CN115425166A - 一种疏水绝缘层保护的电池负极和制备方法 - Google Patents

一种疏水绝缘层保护的电池负极和制备方法 Download PDF

Info

Publication number
CN115425166A
CN115425166A CN202211260094.7A CN202211260094A CN115425166A CN 115425166 A CN115425166 A CN 115425166A CN 202211260094 A CN202211260094 A CN 202211260094A CN 115425166 A CN115425166 A CN 115425166A
Authority
CN
China
Prior art keywords
insulating layer
negative electrode
hydrophobic insulating
battery
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202211260094.7A
Other languages
English (en)
Inventor
邹伟民
康书文
张维民
邹嘉逸
吉跃华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Chuanyi Na Ion Battery Research Institute Co ltd
Original Assignee
Jiangsu Chuanyi Na Ion Battery Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Chuanyi Na Ion Battery Research Institute Co ltd filed Critical Jiangsu Chuanyi Na Ion Battery Research Institute Co ltd
Priority to CN202211260094.7A priority Critical patent/CN115425166A/zh
Publication of CN115425166A publication Critical patent/CN115425166A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种疏水绝缘层保护的电池负极和制备方法,属于电化学技术领域,包括负极材料和疏水绝缘层,所述疏水绝缘层由复合聚合物材料干燥后得到;所述复合聚合物材料包括成膜基质和缓蚀组分;在电池负极涂覆了一层复合聚合物材料,干燥后形成疏水绝缘层,疏水绝缘层可以减少负极材料与电解液的直接接触,减少腐蚀情况副反应的发生。通过在成膜基质中引入含氟支化单体提高成膜基质的疏水、耐腐蚀和化学稳定性。含氟支化单体结构中的羟基参与成膜基质的合成,多羟基的结构提高交联度,配合含氟基团的引入,提高成膜基质在疏水绝缘层中的力学强度和疏水性能,阻碍电解质对负极材料的腐蚀。

