过程中对NaTi2(PO4)3进行有效补钠,从而原位生成Na3Ti2(PO4)3,最终获得稳定、长循环寿命的钠离子电池具有重要意义。
发明内容
有鉴于此,本发明提供了一种原位生成Na3Ti2(PO4)3正极的制备方法,以NaTi2(PO4)3为原料,通过添加高容量的正极补钠添加剂,在充电过程中提供额外的钠离子,不仅可以实现贫钠相NaTi2(PO4)3向富钠相Na3Ti2(PO4)3的转化,还可以弥补负极侧SEI膜或其他副反应损耗的钠离子;该方法简单、成本低、适合大规模生产;将Na3Ti2(PO4)3应用于钠离子电池全电池中,可以实现稳定循环的电化学性能,有利于钠离子电池进一步产业化发展。
为了实现上述目的,本发明采用如下技术方案:
一种Na3Ti2(PO4)3正极的制备方法,其特征在于,制备步骤如下:
(1)称取NaTi2(PO4)3、正极补钠添加剂、导电剂、粘结剂以不同质量比充分研磨混合均匀,得到混合物;
(2)向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
(3)将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极;
(4)将NaTi2(PO4)3电极组装电池,首先充电至高电位2.0-4.3V,随后放电,在电池正常充放电区间内循环1-10圈形成稳定SEI膜后,再充电至高电位2.0-4.5V,随后放电进行再次补钠,此时电极大部分转化为富钠相Na3Ti2(PO4)3正极。具体的补钠次数和补钠电压可视正极补钠添加剂分解情况而调节。
优选的,步骤(1)中所述NaTi2(PO4)3和正极补钠添加剂的总质量与导电剂、粘结剂的质量比为:(6-9.8):(0.1-2):(0.1-2),其中NaTi2(PO4)3、正极补钠添加剂的质量比为(1-9):(1-9)。
优选的,步骤(1)中,所述正极补钠添加剂包括叠氮化钠(NaN3)、氨基钠(NaNH2)、磷化钠(Na3P)、硫化钠(Na2S)、磷化钠(Na3P)、氧化钠(Na2O)、过氧化钠(Na2O2)、超氧化钠(NaO2)、镍酸钠(NaNiO2)、铬酸钠(NaCrO2)、乙二胺四乙酸四钠(EDTA-4Na)、二乙烯三胺五乙酸钠(DTPA-5Na)、氰尿酸三钠(C3H3N3Na3O3)、抗坏血酸钠(C6H7O6Na)、柠檬酸钠(Na3C6H5O7)、尿酸钠(C5H3N4O3Na)、碳酸钠(Na2CO3)、Na2(CO)m,、Na2CnOn+2中的一种或几种,其中,m=3~10,n=2~20;
更优选的,正极补钠添加剂选择草酸钠(Na2C2O4),因为草酸钠的理论容量较高,约400mAh/g,且脱钠后的产物为CO2,能够有效避免脱钠产物溶解在电池中,造成电池的能量密度、循环性能下降等不良影响;
所述导电剂包括SuperP、乙炔黑、科琴黑、导电石墨、碳纳米管、石墨烯和碳纤维中的一种或几种;
所述粘结剂包括聚偏氟乙烯、聚四氟乙烯中的一种或几种。
优选的,步骤(4)中所述电池包括钠盐、有机溶剂和添加剂;
所述钠盐选自NaTFSI、NaFSI、NaCF3SO3、NaPF6、NaClO4、NaNO3和NaBF4中的至少一种;
所述有机溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、二乙二醇二乙醚、1,3二氧戊环、二氧六环、四氢呋喃、2-甲基四氢呋喃、氟代碳酸乙烯酯、碳酸丙烯酯、乙基甲基碳酸酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯和碳酸亚乙烯酯中的至少一种;
所述添加剂选自体积含量为0.01-10%的氟代碳酸乙烯酯和0.01-10%的碳酸亚乙烯酯中的至少一种。
本发明的另一个目的在于提供上述的一种Na3Ti2(PO4)3正极的制备方法制得的Na3Ti2(PO4)3正极在钠离子电池中的应用。
优选的,所述钠离子电池包括正极、负极和电解液;
其中,所述正极为Na3Ti2(PO4)3正极;
所述电解液包括钠盐、有机溶剂和添加剂。
优选的,所述负极选自硬碳、软碳等无定形碳材料或天然石墨、人造石墨等石墨材料中的至少一种;
所述钠盐选自NaTFSI、NaFSI、NaCF3SO3、NaPF6、NaClO4、NaNO3和NaBF4中的至少一种;
所述有机溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、二乙二醇二乙醚、1,3二氧戊环、二氧六环、四氢呋喃、2-甲基四氢呋喃、氟代碳酸乙烯酯、碳酸丙烯酯、乙基甲基碳酸酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯和碳酸亚乙烯酯中的至少一种;
