WO2014006845A1 - 電極保護膜形成剤 - Google Patents

電極保護膜形成剤 Download PDF

Info

Publication number
WO2014006845A1
WO2014006845A1 PCT/JP2013/003929 JP2013003929W WO2014006845A1 WO 2014006845 A1 WO2014006845 A1 WO 2014006845A1 JP 2013003929 W JP2013003929 W JP 2013003929W WO 2014006845 A1 WO2014006845 A1 WO 2014006845A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protective film
forming agent
film forming
carbon atoms
Prior art date
Application number
PCT/JP2013/003929
Other languages
English (en)
French (fr)
Inventor
順子 高田
史行 田邊
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201380031282.5A priority Critical patent/CN104364948A/zh
Priority to KR1020147037143A priority patent/KR20150028787A/ko
Priority to US14/411,911 priority patent/US20150155106A1/en
Priority to JP2014523580A priority patent/JP5827404B2/ja
Publication of WO2014006845A1 publication Critical patent/WO2014006845A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/24Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an additive that can be suitably used for an electrode for an electrochemical device and an electrolytic solution, and an electrode and an electrolytic solution using the additive. More specifically, the present invention relates to an electrode protective film forming agent useful for a lithium secondary battery, a lithium ion capacitor, or an electric double layer capacitor, and an electrode and an electrolytic solution using the electrode protective film forming agent.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding.
  • a position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established.
  • higher performance for example, higher capacity and higher energy density
  • various methods such as higher density by improving the filling rate of electrodes, improvement of the depth of use of current active materials (especially negative electrodes), development of new high-capacity active materials, etc. have been carried out. Yes.
  • the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
  • a cobalt composite oxide which is an active material of a non-aqueous electrolyte secondary battery having an operating voltage of 4.2 V class, has a charge capacity of about 155 mAh / g when charged to 4.3 V based on the current Li standard.
  • LiCoO 2 cobalt composite oxide
  • the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.
  • Electric double layer capacitors are lower in voltage and energy density than lithium secondary batteries, but can be charged and discharged in a shorter time than lithium secondary batteries, so they can be used more widely as backup power sources and hybrid electric vehicles. Is expected.
  • Patent Document 1 aromatic sulfide such as methylphenyl sulfide and diphenyl sulfide is added to oxidize the aromatic sulfide on the positive electrode surface in preference to the electrolyte.
  • aromatic sulfide such as methylphenyl sulfide and diphenyl sulfide is added to oxidize the aromatic sulfide on the positive electrode surface in preference to the electrolyte.
  • Patent Document 2 by adding a sulfide compound having an aryl group or a heterocyclic group as a substituent, this sulfide compound is preferentially applied to strongly oxidizing chemical species such as active oxygen generated on the surface of the positive electrode. It has been disclosed to suppress a decrease in discharge capacity due to repeated charge and discharge by reacting and suppressing oxidative decomposition of the solvent. Furthermore, it is disclosed that a part of the oxidized material adheres to the positive electrode, is reduced during discharge, returns to the original state, and a part is diffused to the negative electrode.
  • Patent Document 3 by adding glycol diether to the electrolytic solution, the glycol diether is adsorbed on the electrode surface, so that the decomposition of the electrolytic solution is suppressed and the decrease in capacity is suppressed and the durability is maintained. It is disclosed to improve the performance.
  • Patent Document 4 discloses that by adding a imidazolium salt having a vinyl group to an electrolytic solution, a decrease in capacity and an increase in resistance are reduced after long-term use, and cycle characteristics and long-term durability are improved. Yes.
  • JP 7-320779 A Japanese Patent Laid-Open No. 10-64591 JP 2011-204918 A JP 2011-151237 A
  • Patent Documents 1 and 2 when a sulfide compound as disclosed in Patent Documents 1 and 2 is used in a lithium secondary battery, it itself decomposes into radicals, and there is a problem in that cycle characteristics are deteriorated due to a reaction with an electrolytic solution or an electrode. It was. Moreover, even if a compound like patent document 3 and 4 is used for an electric double layer capacitor, it was inadequate at the point of the improvement effect of long-term durability.
  • An object of this invention is to provide the electrode or electrolyte solution for electrochemical devices which can be used in a wider temperature range, and was excellent in long-term stability.
  • this invention contains the electrode protective film forming agent (D) containing the compound (C) which has a urethane bond (a) and a polymerizable unsaturated bond (b);
  • the said electrode protective film forming agent (D) Electrode containing the electrode protective film forming agent (D); Lithium secondary battery having the electrode and / or electrolyte; Lithium ion capacitor having the electrode and / or electrolyte; Electrode and / or electrolysis An electric double layer capacitor having a liquid; a method for producing an electrode protective film comprising a step of applying a voltage after containing the electrode protective film forming agent (D) in the electrode and / or an electrolytic solution.
  • an electrochemical device that can be used in a wider temperature range and has excellent long-term stability can be obtained. More specifically, in a lithium secondary battery and a lithium ion capacitor, charge / discharge cycle performance and high-temperature storage characteristics can be improved. Moreover, long-term durability can be improved in the electric double layer capacitor.
  • the electrode protective film-forming agent (D) of the present invention is contained in the negative electrode, the positive electrode, or any of the lithium secondary battery, lithium ion capacitor, or electric double layer capacitor, and then, when a voltage is applied, A polymerized film is formed on the surface.
  • the action of the polymer film can improve the charge / discharge cycle performance and high-temperature storage characteristics of the lithium secondary battery or lithium ion capacitor, and can improve the long-term durability of the electric double layer capacitor.
  • (D) is contained in an electrolyte solution of a lithium secondary battery, a lithium ion capacitor, or an electric double layer capacitor, and then a voltage is applied to form a polymer film on the surface of the active material of the electrode.
  • the action of the polymer film can improve the charge / discharge cycle performance and high-temperature storage characteristics of the lithium secondary battery or lithium ion capacitor, and can improve the long-term durability of the electric double layer capacitor.
  • the electrode protective film forming agent (D) of the present invention is characterized by containing a compound (C) having a urethane bond (a) and a polymerizable unsaturated bond (b).
  • the compound (C) is preferably represented by the following general formula (1).
  • A represents (i) an n-valent hydrocarbon group having 2 to 42 carbon atoms (A1) and (ii) a trimer from a trimer of diisocyanate (B) having 2 to 42 carbon atoms.
  • a divalent residue (A3) obtained by removing two isocyanate groups from the prepolymer.
  • X is a monovalent organic group having 3 to 42 carbon atoms and having a polymerizable unsaturated bond (b).
  • n is an integer of 1 to 6, and when n is 2 or more, a plurality of Xs may be the same or different.
  • Examples of (A1) include the following groups.
  • a monovalent aliphatic hydrocarbon group specific examples thereof include an n-butyl group;
  • Divalent aliphatic hydrocarbon group preferably a polymethylene group having 2 to 10 carbon atoms, such as methylene, ethylene, tetramethylene, hexamethylene, octamethylene, decamethylene, 1-methyltetramethylene, 2-methyltetramethylene etc.
  • a divalent alicyclic hydrocarbon group preferably an alicyclic hydrocarbon group having 5 to 13 carbon atoms, such as 1,5,5-trimethyl-cyclohexane-1,3-diyl, methylenedicyclohexyl-4 , 4'-diyl, cyclohexane-1,4-diyl, 1,4-dimethylene-cyclohexane (residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol), and the like.
  • a divalent aromatic hydrocarbon group preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms and an aliphatic aromatic hydrocarbon group having 6 to 42 carbon atoms, such as toluene-2,4-diyl, toluene- 2,6-diyl, methylenediphenyl-4,4′-diyl, xylylene, tetramethylxylylene, phenylene, 1,5-naphthalene and the like.
  • Examples of (A2) include trivalent residues obtained by removing three isocyanate groups from each of ethylene diisocyanate trimer, hexamethylene diisocyanate trimer, isophorone diisocyanate trimer, and the like.
  • Aliphatic hydrocarbon diisocyanate (B1) for example, ethylene diisocyanate, hexamethylene diisocyanate, etc.
  • Alicyclic hydrocarbon diisocyanate (B2) for example, dicyclohexylmethane 4,4′-diisocyanate, isophorone didiisocyanate, etc.
  • Aromatic hydrocarbon diisocyanate (B3) for example, diphenylmethane diisocyanate, toluene diisocyanate, etc.
  • Examples of the diol (N) having 2 to 20 carbon atoms include 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexane Examples include diethanol.
  • X is a monovalent organic group having 3 to 42 carbon atoms, preferably 5 to 20 carbon atoms, having a polymerizable unsaturated bond (b).
  • the polymerizable unsaturated bond (b) include a carbon-carbon double bond, a carbon-carbon triple bond, a carbon-nitrogen double bond, and a carbon-nitrogen triple bond.
  • n is an integer of 1 to 6, preferably 1 to 3. When n is 2 or more, a plurality of Xs may be the same or different.
  • X is preferably the following (X1) to (X3).
  • a monovalent hydrocarbon group (X2) having 8 to 42 carbon atoms and containing 1 to 4 carbon-carbon double bonds and having an aromatic ring, 1 to 4 carbon-carbon double bonds, and at least one of the carbon-carbon double bonds is a bond represented by the following chemical formula (2), or an acryloyloxyalkyl group, methacryloyl group
  • T 1 ⁇ T 3 is hydrogen atom, or an alkyl group having 1 to 3 carbon atoms, and at least two of T 1 ⁇ T 3 is an alkyl group having 1 to 3 carbon atoms And may form a ring with each other.
  • R is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • (X1) include a 3-methyl-2-butenyl group, a residue obtained by removing a hydroxyl group from linalool, a residue obtained by removing a hydroxyl group from citronellol, a residue obtained by removing a hydroxyl group from geraniol, and a residue obtained by removing a hydroxyl group from retinol. And the like.
  • (X2) is preferably one in which a carbon-carbon double bond and an aromatic ring are conjugated, such as a 3-phenyl-2-propenyl group or (E) -2-methyl-3-phenyl-2-propenyl group. , (4-ethenylphenyl) methyl group and the like.
  • (X3) includes [4- (1-propenoxymethyl) cyclohexyl] methyl group, [4- (1-butenoxymethyl) cyclohexyl] methyl group, 4- (1-propenoxy) butyl group, 6- (1- And propenyloxy) hexyl, 6- (2-methyl-1-propenoxy) hexyl, acryloyloxyethyl, methacryloyloxyethyl and the like.
  • Compound (C) reacts an isocyanate compound (G) having structure A with an active hydrogen compound (H) having a polymerizable unsaturated bond (b) in the presence or absence of a urethanization catalyst. Can be synthesized.
  • Examples of the isocyanate compound (G) include the following (G1) to (G3).
  • Urethane prepolymers having certain isocyanate groups at both ends such as urethane prepolymers having isocyanate groups at both ends, which are reaction products of hexamethylene diisocyanate and 1,6-hexanediol, C12-60 triisocyanate compound (G3): ethylene diisocyanate trimer, hexamethylene diisocyanate trimer, isophorone diisocyanate trimer, and the like.
  • the active hydrogen compound (H) is an active hydrogen compound represented by X—OH, X—NH 2 , X—SH or the like. Of these, X—OH is preferred from the viewpoint of reactivity with isocyanate.
  • Specific examples of the active hydrogen compound (H) having a residue (X1) include 3-methyl-2-buten-1-ol, linalool, citronellol, geraniol, and retinol.
  • Examples of the active hydrogen compound (H) having a residue (X2) include cinnamon alcohol, (E) -2-methyl-3-phenyl-2-propen-1-ol, (4-ethenylphenyl) methanol and the like. It is done.
  • Examples of the active hydrogen compound (H) having a residue (X3) include 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, 1-hydroxymethyl-4- (1-butenoxymethyl) cyclohexane, 4- ( 1-propenoxy) butan-1-ol, 6- (1-propenoxy) hexan-1-ol, 6- (2-methyl-1-propenoxy) hexane-1-ol, 2-hydroxyethyl acrylate, 2-hydroxyethyl And methacrylate.
  • the concentration of the urethane bond (a) in the compound (C) is preferably 0.2 to 7.5 mmol / g, more preferably 2.0 to 5.0 mmol / g.
  • the concentration of (a) is preferably 0.2 mmol / g or more from the viewpoint of cycle characteristics, and 7.5 mmol / g or less is preferable from the viewpoint of solubility in the electrolytic solution.
  • the concentration of the polymerizable unsaturated bond (b) in the compound (C) is preferably 0.2 to 15.0 mmol / g, more preferably 2.0 to 8.0 mmol / g.
  • (b) is 0.2 mmol / g or more, it is preferable from the viewpoint of cycle characteristics, and when it is 15.0 mmol / g or less, it is preferable from the viewpoint of interface resistance of the electrode.
  • the number average molecular weight of the compound (C) is preferably 5000 or less, more preferably 3500 or less, from the viewpoint of solubility in a dispersion solvent described later.