Description

一种疏水绝缘层保护的电池负极和制备方法
技术领域
本发明属于电化学技术领域,具体地,涉及一种疏水绝缘层保护的电池负极和制备方法。
背景技术
金属锌具有自然丰度大、成本低、氧还原电位低易于加工等优点,常被作为锌离子电池的负极,易于加工等优点而被用作锌离子电池的负极,但是在电池循环过程中其上存在副反应(析氢反应、腐蚀反应、钝化),使水系锌离子电池的大规模应用受到了极大的阻碍。而且腐蚀反应的发生则会一直消耗电解液,并且产生诸如氧化锌、水和羟基硫酸锌等的副产物,增加电极极性,以致降低电池性能。与此相似的锂、镁也具有电极电位较负、比容量高、地壳中储量丰富、成本低和安全性好等优点,是金属空气电池等化学电源重要的负极材料,然而,锂、镁负极在水溶液中存在副反应(析氢反应、腐蚀反应、钝化),导致它们的实际比容量和电极电位远低于理论值;电池负极的副反应会减低会降低电池性能,缩短电池的使用寿命,严重的还可能造成更大的安全隐患。
发明内容
为了解决背景技术中提到的技术问题,本发明提供一种疏水绝缘层保护的电池负极和制备方法。
本发明的目的可以通过以下技术方案实现:
一种疏水绝缘层保护的电池负极,包括负极材料和疏水绝缘层,所述疏水绝缘层由复合聚合物材料干燥后得到;所述复合聚合物材料包括成膜基质和缓蚀组分;成膜基质和缓蚀组分的质量比为9:1-1.2;
所述成膜基质通过如下步骤制备:
步骤一、在氮气保护条件下,将4,4,4-三氟丁醇和甲醇钾加入N-甲基吡咯烷酮中,在65℃条件下搅拌60min,然后升温至90℃,加入环氧丙醇,滴加结束,保持温度不变,继续搅反应2h,反应结束后加入水,然后加入丙酮沉析,用甲醇溶解后旋蒸除去甲醇,得到含氟支化单体;含氟支化单体为中心含有氟的,端基为羟基的支化缩水甘油醚,具有支化的树状结构,参与后续缩聚反应;其中,4,4,4-三氟丁醇和甲醇钾的质量比为1.5:1;4,4,4-三氟丁醇、N-甲基吡咯烷酮和环氧丙醇的用量比为0.15g:10mL:10mL。
步骤二、在氮气保护下,将聚乙二醇(Mn=1500Da)加热熔融,然后加入二氯亚砜升温至40℃,加完后升温至80℃反应3h,升温至150℃反应4h,反应结束后除去二氯亚砜,真空干燥得到氯化聚氧化乙烯。聚乙二醇和二氯亚砜的用量比为5g:1mL。将4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚和碳酸钾加入混合溶剂中,在氮气保护条件下搅拌20min,升温至140℃,搅拌20h,反应结束后,降温至室温,用去离子水洗涤,在60℃真空条件下干燥至恒重,得到成膜基质。成膜基质中通过引入含氟支化单体提高成膜基质的疏水、耐腐蚀和化学稳定性。含氟支化单体结构中的羟基参与成膜基质的合成,多羟基的结构提高交联度,配合含氟基团的引入,提高成膜基质在疏水绝缘层中的力学强度和疏水性能,阻碍电解质对负极材料的腐蚀。其中,混合溶剂为N,N-二甲基乙酰胺和甲苯按照体积比1:1混合而成。氯化聚氧化乙烯的链段与电解质之间具有强的相互作用增强离子电导率,维持离子电导率。
进一步地,步骤二中4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚、碳酸钾和混合溶剂的用量比为2.2g:1.2g:0.3-0.4g:0.5g:1.5g:20mL。
进一步地,缓蚀组分通过如下步骤制备:
将乳化剂、环己烷和氨水混合得到组分A,将缓蚀剂和水混合得到组分B,将组分A和组分B等体积混合,在转速为800r/min的条件下搅拌30min,升温至35℃,加入正硅酸四乙酯,保持温度不变,搅拌反应20h反应结束后,加入无水乙醇离心洗涤,洗涤结束后在40℃条件下干燥至恒重,得到缓蚀组分。为进一步提高疏水绝缘层对负极材料的防护,在制备复合聚合物材料的过程中添加了缓蚀组分,缓蚀组分为多孔二氧化硅负载缓蚀剂2-苯基咪唑啉后形成的,2-苯基咪唑啉为常用的金属缓蚀剂,作为复合聚合物材料的一部分可以参与缓蚀过程,同时,多孔二氧化硅对缓蚀剂具有缓释作用,提高缓释剂作用时间,进而提高负极的使用寿命。更为突出的是,作为载体的纳米二氧化硅可以作为聚合物基质的增强填料,配合成膜基质的强度,使制得的复合聚合物材料在成膜后能承受一定的外界碰撞和挤压。
进一步地,缓蚀剂为2-苯基咪唑啉。
进一步地,组分A中乳化剂、环己烷和氨水的用量比为9g:120mL:3mL;乳化剂为失水山梨糖醇脂肪酸酯和十二烷基酚聚氧乙烯醚按照质量比9:1混合而成;组分B中缓蚀剂和水的用量比为1g:60mL,正硅酸四乙酯和组分A的体积比为1:4。
进一步地,疏水绝缘层的厚度为30-40μm。
进一步地,所述负极材料为金属锌、金属锂、金属镁中的一种。
一种疏水绝缘层保护的电池负极的制备方法,包括如下步骤:
将制备的复合聚合物材料和四氢呋喃混合,室温搅拌分散,然后涂覆在负极材料表面,待四氢呋喃挥发后,在真空80℃条件下干燥12h后形成疏水绝缘层,即得到一种疏水绝缘层保护的电池负极。
本发明的有益效果:
本发明公开了一种疏水绝缘层保护的电池负极,在电池负极涂覆了一层复合聚合物材料,干燥后形成疏水绝缘层,疏水绝缘层可以减少负极材料与电解液的直接接触,减少腐蚀情况副反应的发生。
本发明中通过在成膜基质中引入含氟支化单体提高成膜基质的疏水、耐腐蚀和化学稳定性。含氟支化单体结构中的羟基参与成膜基质的合成,多羟基的结构提高交联度,配合含氟基团的引入,提高成膜基质在疏水绝缘层中的力学强度和疏水性能,阻碍电解质对负极材料的腐蚀。
为进一步提高疏水绝缘层对负极材料的防护,在制备复合聚合物材料的过程中添加了缓蚀组分,同时,缓蚀组分中的多孔二氧化硅对缓蚀剂具有缓释作用,提高缓释剂作用时间,进而提高负极的使用寿命。更为突出的是,作为载体的纳米二氧化硅可以作为聚合物基质的增强填料,配合成膜基质,使制得的复合聚合物材料在成膜后能承受一定的外界碰撞和挤压。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