所述添加剂选自体积含量为0.01-10%的氟代碳酸乙烯酯和0.01-10%的碳酸亚乙烯酯中的至少一种。
经由上述的技术方案可知,与现有技术相比,本发明具有如下有益效果:
1)本发明的Na3Ti2(PO4)3电极制备方法操作简单、成本低廉、在电池内部即可原位生成Na3Ti2(PO4)3,避免了Na3Ti2(PO4)3因对水、氧敏感造成电极材料不稳定、存储困难等问题,适用于大规模使用。
2)通过添加正极补钠添加剂,在充电过程中分解时提供额外的钠离子,不仅可以实现贫钠相NaTi2(PO4)3向富钠相Na3Ti2(PO4)3的转化,还可以补充负极侧SEI膜及副反应的钠损耗,进一步提高电池的稳定性。
3)使用本发明的Na3Ti2(PO4)3电极组装的钠离子全电池循环稳定,130mA/g的电流密度下循环50圈容量保持率高达75.7%。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明NaTi2(PO4)3、Na3Ti2(PO4)3正极1的X射线衍射图;
图2为本发明Na3Ti2(PO4)3钠正极1||Na钠离子半电池在130mA/g时的长循环性能图;
图3为本发明Na3Ti2(PO4)3正极1||硬碳钠离子全电池的分步补钠充放电曲线图;
图4为本发明Na3Ti2(PO4)3正极1||硬碳钠离子全电池在130mA/g时的长循环性能图;
图5为本发明Na3Ti2(PO4)3正极1||硬碳钠离子全电池的倍率性能图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤一:称取0.35gNaTi2(PO4)3,0.35g草酸钠,0.20g SuperP,0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;
步骤二:向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
步骤三:将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极1;
步骤四:将NaTi2(PO4)3电极1与钠片加以隔膜和电解液装成半电池,其中,隔膜采用钠离子电池的玻纤隔膜;电解液选用1.0MNaClO4溶解在碳酸乙烯酯/碳酸二甲酯(体积比1:1)中,并添加体积含量为5%的氟代碳酸乙烯酯作为添加剂。
在65mA/g的电流密度下,首先将半电池充电至4.2V,进行草酸钠的部分分解,随后在1.2-2.8V的电位区间循环3圈在负极侧生成稳定的SEI膜,再充电至4.5V将剩余草酸钠完全分解,最后放电至1.2V,此时已经成功生成Na3Ti2(PO4)3正极1。
实施例2
NaTi2(PO4)3和Na3Ti2(PO4)3正极的结构表征
通过X射线衍射仪对NaTi2(PO4)3和Na3Ti2(PO4)3正极进行结构表征,从NaTi2(PO4)3和Na3Ti2(PO4)3正极1的X射线衍射图(图1)可以看出,Na3Ti2(PO4)3已经成功通过原位补钠的方法制备出来,在样品测试的过程中Na3Ti2(PO4)3可能发生轻微氧化,因此图1中存在部分NaTi2(PO4)3的衍射峰。
实施例3
Na3Ti2(PO4)3正极1||Na钠离子半电池的循环性能测试
对Na3Ti2(PO4)3正极1||Na钠离子半电池进行将恒流充放电测试,得到了本发明Na3Ti2(PO4)3正极1||Na钠离子半电池的长循环性能图(图2)。半电池经补钠工作后,首先在65mA/g的电流密度下活化三圈,再进行130mA/g电流密度的长循环测试。半电池在130mA/g的电流密度下容量均可以保持在100mAh/g,循环50圈后容量保持率高达99%,展示出Na3Ti2(PO4)3正极1的高充放电容量与优异的循环稳定性。
实施例4
步骤一:称取0.35gNaTi2(PO4)3,0.35g草酸钠,0.20g SuperP,0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;
步骤二:向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
步骤三:将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极1;