  • the number average molecular weight of (C) is measured using gel permeation chromatography (hereinafter referred to as GPC).
  • GPC gel permeation chromatography
  • a temperature of 40 ° C. and a solvent tetrahydrofuran (THF) can be used.
  • Molecular weight can also be measured with a mass spectrometer or calculated from a structural formula.
  • the electrode protective film forming agent (D) may contain components other than the compound (C), but it is preferable not to contain components other than (C).
  • components other than the compound (C) include Lewis base (I), negative electrode protective film forming agent (J) and the like.
  • Lewis base (I) examples include triazole derivatives (1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1 2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3, -Amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole and 3-amino-5-butyl-1,2,4-triazole) It is done.
  • Examples of the negative electrode protective film forming agent (J) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone.
  • the content of the compound (C) in the electrode protective film forming agent (D) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of (D).
  • the electrode of the present invention contains an electrode protective film forming agent (D) and an active material (Q) before use after charging and discharging, and preferably further contains a binder (K). While charging / discharging is started, a part of (D) undergoes a polymerization reaction to form a polymer film on the surface of (Q). At this point, the electrode of the present invention comprises an unreacted electrode protective film forming agent (D), an active material (Q) having an electrode protective film made of a polymer of (D) on the surface, preferably further binding. Contains agent (K). Further, when charging / discharging continues, (D) is considered to be a polymer film.
  • the positive electrode active material (Q11) for a lithium secondary battery includes a composite oxide of lithium and a transition metal (eg, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (eg, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • a transition metal eg, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4
  • a transition metal oxide eg, MnO 2 and V 2).
  • O 5 transition metal sulfides
  • conductive polymers eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene,
  • the negative electrode active material (Q12) for lithium secondary batteries is graphite, amorphous carbon, a polymer compound fired body (for example, one obtained by firing and carbonizing phenol resin, furan resin, etc.), coke (for example, pitch coke, needle coke, and petroleum). Coke), carbon fiber, conductive polymer (eg, polyacetylene and polypyrrole), tin, silicon, and metal alloy (eg, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy) Is mentioned.
  • conductive polymer eg, polyacetylene and polypyrrole
  • tin silicon
  • metal alloy eg, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy
  • the positive electrode active material (Q21) for lithium ion capacitors is made of carbon materials (sawdust activated carbon, hayaga activated carbon, pitch / coke activated carbon, phenol resin activated carbon, polyacrylonitrile activated carbon, cellulose activated carbon, etc.), carbon fiber, metal oxide Products (ruthenium oxide, manganese oxide, cobalt oxide, etc.) and conductive polymer materials (polyaniline, polypyrrole, polythiophene, polyacetylene, etc.).
  • the negative electrode active material (Q22) for a lithium ion capacitor can be obtained by doping lithium into the negative electrode active material (Q12) for a lithium secondary battery.
  • the same material as the positive electrode active material (Q21) for lithium ion capacitors is used for the positive electrode active material and negative electrode active material (Q3) for electric double layer capacitors.
  • binder (K) examples include high molecular compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
  • the electrode of the present invention can further contain a conductive additive (L).
  • a conductive additive L
  • the conductive auxiliary agent (L) graphite (eg, natural graphite and artificial graphite) (except when graphite is used as the active material (Q)), carbon blacks (eg, carbon black, acetylene black, ketjen black, channel black, Furnace black, lamp black and thermal black) and metal powder (for example, aluminum powder and nickel powder), conductive metal oxide (for example, zinc oxide and titanium oxide), and the like.
  • the preferred contents of (K) and the conductive additive (L) are as follows.
  • the content of the electrode protective film forming agent (D) is preferably 0.05 to 5% by weight, more preferably 0.1 to 2% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the active material (Q) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of battery capacity.
  • the content of the binder (K) is preferably 0.5 to 29% by weight and more preferably 1 to 10% by weight from the viewpoint of battery capacity.
  • the content of the conductive assistant (L) is preferably 0 to 29% by weight, more preferably 1 to 10% by weight, from the viewpoint of battery output.
  • the electrode of the present invention comprises, for example, an electrode protective film-forming agent (D), an active material (Q), a binder (K), and optionally a conductive assistant (L) in water or a solvent in an amount of 20 to 60% by weight.
  • D electrode protective film-forming agent
  • Q active material
  • K binder
  • L conductive assistant
  • a slurry dispersed at a concentration is applied to a current collector with a coating device such as a bar coater, dried to remove the solvent, and, if necessary, obtained by pressing with a press.
  • lactam compounds, ketone compounds, amide compounds, amine compounds, cyclic ether compounds and the like can be used.
  • examples thereof include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran.
  • Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
  • the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E) and a non-aqueous solvent (F), preferably for lithium secondary batteries, for lithium ion capacitors, and for electric double layer capacitors. It is useful as an electrolyte solution.
  • the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E), and a nonaqueous solvent (F) before charging and discharging. While charging / discharging starts, a part of (D) undergoes a polymerization reaction to form a polymer film on the surface of the active material (Q) constituting the electrode. As the polymerization reaction proceeds, (D) in the electrolytic solution of the present invention decreases.
  • LiPF 6 LiBF 4 , LiSbF 6, LiAsF 6, and lithium salts of inorganic acids LiClO 4, etc., LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and LiC (CF 3 SO 2) organic acids 3 etc.
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • electrolyte (E) for an electric double layer capacitor those used in an ordinary electrolytic solution for an electric double layer capacitor can be used.
  • tetraethylammonium tetrafluoroborate salt
  • triethylmethylammonium tetrafluoro
  • tetraalkylammonium salts such as borate salts and amidinium salts such as 1-ethyl-3-methylimidazolium tetrafluoroborate salt.
  • non-aqueous solvent (F) those used for electrolytes for ordinary lithium secondary batteries, lithium ion capacitors and electric double layer capacitors can be used.
  • lactone compounds, cyclic or chain carbonic acid Esters, chain carboxylic acid esters, cyclic or chain ethers, phosphate esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
  • cyclic or chain carbonates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics.
  • cyclic carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, and the like.
  • chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl n-propyl carbonate, ethyl n-propyl carbonate and di n-propyl carbonate.
  • Electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) based on the total weight of electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) in the electrolytic solution of the present invention ) are preferably as follows.
  • the content of (D) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, from the viewpoints of charge / discharge cycle characteristics, battery capacity, and high-temperature storage characteristics.
  • the content of the electrolyte (E) in the electrolytic solution is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the content of the non-aqueous solvent (F) is preferably 60 to 99% by weight and more preferably 85 to 95% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • the content of each component of the following additives is based on the total weight of the electrode protective film forming agent (D), the electrolyte (E), and the nonaqueous solvent (F).
  • the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene.
  • the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight.
  • the dehydrating agent examples include zeolite, silica gel and calcium oxide.
  • the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
  • the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
  • the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
  • the lithium secondary battery of the present invention uses the electrode of the present invention as the positive electrode or the negative electrode when the electrolytic solution is injected into the battery can containing the positive electrode, the negative electrode, and the separator to seal the battery can.
  • the electrolytic solution of the present invention is used or obtained by a combination thereof.
  • a separator in a lithium secondary battery As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and a titania, were made to adhere is mentioned.
  • the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
  • the lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention.
  • Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
  • the electric double layer capacitor of the present invention can be obtained by replacing the negative electrode with an electrode for an electric double layer capacitor in the basic configuration of the lithium ion capacitor of the present invention.
  • the electrode of the present invention is used as a positive electrode or a negative electrode
  • the electrolytic solution of the present invention is used as an electrolytic solution, or a voltage is applied to a combination of these. There is a way to make it.
  • Electrode protective film forming agent (D) The number average molecular weight of the compound (C-15) was measured under the following conditions using GPC.
  • Apparatus (example): HLC-8120 manufactured by Tosoh Corporation Column (example): TSK GEL GMH6 2 [Tosoh Corp.] Measurement temperature: 40 ° C Sample solution: 0.25 wt% THF solution Solution injection amount: 100 ⁇ l
  • Detection device Refractive index detector
  • Reference material Tosoh Co., Ltd. standard polystyrene (TSK standard POLY STYRENE) 5 points (Mw 500 1050 2800 5970 9100)
  • Example 1 Synthesis of Compound (C-1) for Electrode Protective Film Forming Agent Into a flask equipped with a stirrer, thermometer and condenser, 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, butyl 7.3 parts of isocyanate, 100 parts of toluene and 0.5 part of N, N, N ′, N′-tetramethylethylenediamine were charged and heated at 80 ° C. for 8 hours.
  • Example 2 Synthesis of Compound (C-2) for Electrode Protective Film Forming Agent
  • 6.5 parts of hexamethylene diisocyanate was used instead of 7.3 parts of butyl isocyanate, and represented by the following formula: Obtained 7.7 parts of compound (C-2) [yield 37%, Mn: 536 (calculated value from chemical formula)].
  • (C-2) was used as an electrode protective film forming agent (D-2).
  • Example 3 Synthesis of Compound (C-3) for Electrode Protective Film Forming Agent
  • 10.0 parts of dicyclohexylmethane-4,4′-diisocyanate was used instead of 7.3 parts of butyl isocyanate.
  • 10.1 parts of a compound (C-3) represented by the following formula was obtained [yield 40%, Mn: 630 (calculated value from chemical formula)].
  • (C-3) was used as an electrode protective film forming agent (D-3).
  • Example 4 Synthesis of Compound for Electrode Protective Film Forming Agent (C-4) The procedure of Example 1 was repeated except that 8.6 parts of isophorone didiisocyanate was used instead of 7.3 parts of butyl isocyanate. 10.1 parts of compound (C-4) were obtained [yield 44%, Mn: 590 (calculated value from chemical formula)]. (C-4) was used as an electrode protective film forming agent (D-4).
  • Example 5 Synthesis of Compound (C-5) for Electrode Protective Film Forming Agent
  • a compound represented by the following formula was prepared in the same manner as in Example 1 except that 9.7 parts of diphenylmethane diisocyanate was used instead of 7.3 parts of butyl isocyanate. 8.7 parts of (C-5) were obtained [yield 35%, Mn: 618 (calculated value from chemical formula)].
  • (C-5) was used as an electrode protective film forming agent (D-5).
  • Example 6 Synthesis of Compound (C-6) for Electrode Protective Film Forming Agent
  • a compound represented by the following formula was prepared in the same manner as in Example 1 except that 6.7 parts of toluene diisocyanate was used instead of 7.3 parts of butyl isocyanate. 8.8 parts of (C-6) were obtained [yield 42%, Mn: 542 (calculated value from chemical formula)].
  • (C-6) was used as an electrode protective film forming agent (D-6).
  • Example 7 Synthesis of Compound for Electrode Protective Film Forming Agent (C-7) The same procedure as in Example 1 was conducted except that 13.3 parts of hexamethylene diisocyanate trimer was used instead of 7.3 parts of butyl isocyanate. 9.3 parts of the compound (C-7) represented by the formula (yield 33%, Mn: 1056 (calculated value from the chemical formula)) was obtained. (C-7) was used as an electrode protective film forming agent (D-7).