制备缓蚀组分:
将乳化剂、环己烷和氨水混合得到组分A,将2-苯基咪唑啉和水混合得到组分B,将组分A和组分B等体积混合,在转速为800r/min的条件下搅拌30min,升温至35℃,加入正硅酸四乙酯,保持温度不变,搅拌反应20h反应结束后,加入无水乙醇离心洗涤,洗涤结束后在40℃条件下干燥至恒重,得到缓蚀组分。组分A中乳化剂、环己烷和氨水的用量比为9g:120mL:3mL;乳化剂为失水山梨糖醇脂肪酸酯和十二烷基酚聚氧乙烯醚按照质量比9:1混合而成;组分B中2-苯基咪唑啉和水的用量比为1g:60mL,正硅酸四乙酯和组分A的体积比为1:4。
实施例2
制备成膜基质:
步骤一、在氮气保护条件下,将4,4,4-三氟丁醇和甲醇钾加入N-甲基吡咯烷酮中,在65℃条件下搅拌60min,然后升温至90℃,加入环氧丙醇,滴加结束,保持温度不变,继续搅反应2h,反应结束后加入水,然后加入丙酮沉析,用甲醇溶解后旋蒸除去甲醇,得到含氟支化单体;其中,4,4,4-三氟丁醇和甲醇钾的质量比为1.5:1;4,4,4-三氟丁醇、N-甲基吡咯烷酮和环氧丙醇的用量比为0.15g:10mL:10mL。
步骤二、将4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚和碳酸钾加入混合溶剂中,在氮气保护条件下搅拌20min,升温至140℃,搅拌20h,反应结束后,降温至室温,用去离子水洗涤,在60℃真空条件下干燥至恒重,得到成膜基质。其中,混合溶剂为N,N-二甲基乙酰胺和甲苯按照体积比1:1混合而成。其中,4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚、碳酸钾和混合溶剂的用量比为2.2g:1.2g:0.3g:0.5g:1.5g:20mL。
实施例3
制备成膜基质:
步骤一、在氮气保护条件下,将4,4,4-三氟丁醇和甲醇钾加入N-甲基吡咯烷酮中,在65℃条件下搅拌60min,然后升温至90℃,加入环氧丙醇,滴加结束,保持温度不变,继续搅反应2h,反应结束后加入水,然后加入丙酮沉析,用甲醇溶解后旋蒸除去甲醇,得到含氟支化单体;其中,4,4,4-三氟丁醇和甲醇钾的质量比为1.5:1;4,4,4-三氟丁醇、N-甲基吡咯烷酮和环氧丙醇的用量比为0.15g:10mL:10mL。
步骤二、将4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚和碳酸钾加入混合溶剂中,在氮气保护条件下搅拌20min,升温至140℃,搅拌20h,反应结束后,降温至室温,用去离子水洗涤,在60℃真空条件下干燥至恒重,得到成膜基质。其中,混合溶剂为N,N-二甲基乙酰胺和甲苯按照体积比1:1混合而成。其中,4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚、碳酸钾和混合溶剂的用量比为2.2g:1.2g:0.4g:0.5g:1.5g:20mL。
对比例1
与实施例3相比,不添加含氟支化单体,其余原料及制备过程与实施例3保持相同。
实施例4
一种疏水绝缘层保护的电池负极的制备方法,包括如下步骤:
整个过程在氩气手套箱中进行,O2<0.1ppm,H2O<0.1ppm,将实施例2制备的成膜基质和实施例1制备的缓蚀组分按照质量比为9:1混合加入四氢呋喃中,室温搅拌分散,然后涂覆在负极材料表面,待四氢呋喃挥发后,在真空80℃条件下干燥12h后形成疏水绝缘层,疏水绝缘层的厚度为30-40μm,即得到一种疏水绝缘层保护的电池负极。四氢呋喃和成膜基质用量比为10mL:7g;负极材料为金属锂。
实施例5
一种疏水绝缘层保护的电池负极的制备方法,包括如下步骤:
整个过程在氩气手套箱中进行,O2<0.1ppm,H2O<0.1ppm,将实施例3制备的成膜基质和实施例1制备的缓蚀组分按照质量比为9:1.1混合加入四氢呋喃中,室温搅拌分散,然后涂覆在负极材料表面,待四氢呋喃挥发后,在真空80℃条件下干燥12h后形成疏水绝缘层,疏水绝缘层的厚度为30-40μm,即得到一种疏水绝缘层保护的电池负极。四氢呋喃和成膜基质用量比为10mL:7g;负极材料为金属锂。
实施例6
一种疏水绝缘层保护的电池负极的制备方法,包括如下步骤:
整个过程在氩气手套箱中进行,O2<0.1ppm,H2O<0.1ppm,将实施例3制备的成膜基质和实施例1制备的缓蚀组分按照质量比为9:1.2混合加入四氢呋喃中,室温搅拌分散,然后涂覆在负极材料表面,待四氢呋喃挥发后,在真空80℃条件下干燥12h后形成疏水绝缘层,疏水绝缘层的厚度为30-40μm,即得到一种疏水绝缘层保护的电池负极。四氢呋喃和成膜基质用量比为10mL:7g;负极材料为金属锂。
对比例2
与实施例6相比,将成膜基质换成对比例1制备的样品,其余原料及制备过程与实施例6保持相同。
对比例3
与实施例6相比,将缓蚀组分换成2-苯基咪唑啉,其余原料及制备过程与实施例6保持相同。
对实施例4-实施例6和对比例2-对比例3制备的样品进行测试,参照GB/T30447-2013的测量方法,对各试样进行接触角测试,测试液体为去离子水;
以实施例4-实施例6和对比例2-对比例3制备的锂片为负极,Ceglard 2325为隔膜,碳/硫复合物为正极,导电碳选为科琴黑,粘结剂选为PVDF,电解质锂盐选用LiTFSI,溶剂选用DOL/DME的混合液,组装锂电池,在LAND2100电池测试系统上进行测试;测试电流密度为0.2C(1C=1675mA h/g)。结果如下表1所示:
表1
Figure BDA0003890799610000071
Figure BDA0003890799610000081
从测试结果可知本发明制备的电池表现出优异的循环性能。
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (9)