步骤四:将NaTi2(PO4)3电极1与硬碳负极加以隔膜和电解液装成全电池,其中,硬碳负极的制备过程为:0.80g硬碳、0.10g SuperP、0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;将混合浆料涂覆于铜箔上,经过真空干燥得到硬碳负极。隔膜采用钠离子电池的玻纤隔膜;电解液选用1.0MNaClO4溶解在碳酸乙烯酯/碳酸二甲酯(体积比1:1)中,并添加体积含量为5%的氟代碳酸乙烯酯作为添加剂。
在65mA/g的电流密度下,首先将全电池充电至4.2V,进行草酸钠的部分分解,随后在0.5-3V的电位区间循环三圈在负极侧生成稳定的SEI膜,再充电至4.4V将剩余草酸钠完全分解,最后放电至0.5V,此时已经成功生成Na3Ti2(PO4)3正极1,其充放电曲线如图3所示。在后续的循环中,电池的充放电区间为0.5-3V,从第六圈和第十圈的充放电曲线可以看出,电池循环容量可稳定在100mAh/g左右。
实施例5
Na3Ti2(PO4)3正极1||硬碳钠离子全电池的电化学性能测试
将全电池进行恒流充放电测试,电流密度为130mA/g,得到长循环性能图(图4)。从图中可以看出,该全电池首圈容量可达88.8mAh/g,经过50圈充放电后,容量还能保持在67.2mAh/g,容量保持率高达75.7%。随后在不同电流密度下进行恒流充放电测试,得到倍率性能图(图5)。从图中可以看出,在电流密度为65mA/g、130mA/g、260mA/g时,该正极材料的容量分别为102mAh/g,98.5mAh/g,65.2mAh/g,表现出优异的倍率性能。
实施例6
步骤一:称取0.45gNaTi2(PO4)3,0.25g草酸钠,0.20g SuperP,0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;
步骤二:向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
步骤三:将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极2;
步骤四:将NaTi2(PO4)3电极2与钠片加以隔膜和电解液装成半电池,其中,隔膜采用钠离子电池的玻纤隔膜;电解液选用1.0MNaClO4溶解在碳酸乙烯酯/碳酸二甲酯(体积比1:1)中,并添加体积含量为5%的氟代碳酸乙烯酯作为添加剂。
在65mA/g的电流密度下,首先将半电池充电至4.2V,进行草酸钠的部分分解,随后在1.2-2.8V的电位区间循环三圈在负极侧生成稳定的SEI膜,再充电至4.5V将剩余草酸钠完全分解,最后放电至1.2V,此时已经成功生成Na3Ti2(PO4)3正极2。
实施例7
步骤一:称取0.40gNaTi2(PO4)3,0.40g草酸钠,0.10g SuperP,0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;
步骤二:向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
步骤三:将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极3;
步骤四:将NaTi2(PO4)3电极3与钠片加以隔膜和电解液装成半电池,其中,隔膜采用钠离子电池的玻纤隔膜;电解液选用1.0MNaClO4溶解在碳酸乙烯酯/碳酸二甲酯(体积比1:1)中,并添加体积含量为5%的氟代碳酸乙烯酯作为添加剂。
在65mA/g的电流密度下,首先将半电池充电至4.2V,进行草酸钠的部分分解,随后在1.2-2.8V的电位区间循环三圈在负极侧生成稳定的SEI膜,再充电至4.5V将剩余草酸钠完全分解,最后放电至1.2V,此时已经成功生成Na3Ti2(PO4)3正极3。
实施例8
步骤一:称取0.35gNaTi2(PO4)3,0.35g碳酸钠,0.20g SuperP,0.10g聚偏氟乙烯充分研磨混合均匀,得到混合物;
步骤二:向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
步骤三:将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极4;
步骤四:将NaTi2(PO4)3电极4与钠片加以隔膜和电解液装成半电池,其中,隔膜采用钠离子电池的玻纤隔膜;电解液选用1.0MNaClO4溶解在碳酸乙烯酯/碳酸二甲酯(体积比1:1)中,并添加体积含量为5%的氟代碳酸乙烯酯作为添加剂。