  • Example 8 Synthesis of Compound (C-8) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, linalool [manufactured by Wako Pure Chemical Industries, Ltd.] 12 9.7 parts were obtained in the same manner as in Example 3 except that 0.5 part was used, to obtain 9.7 parts of a compound (C-8) represented by the following formula [yield 45%, Mn: 570 (calculated value from chemical formula) ]]. (C-8) was used as an electrode protective film forming agent (D-8).
  • Example 9 Synthesis of Compound for Electrode Protective Film Forming Agent (C-9) Citronellol [Wako Pure Chemical Industries, Ltd.] 12 instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane The same procedure as in Example 3 was carried out except that 0.5 part was used to obtain 10.1 parts of compound (C-9) represented by the following formula [yield 47%, Mn: 574 (calculated value from chemical formula ]]. (C-9) was used as an electrode protective film forming agent (D-9).
  • Example 10 Synthesis of Compound (C-10) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, geraniol [manufactured by Wako Pure Chemical Industries, Ltd.] 12 The same procedure as in Example 3 was carried out except that 0.5 part was used to obtain 12.2 parts of compound (C-10) represented by the following formula [yield 56%, Mn: 570 (calculated value from chemical formula) ]]. (C-10) was used as an electrode protective film forming agent (D-10).
  • Example 11 Synthesis of Compound (C-11) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, 2-hydroxyethyl acrylate [Wako Pure Chemical Industries, Ltd. )] Except for using 9.3 parts, the same procedure as in Example 3 was performed to obtain 9.5 parts of the compound (C-11) represented by the following formula [yield 50%, Mn: 494 (chemical formula Calculated from)). (C-11) was used as an electrode protective film forming agent (D-11).
  • Example 12 Synthesis of Compound (C-12) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, cinnamon alcohol [manufactured by Wako Pure Chemical Industries, Ltd.] Except for using 10.8 parts, the same procedure as in Example 3 was performed to obtain 8.5 parts of a compound (C-12) represented by the following formula [yield 42%, Mn: 530 (calculated from chemical formula) value)]. (C-12) was used as an electrode protective film forming agent (D-12).
  • Example 13 Synthesis of Compound (C-13) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, (E) -2-methyl-3-phenyl- The same procedure as in Example 3 was conducted, except that 11.9 parts of 2-propen-1-ol [manufactured by Tokyo Chemical Industry Co., Ltd.] was used, and 8.3 parts of the compound (C-13) represented by the following formula was added. Obtained [yield 39%, Mn: 558 (calculated value from chemical formula)]. (C-13) was used as an electrode protective film forming agent (D-13).
  • Example 14 Synthesis of Compound (C-14) for Electrode Protective Film Forming Agent Instead of 15.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, (4-ethenylphenyl) methanol [Tokyo Chemical Industry Made in the same manner as in Example 3 except that 10.8 parts were used to obtain 9.5 parts of the compound (C-14) represented by the following formula [yield 47%, Mn: 530 (Calculated value from chemical formula)]. (C-14) was used as an electrode protective film forming agent (D-14).
  • Example 15 Synthesis of Compound (C-15) for Electrode Protective Film Forming Agent Into a flask equipped with a stirrer, a thermometer and a condenser tube, 5.5 parts of 1,4-cyclohexanedimethanol [manufactured by Tokyo Chemical Industry Co., Ltd.], dicyclohexyl 15.0 parts of methane-4,4′-diisocyanate, 100 parts of toluene and 0.5 part of N, N, N ′, N′-tetramethylethylenediamine were charged and heated at 80 ° C. for 5 hours.
  • 1,4-cyclohexanedimethanol manufactured by Tokyo Chemical Industry Co., Ltd.
  • dicyclohexyl 15.0 parts of methane-4,4′-diisocyanate 100 parts of toluene and 0.5 part of N, N, N ′, N′-tetramethylethylenediamine were charged and heated at 80 ° C. for 5 hours.
  • the electrode protective film forming agents (D-1) to (D-15) of Examples 1 to 15 are summarized in Table 1.
  • Mn in Examples 1 to 14 is a calculated value from the structural formula
  • Mn in Example 15 is a measured value of GPC.
  • LiCoO2 powder 90.0 parts, Kechen Black [Sigma-Aldrich Co., Ltd.] 5 parts, polyvinylidene fluoride [Sigma-Aldrich Co., Ltd.] 5 parts, and the number of parts shown in Table 2 (D) in a mortar
  • 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain a slurry.
  • the obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 ⁇ m using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. After drying for 2 hours and punching out to 15.95 mm ⁇ , positive electrodes for lithium secondary batteries of Examples 16 to 32 were produced.
  • Electrode protective film forming agent (D) is blended in 87.5 parts of a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in the number of parts shown in Table 2, and the electrolyte is adjusted to 12% by weight.
  • LiPF 6 as (E) was dissolved to prepare electrolytic solutions of Examples 33 to 47.
  • Comparative Example 4 An electrolytic solution of Comparative Example 4 was prepared in the same manner as in Example 33 except that the electrode protective film forming agent (D) was not added.
  • Comparative Example 5 An electrolytic solution of Comparative Example 5 was prepared in the same manner as in Example 33 except that 0.5 part of methylphenyl sulfide (D′-1) was added as a comparative additive instead of the electrode protective film forming agent (D). did.
  • Comparative Example 6 An electrolytic solution of Comparative Example 6 was prepared in the same manner as in Example 33 except that 0.5 part of diphenyl sulfide (D′-2) was added as a comparative additive instead of the electrode protective film forming agent (D). .
  • a slurry was obtained by thoroughly mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone in a mortar. The obtained slurry was applied to one side of a 20 ⁇ m-thick copper foil in the air using a wire bar, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried, punched to 16.15 mm ⁇ , and made a graphite negative electrode for a lithium secondary battery with a thickness of 30 ⁇ m using a press.
  • the positive electrode and the negative electrode were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell.
  • the electrolytes of Examples 33 to 47 and Comparative Examples 4 to 6 were poured into the prepared secondary battery cells and sealed to prepare secondary batteries.
  • the obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours.
  • a negative electrode was prepared.
  • a positive electrode and a negative electrode of Examples 48 to 64 and Comparative Examples 7 to 9 are placed in a storage case made of polypropylene aluminum laminate film so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is placed between the electrodes.
  • the capacitor cell was prepared by inserting. The solution was injected and sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a proportion of 12% by weight in propylene carbonate (PC) was produced.
  • PC propylene carbonate
  • Comparative Example 10 An electrolytic solution of Comparative Example 10 was prepared in the same manner as in Example 65 except that the electrode protective film forming agent (D) was not added.
  • Comparative Example 11 An electrolytic solution of Comparative Example 11 was prepared in the same manner as in Example 65 except that 0.5 part of methylphenyl sulfide (D′-1) was added as a comparative additive instead of the electrode protective film forming agent (D). did.
  • Comparative Example 12 An electrolytic solution of Comparative Example 12 was prepared in the same manner as in Example 65 except that 0.5 part of diphenyl sulfide (D′-2) was added as a comparative additive instead of the electrode protective film forming agent (D). .
  • the positive electrode active material activated carbon having a specific surface area of about 2200 m 2 / g obtained by an alkali activation method was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. To obtain a slurry. This slurry was applied onto an aluminum foil having a thickness of 30 ⁇ m by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm ⁇ 30 mm. The electrode thickness was about 50 ⁇ m. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
  • the obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours.
  • a negative electrode was prepared.
  • a separator polypropylene nonwoven fabric
  • a separator is inserted between the positive electrode and the negative electrode, impregnated with the electrolytic solutions of Examples 65 to 79 and Comparative Examples 10 to 12, and placed in a storage case made of a polypropylene aluminum laminate film. Sealed to produce a lithium ion capacitor cell.
  • Comparative Example 13 A positive electrode and a negative electrode for an electric double layer capacitor of Comparative Example 13 were produced in the same manner as in Example 80 except that the electrode protective film forming agent (D) was not added.
  • Comparative example 14 The electric double layer capacitor of Comparative Example 14 was prepared in the same manner as in Example 80 except that 0.5 part of methylphenyl sulfide (D′-1) was added as a comparative additive instead of the electrode protective film forming agent (D). A positive electrode was prepared.
  • D′-1 methylphenyl sulfide
  • Electrodes of Examples 80 to 96 and Comparative Examples 13 to 15 are arranged in a storage case made of polypropylene aluminum laminate film so that the respective coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is inserted between the electrodes.
  • a capacitor cell was prepared.
  • An electrolytic solution in which tetrafluoroborate salt of 1-ethyl-3-methylimidazolium (EDMI ⁇ BF 4 ) (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in propylene carbonate (PC) at a ratio of 12% by weight was prepared. The cell was poured and sealed.
  • a charge / discharge test device (“CDT-5R2-4” manufactured by Power System Co., Ltd.) is connected to the created electric double layer capacitor, and constant current charging is performed at 25 mA up to a set voltage of 3.0 V.
  • a charge / discharge cycle test was performed in which constant current discharge was performed at 25 mA after 2 seconds. 250 cycles were performed at a temperature setting of 60 ° C., and the capacitance value and the capacitance retention rate (%) of the initial and after 250 cycles of the cell were measured. The higher the maintenance rate (%) of capacitance, the better the durability. Therefore, this value was used as an index of long-term durability.
  • Capacitance maintenance ratio (%) (capacitance after 250 cycles / initial capacitance) ⁇ 100
  • Electrode protection film forming agent (D) is blended in the nonaqueous solvent (F) composed of 87.5 parts of propylene carbonate in the number of parts shown in Table 4, and the electrolyte (E) is used so as to be 12% by weight.
  • EDMI ⁇ BF 4 was dissolved to prepare electrolytic solutions of Examples 97 to 111.
  • Comparative Example 16 An electrolytic solution of Comparative Example 16 was prepared in the same manner as in Example 97 except that the electrode protective film forming agent (D) was not added.
  • Comparative Example 17 An electrolytic solution of Comparative Example 17 was prepared in the same manner as in Example 97, except that 0.5 part of methylphenyl sulfide (D′-1) was added as a comparative additive instead of the electrode protective film forming agent (D). did.
  • Comparative Example 18 An electrolytic solution of Comparative Example 18 was prepared in the same manner as in Example 97 except that 0.5 part of diphenyl sulfide (D′-2) was added as a comparative additive instead of the electrode protective film forming agent (D). .
  • a separator polypropylene nonwoven fabric
  • a separator is inserted between the positive electrode and the negative electrode, impregnated with the electrolytes of Examples 97 to 111 and Comparative Examples 16 to 18, and placed in a storage case made of a polypropylene aluminum laminate film. Sealed to produce an electric double layer capacitor cell.
  • the lithium secondary battery and lithium ion capacitor produced using the electrode protective film forming agent of the present invention were found to be excellent in charge / discharge cycle performance and high-temperature storage characteristics from the results of the above Examples and Comparative Examples.
  • the reason why the charge / discharge cycle performance and the high-temperature storage characteristics are improved is considered that the polymer film formed on the surface of the electrode active material suppresses the decomposition of the electrolytic solution on the electrode surface under a high voltage.
  • the electric double layer capacitor produced using the electrode protective film forming agent of the present invention was found to have a high capacity retention rate and excellent long-term durability from the results of the above Examples and Comparative Examples.
  • the reason why the capacity retention ratio is improved is considered that the polymer film formed on the surface of the electrode active material suppresses the decomposition of the electrolytic solution on the electrode surface.
  • the electrode and electrolyte solution using the electrode protective film forming agent (D) of the present invention are useful for electrochemical devices such as lithium secondary batteries, lithium ion capacitors, and electric double layer capacitors, and in particular lithium for electric vehicles. It is suitable for secondary batteries and lithium ion capacitors, and electric double layer capacitors for wind power generation and in-vehicle use. Moreover, it is applicable also to electrochemical devices (nickel metal hydride battery, nickel cadmium battery, air battery, alkaline battery, etc.) other than those disclosed in the present invention.