1.一种疏水绝缘层保护的电池负极,包括负极材料和疏水绝缘层,其特征在于,所述疏水绝缘层由复合聚合物材料干燥后得到;所述复合聚合物材料包括成膜基质和缓蚀组分;成膜基质和缓蚀组分的质量比为9:1-1.2;
所述成膜基质通过如下步骤制备:
步骤一、在氮气保护条件下,将4,4,4-三氟丁醇和甲醇钾加入N-甲基吡咯烷酮中,在65℃条件下搅拌60min,然后升温至90℃,加入环氧丙醇,滴加结束,保持温度不变,继续搅反应2h,得到含氟支化单体;
步骤二、将4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚和碳酸钾加入混合溶剂中,在氮气保护条件下搅拌20min,升温至140℃,搅拌20h,得到成膜基质。
2.根据权利要求1所述的一种疏水绝缘层保护的电池负极,其特征在于,所述步骤二中4,4'-二氯二苯砜、氯化聚氧化乙烯、含氟支化单体、4,4'-联苯二酚、碳酸钾和混合溶剂的用量比为2.2g:1.2g:0.3-0.4g:0.5g:1.5g:20mL。
3.根据权利要求1所述的一种疏水绝缘层保护的电池负极,其特征在于,所述缓蚀组分通过如下步骤制备:
将乳化剂、环己烷和氨水混合得到组分A,将缓蚀剂和水混合得到组分B,将组分A和组分B等体积混合,在转速为800r/min的条件下搅拌30min,升温至35℃,加入正硅酸四乙酯,保持温度不变,搅拌反应20h反应结束后,加入无水乙醇离心洗涤,洗涤结束后在40℃条件下干燥至恒重,得到缓蚀组分。
4.根据权利要求3所述的一种疏水绝缘层保护的电池负极,其特征在于,所述缓蚀剂为2-苯基咪唑啉。
5.根据权利要求3所述的一种疏水绝缘层保护的电池负极,其特征在于,所述组分A中乳化剂、环己烷和氨水的用量比为9g:120mL:3mL;乳化剂为失水山梨糖醇脂肪酸酯和十二烷基酚聚氧乙烯醚按照质量比9:1混合而成;组分B中缓蚀剂和水的用量比为1g:60mL,正硅酸四乙酯和组分A的体积比为1:4。
6.根据权利要求1所述的一种疏水绝缘层保护的电池负极,其特征在于,所述疏水绝缘层的厚度为30-40μm。
7.根据权利要求1所述的一种疏水绝缘层保护的电池负极,其特征在于,所述负极材料为金属锌、金属锂、金属镁中的一种。
8.根据权利要求1所述的一种疏水绝缘层保护的电池负极的制备方法,其特征在于,包括如下步骤:
将制备的复合聚合物材料和四氢呋喃混合,室温搅拌分散,然后涂覆在负极材料表面,待四氢呋喃挥发后,干燥形成疏水绝缘层,即得到一种疏水绝缘层保护的电池负极。
9.根据权利要求8所述的一种疏水绝缘层保护的电池负极的制备方法,其特征在于,干燥条件为在真空80℃条件下干燥12h。
CN202211260094.7A 2022-10-14 2022-10-14 一种疏水绝缘层保护的电池负极和制备方法 Withdrawn CN115425166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211260094.7A CN115425166A (zh) 2022-10-14 2022-10-14 一种疏水绝缘层保护的电池负极和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211260094.7A CN115425166A (zh) 2022-10-14 2022-10-14 一种疏水绝缘层保护的电池负极和制备方法