在65mA/g的电流密度下,首先将半电池充电至4.2V,进行草酸钠的部分分解,随后在1.2-2.8V的电位区间循环三圈在负极侧生成稳定的SEI膜,再充电至4.5V将剩余草酸钠完全分解,最后放电至1.2V,此时已经成功生成Na3Ti2(PO4)3正极4。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种Na3Ti2(PO4)3正极的制备方法,其特征在于,制备步骤如下:
(1)称取NaTi2(PO4)3、正极补钠添加剂、导电剂、粘结剂以不同质量比充分研磨混合均匀,得到混合物;
(2)向混合物中加入N-甲基-2-吡咯烷酮作为溶剂,充分搅拌直至无颗粒感,得到混合浆料;
(3)将混合浆料涂覆于铝箔上,经过真空干燥得到NaTi2(PO4)3电极;
(4)将NaTi2(PO4)3电极组装电池,首先充电至高电位2.0-4.3V,随后放电,在电池正常充放电区间内循环1-10圈形成稳定SEI膜后,再充电至高电位2.0-4.5V,随后放电进行再次补钠,得到富钠相Na3Ti2(PO4)3正极;
其中,具体的补钠次数和补钠电压可视正极补钠添加剂分解情况而调节。
2.根据权利要求1所述的一种Na3Ti2(PO4)3正极的制备方法,其特征在于,
步骤(1)中所述NaTi2(PO4)3和正极补钠添加剂的总质量与导电剂、粘结剂的质量比为:(6-9.8):(0.1-2):(0.1-2),其中NaTi2(PO4)3、正极补钠添加剂的质量比为(1-9):(1-9)。
3.根据权利要求1或2所述的一种Na3Ti2(PO4)3正极的制备方法,其特征在于,
步骤(1)中所述正极补钠添加剂包括叠氮化钠、氨基钠、磷化钠、硫化钠、磷化钠、氧化钠、过氧化钠、超氧化钠、镍酸钠、铬酸钠、乙二胺四乙酸四钠、二乙烯三胺五乙酸钠、氰尿酸三钠、抗坏血酸钠、柠檬酸钠、尿酸钠、碳酸钠、Na2(CO)m、Na2CnOn+2中的一种或几种;其中,其中m=3~10,n=2~20。
4.根据权利要求1或2所述的一种NaTi2(PO4)3正极的制备方法,其特征在于,
步骤(1)中所述导电剂包括SuperP、乙炔黑、科琴黑、导电石墨、碳纳米管、石墨烯和碳纤维中的一种或几种;
步骤(1)中所述粘结剂包括聚偏氟乙烯、聚四氟乙烯中的一种或几种。
5.根据权利要求1或2所述的一种Na3Ti2(PO4)3正极的制备方法,其特征在于,
步骤(4)中所述电池包括电解质钠盐、有机溶剂和添加剂;
所述电解质钠盐选自NaTFSI、NaFSI、NaCF3SO3、NaPF6、NaClO4、NaNO3和NaBF4中的至少一种;
所述有机溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、二乙二醇二乙醚、1,3二氧戊环、二氧六环、四氢呋喃、2-甲基四氢呋喃、氟代碳酸乙烯酯、碳酸丙烯酯、乙基甲基碳酸酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯和碳酸亚乙烯酯中的至少一种;
所述添加剂选自体积含量为0.01-10%的氟代碳酸乙烯酯和0.01-10%的碳酸亚乙烯酯中的至少一种。
6.如权利要求1-5任一所述的一种Na3Ti2(PO4)3正极的制备方法得到的Na3Ti2(PO4)3正极在钠离子电池中的应用。
7.根据权利要求6所述的一种Na3Ti2(PO4)3正极在钠离子电池中的应用,其特征在于,所述钠离子电池包括正极、负极和电解液;
其中,所述正极包括权利要求1-5任一所述的一种Na3Ti2(PO4)3正极的制备方法得到的Na3Ti2(PO4)3正极。
8.根据权利要求7所述的一种Na3Ti2(PO4)3正极在钠离子电池中的应用,其特征在于,所述电解液包括钠盐、有机溶剂和添加剂。
9.根据权利要求7所述的一种Na3Ti2(PO4)3正极在钠离子电池中的应用,其特征在于,
所述负极选自硬碳、软碳等无定形碳材料或天然石墨、人造石墨等石墨材料中的至少一种。
10.根据权利要求8所述的一种Na3Ti2(PO4)3正极在钠离子电池中的应用,其特征在于,
所述钠盐选自NaTFSI、NaFSI、NaCF3SO3、NaPF6、NaClO4、NaNO3和NaBF4中的至少一种;
所述有机溶剂选自乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、二乙二醇二乙醚、1,3二氧戊环、二氧六环、四氢呋喃、2-甲基四氢呋喃、氟代碳酸乙烯酯、碳酸丙烯酯、乙基甲基碳酸酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯和碳酸亚乙烯酯中的至少一种;
所述添加剂选自体积含量为0.01-10%的氟代碳酸乙烯酯和0.01-10%的碳酸亚乙烯酯中的至少一种。