Abstract

 本発明は、より広い温度範囲において使用可能で長期安定性に優れた電気化学デバイス用の電極または電解液を提供することを目的とする。 ウレタン結合および重合性不飽和結合を有し、好ましくは下記一般式(1)で表される化合物を含有する電極保護膜形成剤。  [式(1)中、Aは(i)炭素数2~42のn価の炭化水素基、(ii)炭素数2~42のジイソシアネート(B)の3量体から3個のイソシアネート基を除いた3価の残基、または(iii)炭素数2~42のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基である。Xは重合性不飽和結合(b)を有する炭素数3~42の1価の有機基である。nは1~6の整数であり、nが2以上の場合、複数個あるXはそれぞれ同一でも異なっていてもよい。] A(-NHCO2-X)n (1)

Description

電極保護膜形成剤
 本発明は、電気化学デバイス用電極および電解液に好適に用いることができる添加剤、ならびに該添加剤を用いた電極および電解液に関する。より詳しくはリチウム二次電池、リチウムイオンキャパシタまたは電気二重層キャパシタに有用な電極保護膜形成剤ならびに該電極保護膜形成剤を用いた電極および電解液に関する。
 リチウム二次電池等の非水電解液二次電池は、高電圧、高エネルギー密度という特徴を持つことから、携帯情報機器分野等において広く利用され、その需要が急速に拡大しており、現在、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションが確立されている。当然ながら、携帯機器等の高性能化と多機能化に伴い、その電源としての非水電解液二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるために種々の方法、例えば、電極の充填率の向上による高密度化、現行の活物質(特に負極)の利用深度の向上、新規高容量の活物質の開発等が行われている。そして、現実に非水電解液二次電池がこれらの方法によって確実に高容量化されている。
 また、非水電解液二次電池の更なる高容量化を図るために、正極活物質の利用率の向上や高電圧材料の開発が求められている。この中で、特に充電電圧の上昇による正極活物質の利用深度の向上が注目されている。例えば、作動電圧が4.2V級の非水電解液二次電池の活物質であるコバルト複合酸化物(LiCoO)は、現在のLi基準で4.3Vまで充電すると充電容量が約155mAh/gであるのに対し、4.50Vまで充電すると約190mAh/g以上である。このように充電電圧の向上で正極活物質の利用率が大きくなる。
 しかし充電電圧の高電圧化により非水電解液の分解が生じやすくなるため充放電サイクル特性の低下や高温貯蔵時においては二酸化炭素などのガス発生にともなう電池が膨れてしまう問題があった。
 電気二重層キャパシタはリチウム二次電池と比較して電圧やエネルギー密度が低い反面、リチウム二次電池よりも短時間の充放電が可能であるためにバックアップ電源やハイブリッド電気自動車の電源としての利用拡大が見込まれている。
 しかし過酷な条件のもと大電流で使用されるハイブリッド電気自動車等の新しい用途分野では、より広い温度範囲において使用可能で長期安定性に優れた電気化学デバイスが要望されている。
 これらリチウムイオン二次電池、リチウムイオンキャパシタおよび電気二重層キャパシタといった電気化学デバイスの高性能化のため、これらを構成する電極や電解液を改良する技術が種々提案されている。
 非水電解液二次電池については特許文献1において、メチルフェニルスルフィド、ジフェニルスルフィド等の芳香族スルフィドを添加することで、正極表面上で芳香族スルフィドが電解液より優先して酸化される。該酸化生成物が負極に拡散及び還元されて、元のスルフィド体に戻るという反応を繰り返すことにより、溶媒の酸化分解が抑制される。この反応により保存特性、充放電サイクル特性等を改善することが開示されている。
 特許文献2には、アリール基又は複素環基を置換基として有するスルフィド化合物を添加することで、正極表面上で発生する活性酸素等の強酸化性の化学種に、このスルフィド化合物が優先的に反応し、溶媒の酸化分解を抑制することで、充放電繰り返しによる放電容量の低下を抑制することが開示されている。さらに、酸化された一部は正極上に付着し、放電時に還元されて元に戻り、また一部は負極に拡散されることも開示されている。
 電気二重層キャパシタについては特許文献3において、グリコールジエーテルを電解液に添加することにより、電極表面にグリコールジエーテルが吸着されることで電解液の分解が抑制され、容量低下を抑制するとともに耐久性を改善することが開示されている。
 特許文献4には、ビニル基を有するイミダゾリウム塩を電解液に添加することで、長期使用後において容量低下や抵抗の増加を低減し、サイクル特性および長期耐久性が向上することが開示されている。
特開平7-320779号公報 特開平10-64591号公報 特開2011-204918号公報 特開2011-151237号公報
 しかしながら、特許文献1、2のようなスルフィド化合物をリチウム二次電池に用いると、それ自体がラジカルに分解してしまい、電解液や電極との反応によってサイクル特性を低下させてしまうという課題があった。
 また、特許文献3、4のような化合物を電気二重層キャパシタに用いても、長期耐久性の改善効果の点で不十分であった。
 本発明は、より広い温度範囲において使用可能で長期安定性に優れた電気化学デバイス用の電極または電解液を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。即ち、本発明は、ウレタン結合(a)および重合性不飽和結合(b)を有する化合物(C)を含有する電極保護膜形成剤(D);前記電極保護膜形成剤(D)を含有する電極;前記電極保護膜形成剤(D)を含有する電解液;前記電極および/又は電解液を有するリチウム二次電池;前記電極および/又は電解液を有するリチウムイオンキャパシタ;前記電極および/又は電解液を有する電気二重層キャパシタ;前記電極保護膜形成剤(D)を前記電極及び/又は電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法である。
 本発明の電極保護膜形成剤を含有する電極又は電解液を使用することで、より広い温度範囲において使用可能で長期安定性に優れた電気化学デバイスを得ることができる。より具体的には、リチウム二次電池およびリチウムイオンキャパシタでは、充放電サイクル性能及び高温貯蔵特性を向上させることができる。また電気二重層キャパシタでは長期耐久性を向上させることができる。
<電極保護膜形成剤(D)>
 本発明の電極保護膜形成剤(D)は、リチウム二次電池、リチウムイオンキャパシタ、または電気二重層キャパシタの負極、正極またはそのいずれにも含有させた後、電圧を印加すると電極の活物質の表面上に重合膜を形成する。該重合膜の作用でリチウム二次電池またはリチウムイオンキャパシタの充放電サイクル性能及び高温貯蔵特性を向上させることができ、また電気二重層キャパシタの長期耐久性を向上させることができる。
 また、(D)はリチウム二次電池、リチウムイオンキャパシタ、または電気二重層キャパシタの電解液に含有させた後、電圧を印加すると電極の活物質の表面上に重合膜を形成する。該重合膜の作用でリチウム二次電池またはリチウムイオンキャパシタの充放電サイクル性能及び高温貯蔵特性を向上させることができ、また電気二重層キャパシタの長期耐久性を向上させることができる。
 本発明の電極保護膜形成剤(D)はウレタン結合(a)および重合性不飽和結合(b)を有する化合物(C)を含有することを特徴とする。
 化合物(C)は下記一般式(1)で表されるのが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)におけるAは、(i)炭素数2~42のn価の炭化水素基(A1)、(ii)炭素数2~42のジイソシアネート(B)の3量体から3個のイソシアネート基を除いた3価の残基(A2)、または(iii)炭素数2~42のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基(A3)である。
 Xは重合性不飽和結合(b)を有する炭素数3~42の1価の有機基である。nは1~6の整数であり、nが2以上の場合、複数個あるXはそれぞれ同一でも異なっていてもよい。
 (A1)としては、以下の基が挙げられる。
 1価の脂肪族炭化水素基、具体例としてはn-ブチル基等。
 2価の脂肪族炭化水素基、好ましくは炭素数2~10のポリメチレン基、具体例としてはメチレン、エチレン、テトラメチレン、ヘキサメチレン、オクタメチレン、デカメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン等。
 2価の脂環式炭化水素基、好ましくは炭素数5~13の脂環式炭化水素基、具体例としては、1,5,5-トリメチル-シクロヘキサン-1,3-ジイル、メチレンジシクロヘキシル-4,4’-ジイル、シクロヘキサン-1,4-ジイル、1,4-ジメチレン-シクロヘキサン(1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基)等。
 2価の芳香族炭化水素基、好ましくは炭素数6~12の芳香族炭化水素基と炭素数6~42の脂肪芳香族炭化水素基、具体例としてはトルエン-2,4-ジイル、トルエン-2,6-ジイル、メチレンジフェニル-4,4’-ジイル、キシリレン、テトラメチルキシリレン、フェニレン、1,5-ナフタレン等。
 (A2)としては、例えば、エチレンジイソシアネートの3量体、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネートの3量体等から各々3個のイソシアネート基を除いた3価の残基が挙げられる。
 炭素数2~42のジイソシアネート(B)としては、
 脂肪族炭化水素系ジイソシアネート(B1):例えばエチレンジイソシアネート、ヘキサメチレンジイソシアネート等、
 脂環式炭化水素系ジイソシアネート(B2):例えばジシクロヘキシルメタン4,4’-ジイソシアネート、イソホロンジジイソシアネート等、
 芳香族炭化水素系ジイソシアネート(B3):例えばジフェニルメタンジイソシアネート、トルエンジイソシアネート等、
 脂肪芳香族炭化水素ジイソシアネート(B4):例えばキシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられる。
 炭素数2~20のジオール(N)としては1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール等が挙げられる。
 ジイソシアネート(B)とジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーを
 B-(N-B)-N-B
で表すとするとmは0~10のプレポリマーが好ましい。
 Xは、重合性不飽和結合(b)を有する、炭素数3~42、好ましくは炭素数5~20の1価の有機基である。重合性不飽和結合(b)としては炭素-炭素二重結合、炭素-炭素三重結合、炭素-窒素二重結合、炭素-窒素三重結合等が挙げられる。
 nは1~6、好ましくは1~3の整数であり、nが2以上の場合、複数個あるXはそれぞれ同一でも異なっていてもよい。
 Xとしては、以下の(X1)~(X3)が好ましい。
 炭素-炭素二重結合を1~4個含有し、芳香族環以外の環を有していてもよい炭素数3~42の1価の脂肪族炭化水素基(X1)、
 炭素-炭素二重結合を1~4個含有し、芳香族環を有する、炭素数8~42の1価の炭化水素基(X2)、
 炭素-炭素二重結合を1~4個含有し、該炭素-炭素二重結合の少なくとも1つは下記化学式(2)で表される結合であるか、またはアクリロイロキシアルキル基、メタアクリロイロキシアルキル基である、炭素数3~42の1価の有機基(X3)。
Figure JPOXMLDOC01-appb-C000002
 これらの中でより好ましいものは、(X1)であり、その中でも下記化学式(3)で示す構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000003
[式(3)中、T~Tは水素原子、又は炭素数1~3のアルキル基であり、かつT~Tのうち少なくとも2つは炭素数1~3のアルキル基であり、互いに環を形成していてもよい。Rは炭素数1~12の2価の炭化水素基である。]
 (X1)の具体例としては、3-メチル-2-ブテニル基、リナロールから水酸基を除いた残基、シトロネロールから水酸基を除いた残基、ゲラニオールから水酸基を除いた残基、レチノールから水酸基を除いた残基等が挙げられる。
 (X2)としては、炭素-炭素二重結合と芳香族環が共役しているものが好ましく、3-フェニル-2-プロペニル基、(E)-2-メチル-3-フェニル-2-プロペニル基、(4-エテニルフェニル)メチル基等が挙げられる。
 (X3)としては、[4-(1-プロペノキシメチル)シクロヘキシル]メチル基、[4-(1-ブテノキシメチル)シクロヘキシル]メチル基、4-(1-プロペノキシ)ブチル基、6-(1-プロペノキシ)ヘキシル基、6-(2-メチル-1-プロペノキシ)ヘキシル基、アクリロイロキシエチル基、メタアクリロイロキシエチル基等が挙げられる。
 化合物(C)は、ウレタン化触媒存在下、またはウレタン化触媒不存在下で、構造Aを有するイソシアネート化合物(G)と、重合性不飽和結合(b)を有する活性水素化合物(H)を反応させて合成することができる。
 イソシアネート化合物(G)としては、以下の(G1)~(G3)が挙げられる。
 炭素数2~42の1価の炭化水素基を有するモノイソシアネート化合物(G1):ブチルイソシアネート等、
 炭素数2~42の2価の炭化水素基を有するジイソシアネート化合物(G2):上記炭素数2~42のジイソシアネート(B)と同じ化合物、上記ジイソシアネート(B)と上記ジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマー、例えばヘキサメチレンジイソシアネートと1,6-ヘキサンジオールの反応物である両末端イソシアネート基を有するウレタンプレポリマー等、