Publications (1)

Publication Number Publication Date
CN115425166A true CN115425166A (zh) 2022-12-02

Family

ID=84207984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211260094.7A Withdrawn CN115425166A (zh) 2022-10-14 2022-10-14 一种疏水绝缘层保护的电池负极和制备方法

Country Status (1)

Country Link
CN (1) CN115425166A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116979018A (zh) * 2023-09-22 2023-10-31 宁德时代新能源科技股份有限公司 改性极片、其制备方法、二次电池和用电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116979018A (zh) * 2023-09-22 2023-10-31 宁德时代新能源科技股份有限公司 改性极片、其制备方法、二次电池和用电装置

Similar Documents

Publication Publication Date Title
Han et al. Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery
EP2923401B1 (en) Electrode compositions comprising conductive polymers and method for their production
CN113270586B (zh) 原位聚合包覆改性硅基负极材料的制备及其应用
KR101954601B1 (ko) 유무기 복합고체 전해질, 이를 포함하는 리튬 이차전지 및 그 제조방법
Wang et al. Porous polymer electrolytes for long-cycle stable quasi-solid-state magnesium batteries
CN108110240B (zh) 一种纳米多孔硅基复合物电极材料及其制备方法
CN108428935A (zh) 一种固态电解质膜制备方法及锂电池
CN108306046A (zh) 一种全固态复合聚合物电解质及其制备方法
KR20180025686A (ko) 복합음극활물질, 이를 포함하는 음극 및 리튬전지
WO2014006845A1 (ja) 電極保護膜形成剤
CN111755693A (zh) 一种复合金属锂负极及其制备方法、锂离子电池
Han et al. An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries
CN110808358A (zh) 一种具有刚性骨架限域功能的聚氨酯保护的金属负极及制备方法
CN115425166A (zh) 一种疏水绝缘层保护的电池负极和制备方法
CN115986204A (zh) 固态电解质及涂覆其的正极的制备方法和锂电池
CN115172668A (zh) 一种氟化锂和有机氟化物杂化的锂金属负极保护层的制备方法、锂金属负极及锂电池
Shao et al. A high ion conductive solid electrolyte film and interface stabilization strategy for solid-state Li-S battery
CN112421046B (zh) 用于锂金属二次电池的单离子导电聚合物复合材料的制备方法
CN114142032A (zh) 锌离子电池和改善锌离子电池锌负极循环性能的方法
WO2023087212A1 (zh) 一种介孔填料复合的凝胶聚合物电解质的制备方法
CN115832412A (zh) 一种复合固态电解质及其制备方法和应用
CN113675461A (zh) 一种柔性有机无机杂化固态电解质、其制备方法和电池
CN105336928B (zh) 一种聚吡咯包覆氟化碳正极材料的制备方法及应用
LIa et al. A hollow spherical polypyrrole-sulfur cathode for lithium-sulfur batteries
CN115275362B (zh) 含有异质离子凝胶缓冲层的固态电解质及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20221202

WW01 Invention patent application withdrawn after publication