CN202210982202.5A 2022-08-16 2022-08-16 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用 Active CN115472784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210982202.5A CN115472784B (zh) 2022-08-16 2022-08-16 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210982202.5A CN115472784B (zh) 2022-08-16 2022-08-16 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用

Publications (2)

Publication Number Publication Date
CN115472784A true CN115472784A (zh) 2022-12-13
CN115472784B CN115472784B (zh) 2023-07-14

Family

ID=84366110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210982202.5A Active CN115472784B (zh) 2022-08-16 2022-08-16 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用

Country Status (1)

Country Link
CN (1) CN115472784B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799645A (zh) * 2023-02-06 2023-03-14 宁德时代新能源科技股份有限公司 一种钠二次电池用电解液、钠二次电池及用电装置
CN116799336A (zh) * 2023-08-21 2023-09-22 深圳海辰储能控制技术有限公司 正极片、补钠颗粒分布均匀的确定方法及储能装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018014165A1 (zh) * 2016-07-18 2018-01-25 宁德时代新能源科技股份有限公司 钠离子电池极片,其制备方法及含有该极片的钠离子电池
CN108463908A (zh) * 2016-01-15 2018-08-28 纳米技术仪器公司 生产具有高体积和重量能量密度的碱金属或碱金属离子电池的方法
CN108736010A (zh) * 2017-04-18 2018-11-02 武汉大学 一种安全的全磷酸基钠离子二次电池
CN109478639A (zh) * 2016-07-18 2019-03-15 宁德时代新能源科技股份有限公司 一种钠离子电池的补钠方法及制备得到的极片和电池
CN110085862A (zh) * 2019-04-26 2019-08-02 北京金羽新能科技有限公司 一种钠电池电极材料Na1+xFexTi2-x(PO4)3及其制备方法和应用
CN112768699A (zh) * 2021-01-11 2021-05-07 湖南立方新能源科技有限责任公司 一种钠离子电池正极片及其制备方法、钠离子电池
CN113921803A (zh) * 2021-10-09 2022-01-11 天津理工大学 锂离子电池的一种补锂方法
CN114149319A (zh) * 2021-12-08 2022-03-08 西北工业大学 一种有机补钠添加剂、正极极片以及在钠离子电池中的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463908A (zh) * 2016-01-15 2018-08-28 纳米技术仪器公司 生产具有高体积和重量能量密度的碱金属或碱金属离子电池的方法
WO2018014165A1 (zh) * 2016-07-18 2018-01-25 宁德时代新能源科技股份有限公司 钠离子电池极片,其制备方法及含有该极片的钠离子电池
CN109478639A (zh) * 2016-07-18 2019-03-15 宁德时代新能源科技股份有限公司 一种钠离子电池的补钠方法及制备得到的极片和电池