 炭素数12~60のトリイソシアネート化合物(G3):エチレンジイソシアネートの3量体、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネートの3量体等が挙げられる。
 活性水素化合物(H)としては、X-OH、X-NH、X-SH等で表される活性水素化合物である。これらの中でイソシアネートとの反応性の観点からX-OHが好ましい。具体例としては、残基(X1)を有する活性水素化合物(H)としては、3-メチル-2-ブテン-1-オール、リナロール、シトロネロール、ゲラニオール、レチノール等が挙げられる。
 残基(X2)を有する活性水素化合物(H)としては、桂皮アルコール、(E)-2-メチル-3-フェニル-2-プロペン-1-オール、(4-エテニルフェニル)メタノール等が挙げられる。
 残基(X3)を有する活性水素化合物(H)としては、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン、1-ヒドロキシメチル-4-(1-ブテノキシメチル)シクロヘキサン、4-(1-プロペノキシ)ブタン-1-オール、6-(1-プロペノキシ)ヘキサン-1-オール、6-(2-メチル-1-プロペノキシ)ヘキサン-1-オール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等が挙げられる。
 化合物(C)中のウレタン結合(a)の濃度は、0.2~7.5mmol/gであることが好ましく、更に好ましくは2.0~5.0mmol/gである。(a)の濃度が0.2mmol/g以上であるとサイクル特性の観点で好ましく、7.5mmol/g以下であると電解液への溶解性の観点から好ましい。
 化合物(C)中の重合性不飽和結合(b)の濃度は、0.2~15.0mmol/gであることが好ましく、更に好ましくは2.0~8.0mmol/gである。(b)が0.2mmol/g以上であるとサイクル特性の観点から好ましく、15.0mmol/g以下であると電極の界面抵抗の観点から好ましい。
 化合物(C)の数平均分子量は、後述する分散溶媒への溶解性の観点から5000以下であることが好ましく、更に好ましくは3500以下である。(C)の数平均分子量はゲルパーミエーションクロマトグラフィー(以下GPCと記載する。)を用いて測定する。測定条件としては、例えば温度40℃、溶媒テトラヒドロフラン(THF)で行うことができる。分子量はまた質量分析計で測定、または構造式から計算することができる。
 電極保護膜形成剤(D)は化合物(C)以外の成分を含有していてもよいが、(C)以外の成分を含有しない方が好ましい。化合物(C)以外の成分としてはルイス塩基(I)、負極保護膜形成剤(J)等が挙げられる。ルイス塩基(I)としては、例えばトリアゾール誘導体(1,2,3-ベンゾトリアゾール、5-メチル-1,2,3-ベンゾトリアゾール、5,6-ジメチル-1,2,3-ベンゾトリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、3-アミノ-5-エチル-1,2,4-トリアゾール、3-アミノ-5-プロピル-1,2,4-トリアゾール及び3-アミノ-5-ブチル-1,2,4-トリアゾール等)が挙げられる。負極保護膜形成剤(J)としては、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイト及びα-ブロモ-γ-ブチロラクトン等が挙げられる。
 電極保護膜形成剤(D)における化合物(C)の含有量は、(D)の重量を基準として、10~100重量%であることが好ましく、更に好ましくは50~100重量%である。
<電極>
 本発明の電極は、充放電して使用する前は電極保護膜形成剤(D)、活物質(Q)を含有し、好ましくはさらに結着剤(K)を含有する。充放電を開始すると共に、(D)の一部は重合反応して(Q)の表面上に重合物の膜を形成する。この時点で本発明の電極は、未反応の電極保護膜形成剤(D)、表面上に(D)の重合物からなる電極保護膜が形成された活物質(Q)、好ましくはさらに結着剤(K)を含有する。さらに充放電が続くと(D)はすべて重合物の膜となると考えられる。
 リチウム二次電池用正極活物質(Q11)は、リチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)、及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリカルバゾール)等が挙げられる。
 リチウム二次電池用負極活物質(Q12)は黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール)、スズ、シリコン、及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等が挙げられる。
 リチウムイオンキャパシタ用正極活物質(Q21)は、炭素材料(おがくず活性炭、やしがら活性炭、ピッチ・コークス系活性炭、フェノール樹脂系活性炭、ポリアクリロニトリル系活性炭、セルロース系活性炭等)、炭素繊維、金属酸化物(酸化ルテニウム、酸化マンガン、酸化コバルト等)および導電性高分子材料(ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等)が挙げられる。
 リチウムイオンキャパシタ用負極活物質(Q22)はリチウム二次電池用負極活物質(Q12)にリチウムをドーピングすることにより得られる。
 電気二重層キャパシタ用正極活物質および負極活物質(Q3)はリチウムイオンキャパシタ用正極活物質(Q21)と同じ物質が使用される。
 結着剤(K)としてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン及びポリプロピレン等の高分子化合物が挙げられる。
 本発明の電極は更に導電助剤(L)を含有することができる。
 導電助剤(L)としては黒鉛(例えば天然黒鉛及び人工黒鉛)(活物質(Q)として黒鉛を用いる場合を除く)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック)及び金属粉末(例えばアルミニウム粉及びニッケル粉)、導電性金属酸化物(例えば酸化亜鉛及び酸化チタン)等が挙げられる。
 本発明の電極における、電極保護膜形成剤(D)、活物質(Q)及び結着剤(K)の合計重量に基づく電極保護膜形成剤(D)、活物質(Q)、結着剤(K)、及び導電助剤(L)のそれぞれの好ましい含有量は以下の通りである。
 電極保護膜形成剤(D)の含有量は、充放電サイクル特性の観点から、好ましくは0.05~5重量%であり、更に好ましくは0.1~2重量%である。
 活物質(Q)の含有量は、電池容量の観点から、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。
 結着剤(K)の含有量は、電池容量の観点から、好ましくは0.5~29重量%であり、更に好ましくは1~10重量%である。
 導電助剤(L)の含有量は、電池出力の観点から、好ましくは0~29重量%であり、更に好ましくは1~10重量%である。
 本発明の電極は、例えば電極保護膜形成剤(D)、活物質(Q)、結着剤(K)、および必要により導電助剤(L)を、水又は溶媒に20~60重量%の濃度で分散してスラリー化したものを、集電体にバーコーター等の塗工装置で塗布後、乾燥して溶媒を除去して、必要によりプレス機でプレスすることにより得られる。
 上記分散溶媒としては、ラクタム化合物、ケトン化合物、アミド化合物、アミン化合物、環状エーテル化合物等を用いることができる。
 例えば1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。
 集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
<電解液>
 本発明の電解液は、電極保護膜形成剤(D)、電解質(E)及び非水溶媒(F)を含有し、好ましくはリチウム二次電池用、リチウムイオンキャパシタ用、および電気二重層キャパシタ用の電解液として有用である。
 本発明の電解液は、充放電して使用する前は電極保護膜形成剤(D)、電解質(E)及び非水溶媒(F)を含有する。充放電を開始すると共に、(D)の一部は重合反応して電極を構成する活物質(Q)の表面上に重合物の膜を形成する。重合反応の進行と共に本発明の電解液中の(D)は減少する。
 リチウム二次電池用、リチウムイオンキャパシタ用の電解質(E)としては、通常リチウム二次電池用、リチウムイオンキャパシタ用の電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。
 電気二重層キャパシタ用の電解質(E)としては、通常の電気二重層キャパシタ用電解液に用いられているもの等が使用でき、例えば、テトラエチルアンモニウム=テトラフルオロボラート塩、トリエチルメチルアンモニウム=テトラフルオロボラート塩等のテトラアルキルアンモニウム塩、および1-エチル-3-メチルイミダゾリウム=テトラフルオロボラート塩等のアミジニウム塩が挙げられる。
 非水溶媒(F)としては、通常のリチウム二次電池用、リチウムイオンキャパシタ用および電気二重層キャパシタ用電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。
 非水溶媒(F)の内、電池出力及び充放電サイクル特性の観点から好ましいのは環状又は鎖状炭酸エステルである。
 環状炭酸エステルの具体例としては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルの具体例としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルn-プロピルカーボネート、エチルn-プロピルカーボネート及びジn-プロピルカーボネート等が挙げられる。
 本発明の電解液における電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)の合計重量に基づく電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)のそれぞれ好ましい含有量は以下の通りである。
 (D)の含有量は、充放電サイクル特性、電池容量及び高温貯蔵特性の観点から、好ましくは0.01~10重量%、更に好ましくは0.05~1重量%である。
 電解液中の電解質(E)の含有量は、電池出力及び充放電サイクル特性の観点から好ましくは0.1~30重量%であり、更に好ましくは0.5~20重量%である。
 非水溶媒(F)の含有量は、電池出力及び充放電サイクル特性の観点から好ましくは60~99重量%であり、更に好ましくは85~95重量%である。
 本発明の電解液は、更に過充電防止剤、脱水剤及び容量安定化剤等の添加剤を含有してもよい。以下の添加剤各成分の含有量は、電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)の合計重量に基づくものである。
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン及びt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、通常0~5重量%、好ましくは0.5~3重量%である。
 脱水剤としては、ゼオライト、シリカゲル及び酸化カルシウム等が挙げられる。脱水剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0.5~3重量%である。
 容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1-メチル-2-ピペリドン、ヘプタン及びフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0.5~3重量%である。
 本発明のリチウム二次電池は、正極、負極及びセパレータを収納した電池缶内に電解液を注入して電池缶を密封する際に、正極又は負極として本発明の電極を用いるか、電解液に本発明の電解液を用いるか、又はこれらの併用により得られる。
 リチウム二次電池におけるセパレータとしては、ポリエチレン又はポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維及びガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナ及びチタニア等のセラミック微粒子を付着させたものが挙げられる。
 リチウム二次電池における電池缶としては、ステンレススチール、鉄、アルミニウム及びニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型又はその他任意の形状にすることができる。
 本発明のリチウムイオンキャパシタは、本発明のリチウム二次電池の基本構成において、正極をリチウムイオンキャパシタ用の正極に代え、電池缶をキャパシタ缶に代えることにより得られる。キャパシタ缶の材質及び形状としては、電池缶で例示したものと同様のものが挙げられる。
 本発明の電気二重層キャパシタは、本発明のリチウムイオンキャパシタの基本構成において、負極を電気二重層キャパシタ用の電極に代えることにより得られる。
 本発明の電極保護膜の製造方法としては、正極又は負極として本発明の電極を用いるか、電解液に本発明の電解液を用いるか、またはこれらを併用したものに電圧を印加することで形成させる方法がある。
 以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。
電極保護膜形成剤(D)
化合物(C-15)の数平均分子量はGPCを用いて以下の条件で測定した。
 装置(一例) : 東ソー(株)製 HLC-8120
 カラム(一例): TSK GEL GMH6 2本 〔東ソー(株)製〕 
 測定温度   : 40℃
 試料溶液   : 0.25重量%のTHF溶液
 溶液注入量  : 100μl
 検出装置   : 屈折率検出器
 基準物質   : 東ソー(株)製 標準ポリスチレン(TSKstandard POLY  STYRENE)5点(Mw 500 1050 2800 5970 9100)
<製造例1>
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサンの合成;
 撹拌機、温度計及び冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部、塩化アリル[東京化成工業(株)製]5.76部、水酸化ナトリウム6.00部、及びトルエン100部を仕込み、撹拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド1.32部を加えた。2時間かけて65℃まで昇温し更に4時間撹拌して、エーテル化反応及び転位反応を行った。放冷後、水200部を加え水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(1.3kPa)下に除去後、ヘキサンを展開溶媒としたアルミナカラム[150mesh、Brockman1,standard grade、アルドリッチ(株)製]によって反応物を精製し、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン9.0部を得た(収率71%)。
<実施例1>
 電極保護膜形成剤用化合物(C-1)の合成
 撹拌機、温度計及び冷却管を取り付けたフラスコに、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部、ブチルイソシアネート7.3部、トルエン100部およびN,N,N’,N’-テトラメチルエチレンジアミン0.5部仕込み80℃で8時間加熱した。トルエンを減圧(1.3kPa)下に除去後、ヘキサンと酢酸エチルを展開溶媒としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ(株)製]によって反応物を精製し、下記式で示される化合物(C-1)8.8部を得た[収率42%、Mn:283(化学式からの計算値)]。(C-1)を電極保護膜形成剤(D-1)とした。
Figure JPOXMLDOC01-appb-C000004
<実施例2>
 電極保護膜形成剤用化合物(C-2)の合成
 ブチルイソシアネート7.3部の代わりに、ヘキサメチレンジイソシアネート6.5部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-2)7.7部を得た[収率37%、Mn:536(化学式からの計算値)]。(C-2)を電極保護膜形成剤(D-2)とした。
Figure JPOXMLDOC01-appb-C000005
<実施例3>
 電極保護膜形成剤用化合物(C-3)の合成
 ブチルイソシアネート7.3部の代わりに、ジシクロヘキシルメタン-4,4’-ジイソシアネート10.0部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-3)10.1部を得た[収率40%、Mn:630(化学式からの計算値)]。(C-3)を電極保護膜形成剤(D-3)とした。
Figure JPOXMLDOC01-appb-C000006
<実施例4>
 電極保護膜形成剤用化合物(C-4)の合成
 ブチルイソシアネート7.3部の代わりに、イソホロンジジイソシアネート8.6部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-4)10.1部を得た[収率44%、Mn:590(化学式からの計算値)]。(C-4)を電極保護膜形成剤(D-4)とした。
Figure JPOXMLDOC01-appb-C000007
<実施例5>
 電極保護膜形成剤用化合物(C-5)の合成
 ブチルイソシアネート7.3部の代わりに、ジフェニルメタンジイソシアネート9.7部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-5)8.7部を得た[収率35%、Mn:618(化学式からの計算値)]。(C-5)を電極保護膜形成剤(D-5)とした。
Figure JPOXMLDOC01-appb-C000008
<実施例6>
 電極保護膜形成剤用化合物(C-6)の合成
 ブチルイソシアネート7.3部の代わりに、トルエンジイソシアネート6.7部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-6)8.8部を得た[収率42%、Mn:542(化学式からの計算値)]。(C-6)を電極保護膜形成剤(D-6)とした。
Figure JPOXMLDOC01-appb-C000009
<実施例7>
 電極保護膜形成剤用化合物(C-7)の合成
 ブチルイソシアネート7.3部の代わりに、ヘキサメチレンジイソシアネート三量体13.3部を用いた以外は実施例1と同様にして行い、下記式で示される化合物(C-7)9.3部を得た[収率33%、Mn:1056(化学式からの計算値)]。(C-7)を電極保護膜形成剤(D-7)とした。
Figure JPOXMLDOC01-appb-C000010
<実施例8>
 電極保護膜形成剤用化合物(C-8)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、リナロール[和光純薬工業(株)製]12.5部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-8)9.7部を得た[収率45%、Mn:570(化学式からの計算値)]。(C-8)を電極保護膜形成剤(D-8)とした。
Figure JPOXMLDOC01-appb-C000011
<実施例9>
 電極保護膜形成剤用化合物(C-9)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、シトロネロール[和光純薬工業(株)製]12.5部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-9)10.1部を得た[収率47%、Mn:574(化学式からの計算値)]。(C-9)を電極保護膜形成剤(D-9)とした。
Figure JPOXMLDOC01-appb-C000012
<実施例10>
 電極保護膜形成剤用化合物(C-10)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、ゲラニオール[和光純薬工業(株)製]12.5部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-10)12.2部を得た[収率56%、Mn:570(化学式からの計算値)]。(C-10)を電極保護膜形成剤(D-10)とした。
Figure JPOXMLDOC01-appb-C000013
<実施例11>
 電極保護膜形成剤用化合物(C-11)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、2-ヒドロキシエチルアクリレート[和光純薬工業(株)製]9.3部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-11)9.5部を得た[収率50%、Mn:494(化学式からの計算値)]。(C-11)を電極保護膜形成剤(D-11)とした。
Figure JPOXMLDOC01-appb-C000014
<実施例12>
 電極保護膜形成剤用化合物(C-12)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、桂皮アルコール[和光純薬工業(株)製]10.8部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-12)8.5部を得た[収率42%、Mn:530(化学式からの計算値)]。(C-12)を電極保護膜形成剤(D-12)とした。
Figure JPOXMLDOC01-appb-C000015
<実施例13>
 電極保護膜形成剤用化合物(C-13)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、(E)-2-メチル-3-フェニル-2-プロペン-1-オール[東京化成工業(株)製]11.9部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-13)8.3部を得た[収率39%、Mn:558(化学式からの計算値)]。(C-13)を電極保護膜形成剤(D-13)とした。
Figure JPOXMLDOC01-appb-C000016
<実施例14>
 電極保護膜形成剤用化合物(C-14)の合成
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン15.0部の代わりに、(4-エテニルフェニル)メタノール[東京化成工業(株)製]10.8部を用いた以外は実施例3と同様にして行い、下記式で示される化合物(C-14)9.5部を得た[収率47%、Mn:530(化学式からの計算値)]。(C-14)を電極保護膜形成剤(D-14)とした。
Figure JPOXMLDOC01-appb-C000017
<実施例15>
 電極保護膜形成剤用化合物(C-15)の合成
 撹拌機、温度計及び冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]5.5部、ジシクロヘキシルメタン-4,4’-ジイソシアネート15.0部、トルエン100部およびN,N,N’,N’-テトラメチルエチレンジアミン0.5部仕込み、80℃で5時間加熱した。続いて、リナロール[和光純薬工業(株)製]5.9部仕込み、80℃で5時間加熱した。トルエンを減圧(1.3kPa)下に除去後、ヘキサンと酢酸エチルを展開溶媒としたシリカゲルカラム[和光純薬工業(株)製]によって反応物を精製し、下記式で示される化合物(C-15)18.5部を得た[収率35%、Mn:3,400(GPC測定結果)]。(C-15)を電極保護膜形成剤(D-15)とした。
Figure JPOXMLDOC01-appb-C000018
 実施例1~15の電極保護膜形成剤(D-1)~(D-15)について表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~14のMnは構造式からの計算値、実施例15のMnはGPCの測定値である。
<実施例16~32、比較例1~3>
 リチウム二次電池、電極の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用電極を下記の方法で作製し、該電極を使用して下記の方法でリチウム二次電池を作製した。
 以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
[リチウム二次電池用正極の作製] 
 LiCoO2粉末90.0部、ケチェンブラック[シグマアルドリッチ(株)製]5部、ポリフッ化ビニリデン[シグマアルドリッチ(株)製]5部及び表2に示した部数の(D)を乳鉢で充分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、実施例16~32のリチウム二次電池用正極を作製した。
[リチウム二次電池用負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表2に示した部数の(D)を乳鉢で充分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにして実施例16~32のリチウム二次電池用負極を作製した。
<比較例1>
 電極保護膜形成剤(D)を添加しないこと以外は実施例16と同様の方法で比較例1のリチウム二次電池用負極、及び正極を作製した。
<比較例2>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は、実施例16と同様の方法で、比較例2のリチウム二次電池用負極及び正極を作製した。
<比較例3>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は、実施例16と同様の方法で、比較例3のリチウム二次電池用負極及び正極を作製した。
[リチウム二次電池の作製]
 2032型コインセル内の両端に、実施例16~32、比較例1~3の正極及び負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)に、LiPFを12重量%の割合で溶解させた電解液を作製したセルに注液密封した。以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表2に示した。
<高電圧充放電サイクル特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.5Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きい程、充放電サイクル特性が良好であることを示す。
高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<高温保存特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電圧3.5Vまで放電し容量を測定した(初回電池容量)。更に0.1Cの電流で電圧4.5Vまで充電し、85℃で7日間保存後、0.1Cの電流で3.5Vまで放電を行い、電池容量を測定した(高温保存後電池容量)。下記式から高温保存特性を算出する。数値が大きいほど、高温保存特性が良好であることを示す。
 高温保存特性(%)=(高温保存後電池容量/初回電池容量)×100
<実施例33~47、比較例4~6>
 リチウム二次電池、電解液の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用電解液を使用したリチウム二次電池を下記の方法で作製した。
 電極の場合と同様に、上記の方法で高電圧充放電サイクル特性及び高温保存特性を評価し、結果を表2に示した。
 [電解液の調製]
 エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率1:1)87.5部に、表2に示した部数で電極保護膜形成剤(D)を配合し、そこに12重量%となるように電解質(E)としてのLiPFを溶解させ、実施例33~47の電解液を調製した。
<比較例4>
 電極保護膜形成剤(D)を添加しないこと以外は実施例33と同様の方法で比較例4の電解液を調製した。
<比較例5>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は実施例33と同様の方法で比較例5の電解液を調製した。
<比較例6>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は実施例33と同様の方法で比較例6の電解液を調製した。
[リチウム二次電池用正極の作製]
 LiCoO粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5部を乳鉢で充分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウム二次電池用正極を作製した。
[リチウム二次電池用負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン200部を乳鉢で充分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウム二次電池用黒鉛系負極を作製した。
[二次電池の作製]
 2032型コインセル内の両端に、上記正極及び負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。
 実施例33~47および比較例4~6の電解液を、作成した二次電池用セルに注液後密封し二次電池を作製した。
<実施例48~64、比較例7~9>
 リチウムイオンキャパシタ、電極の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用電極を下記の方法で作製し、該電極を使用して下記の方法でリチウムイオンキャパシタを作製した。
 以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
[リチウムイオンキャパシタ用正極の作製]
 活性炭粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5.0部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5.0部及び表3に示した部数の(D)を乳鉢で充分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウムイオンキャパシタ用正極を作製した。
[リチウムイオンキャパシタ用負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表3に示した部数の(D)を乳鉢で充分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。
<比較例7>
 電極保護膜形成剤(D)を添加しないこと以外は実施例48と同様の方法で比較例7のリチウムイオンキャパシタ用負極、及び正極を作製した。
<比較例8>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は実施例48と同様の方法で比較例8のリチウムイオンキャパシタ用負極及び正極を作製した。
<比較例9>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は実施例48と同様の方法で比較例9のリチウムイオンキャパシタ用負極及び正極を作製した。
[リチウムイオンキャパシタの作製]
 ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、実施例48~64、比較例7~9の正極及び負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。プロピレンカーボネート(PC)に、LiPFを12重量%の割合で溶解させた電解液を作製したセルに注液密封した。
<高電圧充放電サイクル特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電圧2.0Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きい程、充放電サイクル特性が良好であることを示す。
 高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<高温保存特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電圧2.0Vまで放電し容量を測定した(初回電池容量)。更に1Cの電流で電圧3.8Vまで充電し、85℃で7日間保存後、1Cの電流で電圧2.0Vまで放電を行い、電池容量を測定した(高温保存後電池容量)。下記式から高温保存特性を算出する。数値が大きいほど、高温保存特性が良好であることを示す。
 高温保存特性(%)=(高温保存後電池容量/初回電池容量)×100
<実施例65~79、比較例10~12>
 リチウムイオンキャパシタ、電解液の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用電解液を使用したリチウムイオンキャパシタを下記の方法で作製した。
 電極の場合と同様に、上記の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表3に示した。
 [電解液の調製]
 プロピレンカーボネート87.5部からなる非水溶媒(F)に、表3に示した部数で電極保護膜形成剤(D)を配合し、そこに12重量%となるように電解質(E)としてのLiPFを溶解させ、実施例65~79の電解液を調製した。
<比較例10>
 電極保護膜形成剤(D)を添加しないこと以外は実施例65と同様の方法で比較例10の電解液を調製した。
<比較例11>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は実施例65と同様の方法で比較例11の電解液を調製した。
<比較例12>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は実施例65と同様の方法で比較例12の電解液を調製した。
[正極の作製]
 正極活物質として、アルカリ賦活法によって得られた比表面積が約2200m/gである活性炭を用いた。活性炭粉末、アセチレンブラック及びポリフッ化ビニリデンを、それぞれ重量比80:10:10の割合となるように混合し、この混合物を、溶媒である1-メチル-2-ピロリドン中に添加し、撹拌混合してスラリーを得た。このスラリーを、厚さ30μmのアルミニウム箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは約50μmであった。セルの組み立て前には、真空中で120℃、10時間乾燥しリチウムイオンキャパシタ用の正極を作製した。
 [負極の作製]
 平均粒子径約8~12μmの黒鉛粉末80部、アセチレンブラック10部、及びポリフッ化ビニリデン10部を混合し、この混合物を溶媒である1-メチル-2-ピロリドンに添加して撹拌混合し、スラリーを得た。このスラリーを、厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは、約50μmであった。さらに真空中で120℃、5時間乾燥した。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。
[キャパシタセルの組み立て]
 上記正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに実施例65~79および比較例10~12の電解液を含浸させ、ポリプロピレンのアルミラミネートフィルムからなる収納ケースに入れて密封しリチウムイオンキャパシタセルを作製した。
<実施例80~96、比較例13~15>
 電気二重層キャパシタ、電極の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表4に示した配合部数で含有する電気二重層キャパシタ用正極及び負極を下記の方法で作製し、該電極を使用して下記の方法で電気二重層キャパシタを作製した。
 以下の方法で長期耐久性を評価した結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
[電気二重層キャパシタ用正極及び負極の作製]
 活性炭粉末85.0部及び表4に示した部数の(D)を乳鉢で充分に混合した後、アセトン70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを減圧下(1.3kPa)で乾燥した後、カーボンブラック7.5部およびポリテトラフルオロエチレン粉(PTFE)7.5部と混合した。得られた混合物を乳鉢にて5分程度練り、これをロールプレスで圧延して活性炭シートを得た。活性炭シートの厚さは、400μmとした。この活性炭シートを20mmΦのディスク状に打ち抜き、活性炭電極を作製した。
<比較例13>
 電極保護膜形成剤(D)を添加しないこと以外は実施例80と同様の方法で比較例13の電気二重層キャパシタ用正極及び負極を作製した。
<比較例14>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は実施例80と同様の方法で比較例14の電気二重層キャパシタ用正極を作製した。
<比較例15>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は実施例80と同様の方法で比較例15の電気二重層キャパシタ用正極を作製した。
[電気二重層キャパシタの作製]
 ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、実施例80~96、比較例13~15の電極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。プロピレンカーボネート(PC)に、1-エチル-3-メチルイミダゾリウムのテトラフルオロボレート塩(EDMI・BF)[東京化成工業(株)製]を12重量%の割合で溶解させた電解液を作製したセルに注液密封した。
<長期耐久性の評価>
 作成した電気二重層キャパシタに充放電試験装置(パワーシステム(株)製、「CDT-5R2-4」)を接続し、設定電圧3.0Vまで25mAにて定電流充電を行い、充電開始から7200秒後に25mAにて定電流放電を行う充放電サイクル試験を行った。温度設定60℃で250サイクル実施し、セルの初期及び250サイクル後の静電容量値と静電容量維持率(%)を測定した。静電容量の維持率(%)が高いほど耐久性に優れることとなるため、この値をもって長期耐久性の指標とした。
 静電容量の維持率(%)=(250サイクル後の静電容量/初期静電容量)×100
<実施例97~111、比較例16~18>
 電気二重層キャパシタ、電解液の評価
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表4に示した配合部数で含有する電気二重層キャパシタ用電解液を使用した電気二重層キャパシタを下記の方法で作製した。
 電極の場合と同様に、上記の方法で長期耐久性を評価した結果を表4に示した。
 [電解液の調製]
 プロピレンカーボネート87.5部からなる非水溶媒(F)に、表4に示した部数で電極保護膜形成剤(D)を配合し、そこに12重量%となるように電解質(E)としてのEDMI・BFを溶解させ、実施例97~111の電解液を調製した。
<比較例16>
 電極保護膜形成剤(D)を添加しないこと以外は実施例97と同様の方法で比較例16の電解液を調製した。
<比較例17>
 電極保護膜形成剤(D)の代わりに比較添加剤としてメチルフェニルスルフィド(D’-1)0.5部を添加すること以外は実施例97と同様の方法で比較例17の電解液を調製した。
<比較例18>
 電極保護膜形成剤(D)の代わりに比較添加剤としてジフェニルスルフィド(D’-2)0.5部を添加すること以外は実施例97と同様の方法で比較例18の電解液を調製した。
[電極の作製]
 活性炭粉末85.0部、カーボンブラック7.5部およびポリテトラフルオロエチレン粉(PTFE)7.5部と混合した。得られた混合物を乳鉢にて5分程度練り、これをロールプレスで圧延して活性炭シートを得た。活性炭シートの厚さは、400μmとした。この活性炭シートを20mmΦのディスク状に打ち抜き、活性炭電極を得た。
[キャパシタセルの組み立て]
 上記正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに実施例97~111および比較例16~18の電解液を含浸させ、ポリプロピレンのアルミラミネートフィルムからなる収納ケースに入れて密封し電気二重層キャパシタセルを作製した。
 本発明の電極保護膜形成剤を用いて作製したリチウム二次電池及びリチウムイオンキャパシタは、上記実施例、比較例の結果から充放電サイクル性能及び高温貯蔵特性に優れていることが判った。充放電サイクル性能及び高温貯蔵特性が向上する原因としては、電極の活物質の表面上に形成した重合膜が、高電圧下の電極表面での電解液の分解を抑制するためであると考える。
 本発明の電極保護膜形成剤を用いて作製した電気二重層キャパシタは、上記実施例、比較例の結果から容量維持率が高く、長期耐久性に優れていることが判った。容量維持率が向上する原因としては、電極の活物質の表面上に形成した重合膜が、電極表面での電解液の分解を抑制するためであると考える。
 本発明の電極保護膜形成剤(D)を使用した電極及び電解液は、リチウム二次電池、リチウムイオンキャパシタ、および電気二重層キャパシタ等の電気化学デバイス用に有用であり、特に電気自動車用リチウム二次電池およびリチウムイオンキャパシタ、風力発電用や車載用等の電気二重層キャパシタに好適である。また、本発明において開示した以外の電気化学デバイス(ニッケル水素電池、ニッケルカドミウム電池、空気電池、アルカリ電池等)についても適用可能である。

Claims (18)

  1.  ウレタン結合(a)および重合性不飽和結合(b)を有する化合物(C)を含有する電極保護膜形成剤(D)。
  2.  化合物(C)が下記一般式(1)で表される請求項1に記載の電極保護膜形成剤(D)。
    Figure JPOXMLDOC01-appb-C000019
     [式(1)中、Aは、(i)炭素数2~42のn価の炭化水素基、(ii)炭素数2~42のジイソシアネート(B)の3量体から3個のイソシアネート基を除いた3価の残基、または(iii)炭素数2~42のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基である。Xは重合性不飽和結合(b)を有する炭素数3~42の1価の有機基である。nは1~6の整数であり、nが2以上の場合、複数個あるXはそれぞれ同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000020
  3.  一般式(1)においてAが2価の基であって、炭素数6~12の芳香族炭化水素基、炭素数6~42の脂肪芳香族炭化水素基、炭素数5~13の脂環式炭化水素基、および炭素数2~8のポリメチレン基からなる群より選ばれる少なくとも1種の基である請求項2に記載の電極保護膜形成剤(D)。
  4.  一般式(1)において、Xが、炭素-炭素二重結合を1~4個含有し、芳香族環以外の環を有していてもよい炭素数3~42の1価の脂肪族炭化水素基(X1)、炭素-炭素二重結合を1~4個含有し、芳香族環を有する、炭素数8~42の1価の炭化水素基(X2)、または炭素-炭素二重結合を1~4個含有し、該炭素-炭素二重結合の少なくとも1つは下記化学式(2)で表される結合であるか、またはアクリロイロキシアルキル基、メタアクリロイロキシアルキル基である、炭素数3~42の1価の有機基(X3)である請求項2または3に記載の電極保護膜形成剤(D)。
    Figure JPOXMLDOC01-appb-C000021
  5.  一般式(1)において、Xが芳香族環を有し、炭化水素基(X1)において、炭素-炭素二重結合と芳香族環が共役している請求項4に記載の電極保護膜形成剤(D)。
  6.  請求項1~5のいずれか1項に記載の電極保護膜形成剤(D)を含有する電極。
  7.  電極保護膜形成剤(D)を重合することにより形成される保護膜を有する請求項6に記載の電極。
  8.  リチウム二次電池用である請求項6または7に記載の電極。
  9.  リチウムイオンキャパシタ用である請求項6または7に記載の電極。
  10.  電気二重層キャパシタ用である請求項6または7に記載の電極。
  11.  請求項1~5のいずれか1項に記載の電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有する電解液。
  12.  リチウム二次電池用である請求項11に記載の電解液。
  13.  リチウムイオンキャパシタ用である請求項11に記載の電解液。
  14.  電気二重層キャパシタ用である請求項11に記載の電解液。
  15.  請求項8に記載の電極および/または請求項12に記載の電解液を有するリチウム二次電池。
  16.  請求項9に記載の電極および/または請求項13に記載の電解液を有するリチウムイオンキャパシタ。
  17.  請求項10に記載の電極および/または請求項14に記載の電解液を有する電気二重層キャパシタ。
  18.  請求項1~5のいずれか1項に記載の電極保護膜形成剤(D)を電極および/または電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法。
     
     
     
PCT/JP2013/003929 2012-07-05 2013-06-24 電極保護膜形成剤 WO2014006845A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380031282.5A CN104364948A (zh) 2012-07-05 2013-06-24 电极保护膜形成剂
KR1020147037143A KR20150028787A (ko) 2012-07-05 2013-06-24 전극 보호막 형성제
US14/411,911 US20150155106A1 (en) 2012-07-05 2013-06-24 Agent for forming electrode protection film
JP2014523580A JP5827404B2 (ja) 2012-07-05 2013-06-24 電極保護膜形成剤

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012150976 2012-07-05
JP2012-150976 2012-07-05
JP2012154603 2012-07-10
JP2012-154603 2012-07-10
JP2012-252481 2012-11-16
JP2012252481 2012-11-16
JP2013-065590 2013-03-27
JP2013065590 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014006845A1 true WO2014006845A1 (ja) 2014-01-09

Family

ID=49881621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003929 WO2014006845A1 (ja) 2012-07-05 2013-06-24 電極保護膜形成剤

Country Status (6)

Country Link
US (1) US20150155106A1 (ja)
JP (1) JP5827404B2 (ja)
KR (1) KR20150028787A (ja)
CN (1) CN104364948A (ja)
TW (1) TWI518975B (ja)
WO (1) WO2014006845A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073378A1 (ja) * 2012-11-07 2014-05-15 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
WO2016053040A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
JP2017536652A (ja) * 2014-10-02 2017-12-07 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098264B (zh) * 2015-06-19 2017-08-08 宁德时代新能源科技股份有限公司 正极浆料及其正极片、锂离子电池
WO2017001312A1 (en) * 2015-07-01 2017-01-05 Basf Se Non-aqueous electrolytes for lithium-ion batteries comprising an isocyanide
CN105226236B (zh) * 2015-09-15 2018-03-09 宁德新能源科技有限公司 正极浆料以及包括该正极浆料的正极片、锂离子电池
CN109244543B (zh) * 2018-11-06 2021-08-13 南通新宙邦电子材料有限公司 一种锂离子电池电解液及锂离子电池
CN114068197A (zh) * 2020-08-06 2022-02-18 中国科学院上海硅酸盐研究所 一种改性电极及其制备方法和应用
CN111900335B (zh) * 2020-08-19 2021-08-27 珠海冠宇电池股份有限公司 一种具有自修复性质的硅基负极及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124562A (ja) * 1994-10-21 1996-05-17 Dainippon Printing Co Ltd 非水電解液2次電池用電極板の製造方法
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
JP2005044681A (ja) * 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The リチウム二次電池電極用バインダー組成物、リチウム二次電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212065B (zh) * 2006-12-30 2011-08-24 财团法人工业技术研究院 含马来酰亚胺添加剂的非水电解液及包含它的碱金属族二次电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124562A (ja) * 1994-10-21 1996-05-17 Dainippon Printing Co Ltd 非水電解液2次電池用電極板の製造方法
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
JP2005044681A (ja) * 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The リチウム二次電池電極用バインダー組成物、リチウム二次電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073378A1 (ja) * 2012-11-07 2014-05-15 三洋化成工業株式会社 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
WO2016053040A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
JP2017536652A (ja) * 2014-10-02 2017-12-07 エルジー・ケム・リミテッド リチウム二次電池用電解液添加剤、前記電解液添加剤を含む非水性電解液及びリチウム二次電池
US10381685B2 (en) 2014-10-02 2019-08-13 Lg Chem, Ltd. Liquid electrolyte additive for lithium secondary battery, non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP5827404B2 (ja) 2015-12-02
JPWO2014006845A1 (ja) 2016-06-02
TW201414067A (zh) 2014-04-01
TWI518975B (zh) 2016-01-21
US20150155106A1 (en) 2015-06-04
CN104364948A (zh) 2015-02-18
KR20150028787A (ko) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5827404B2 (ja) 電極保護膜形成剤
JP5394239B2 (ja) ゲル状ポリマー電解質及びこれを備えた電気化学デバイス
KR101546251B1 (ko) 전기화학 장치용 전해액 및 전기화학 장치
CN111162314B (zh) 一种基于动态化学键的自修复聚合物电解质及其在二次锂电池中的应用
JP6165162B2 (ja) 電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法
KR20190032390A (ko) 축전 디바이스용 양극 및 축전 디바이스
WO2015111612A1 (ja) 二次電池用添加剤、それを用いた電極及び電解液、リチウムイオン電池並びにリチウムイオンキャパシタ
KR20040065152A (ko) 비수 전해액 및 리튬 이차 전지
JP2002025615A (ja) リチウム二次電池
JP2015225689A (ja) 電池用添加剤
JP2016139567A (ja) 二次電池用添加剤、それを用いた電極及び電解液
JP2005322610A (ja) リチウム二次電池
JP2015064998A (ja) 非水電解液二次電池および非水電解液二次電池用添加剤
US20090155696A1 (en) Organic electrolytic solution and lithium battery employing the same
JP2014137843A (ja) 電極保護膜形成剤
KR101179397B1 (ko) 비수 전해액 및 이를 포함하는 전기화학소자
JP6284772B2 (ja) 電極保護膜形成剤
WO2012111335A1 (ja) 電極保護膜形成剤
JP2014175192A (ja) 二次電池用添加剤
JP6326255B2 (ja) 電池用添加剤
CN108615937B (zh) 聚合物电解质、固态电解质膜及锂离子电池
JP2022552872A (ja) 組成物
CA3167843A1 (en) In-situ polymerized hybrid polymer electrolyte for high voltage lithium batteries
JPWO2015163254A1 (ja) 電池用添加剤、電極、電解液及び電気化学デバイス
JP2003007303A (ja) 非水電解質電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523580

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411911

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147037143

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813694

Country of ref document: EP

Kind code of ref document: A1