CN108736010A (zh) * 2017-04-18 2018-11-02 武汉大学 一种安全的全磷酸基钠离子二次电池
CN110085862A (zh) * 2019-04-26 2019-08-02 北京金羽新能科技有限公司 一种钠电池电极材料Na1+xFexTi2-x(PO4)3及其制备方法和应用
CN112768699A (zh) * 2021-01-11 2021-05-07 湖南立方新能源科技有限责任公司 一种钠离子电池正极片及其制备方法、钠离子电池
CN113921803A (zh) * 2021-10-09 2022-01-11 天津理工大学 锂离子电池的一种补锂方法
CN114149319A (zh) * 2021-12-08 2022-03-08 西北工业大学 一种有机补钠添加剂、正极极片以及在钠离子电池中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贺诗阳 等: ""高稳定性NaTi2(PO4)3/C复合材料的制备与表征"" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799645A (zh) * 2023-02-06 2023-03-14 宁德时代新能源科技股份有限公司 一种钠二次电池用电解液、钠二次电池及用电装置
CN115799645B (zh) * 2023-02-06 2023-10-27 宁德时代新能源科技股份有限公司 一种钠二次电池用电解液、钠二次电池及用电装置
CN116799336A (zh) * 2023-08-21 2023-09-22 深圳海辰储能控制技术有限公司 正极片、补钠颗粒分布均匀的确定方法及储能装置
CN116799336B (zh) * 2023-08-21 2024-01-26 深圳海辰储能控制技术有限公司 正极片、补钠颗粒分布均匀的确定方法及储能装置

Also Published As

Publication number Publication date
CN115472784B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN113130896B (zh) 一种钠离子电池用正极材料及包括该正极材料的钠离子电池
CN115472784B (zh) 一种Na3Ti2(PO4)3正极的制备方法及其在钠离子电池中的应用
CN106450247B (zh) 用于钠/钾离子二次电池的金属铋负极和醚基电解液
CN110416531B (zh) 卤化氧铋水系锌离子二次电池正极及其制备方法与应用
CN107342421A (zh) 一种高含量吡啶氮掺杂多孔碳负极材料、制备方法及其应用
CN112768766B (zh) 一种锂硫电池电解液及其应用
CN111276692A (zh) 一种锂离子电池负极活性材料、其制备方法和锂离子电池
CN109301178A (zh) 一种掺杂磷新型碳负极材料制备的钠双离子电池
CN116646526B (zh) 一种钠离子电池正极界面膜及其制备方法、钠离子电池
CN104795564A (zh) 一种水溶液二次电池的正极材料、极片、二次电池和用途
CN110190331A (zh) 一种稳固锂离子电池硅碳表面的电解液、制备及其应用
CN111082161B (zh) 一种混合系钠二氧化碳二次电池及其制备方法
CN107507958A (zh) 一种用于锂硫电池的原位粉体包覆与极板制备一体化方法
CN108063241B (zh) 抑制锂金属表面产生锂枝晶的方法
CN110854436B (zh) 一种二次锂金属电池电解液及其制备方法
CN116864781A (zh) 锂-钠混合离子电池及其制备方法
CN108695496B (zh) 石墨烯包覆多孔红磷、导电炭复合材料、制备方法及应用
CN115954546A (zh) 锂金属电池电解液添加剂及其应用
CN116470003A (zh) 一种预锂化负极极片及锂离子电池
CN115172873A (zh) 硅碳体系锂离子电池用电解液
CN109687027A (zh) 一种可充镁电池电解液和可充镁电池
CN115395013A (zh) 一种双离子钠电池正极材料的制备方法
CN115395101A (zh) 一种适用于镍锰酸锂材料用高电压电解液
CN115995598A (zh) 一种多功能钠电池电解液添加剂及其应用
CN114464806A (zh) 一种循环稳定且可逆脱钠的钠离子电池有机正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant