CN115425101A - 一种双结单光子雪崩二极管、探测器及制作方法 - Google Patents

一种双结单光子雪崩二极管、探测器及制作方法 Download PDF

Info

Publication number
CN115425101A
CN115425101A CN202211136469.9A CN202211136469A CN115425101A CN 115425101 A CN115425101 A CN 115425101A CN 202211136469 A CN202211136469 A CN 202211136469A CN 115425101 A CN115425101 A CN 115425101A
Authority
CN
China
Prior art keywords
well
region
voltage
buried layer
avalanche
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211136469.9A
Other languages
English (en)
Other versions
CN115425101B (zh
Inventor
刘丹璐
徐跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202211136469.9A priority Critical patent/CN115425101B/zh
Publication of CN115425101A publication Critical patent/CN115425101A/zh
Application granted granted Critical
Publication of CN115425101B publication Critical patent/CN115425101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种双结单光子雪崩二极管,该二极管的特点是在器件中形成双雪崩区,利用重掺杂n型埋层和高压p阱形成的PN结作为深雪崩区,高压p阱和n阱形成浅雪崩区。该双结二极管结构能够提高对近红外光子的探测效率,提高器件整体的光子探测效率,实现单光子的宽光谱响应,为实现低成本、高探测效率的激光测距、三维成像等提供可行的方案。本发明还公开一种双结单光子雪崩二极管探测器及制作方法。

Description

一种双结单光子雪崩二极管、探测器及制作方法
技术领域
本发明涉及一种双结单光子雪崩二极管、探测器及制作方法,属于光电探测技术领域。
背景技术
单光子雪崩二极管(Single Photon Avalanche Diode, SPAD)拥有雪崩增益大、响应速度快、探测效率高、体积小、质量轻、功耗低等优点,近年来成为制作单光子探测器的最优选。SPAD能够通过雪崩倍增放大光生信号,将微弱的光信号转化为可探测的电信号,实现对微弱光的有效探测。因此,SPAD被广泛应用于微弱光信号检测、激光测距和三维成像等领域。
现有的SPAD设计大多依赖于单一的浅结雪崩区进行单光子探测,使得器件的光谱响应在蓝光和绿光范围达到峰值,而长波光子在衬底深处被吸收,其产生的电子-空穴对难被探测,导致SPAD器件对近红外光子的探测效率很低。在SPAD的许多应用中,需要考虑发射激光光源对人眼的伤害,通常使用近红外短波激光作为发射激光光源。相比于蓝绿光,近红外光不仅对人眼伤害更小,且几乎不受外界的环境光影响,因而近红外单光子雪崩二极管成为高性能、高可靠性的探测器件的最佳选择之一,然而传统硅基SPAD器件对近红外光子的响应度很低,无法满足应用需求。因此,如何提高SPAD器件对近红外短波光子的高效率探测,从而实现宽光谱响应已成为硅基单光子探测器的主要发展方向之一。为了提高SPAD器件对近红外光子的探测效率,关键在于增加器件的结深,提高SPAD器件对近红外波段光子的探测效率。同时,也要提高对可见光的探测效率,实现宽光谱的单光子响应,满足不同应用领域的要求。
发明内容
本发明的目的在于针对传统单光子雪崩二极管对近红外光子探测效率低的缺点,提出了一种双结单光子雪崩二极管、探测器及制作方法,能够在不影响对可见光的响应效率的同时,提高对近红外光子的探测效率。
一种双结单光子雪崩二极管,包括深雪崩区和浅雪崩区,所述深雪崩区包括p型衬底,所述p型衬底内设有p型埋层,所述p型埋层上方设有重掺杂n型埋层,所述重掺杂n型埋层上方设有高压p阱和轻掺杂p阱,所述轻掺杂p阱表面注入P+区,作为二极管的阳极,所述高压p阱外围设有高压n阱,所述高压n阱的表面注入重掺杂N+区,作为二极管的阴极;所述N+区和P+区之间设有浅沟槽隔离,所述高压p阱和重掺杂n型埋层的交界处形成深雪崩区;
所述浅雪崩区包括在所述轻掺杂p阱中设有n阱,所述n阱的表面设有N+区,作为二极管的阴极,所述高压n阱表面注入N+区,与n阱的表面设有N+区形成的阴极接同一电位,所述轻掺杂p阱表面注入P+区,作为二极管的阳极,在n阱和高压p阱的交界处形成浅雪崩区。
进一步地,所述p型衬底的上方还设有p型外延层。
进一步地,所述高压p阱和表面的P+区作为p型衬底的衬底电极。
进一步地,所述p型衬底采用硅、锗硅、砷化镓、氮化镓、碳化硅和铟镓砷中的任意一种半导体材料。
进一步地,所述二极管形状为八边形、圆形和切角正方形中任意一种结构。
一种双结单光子雪崩二极管的探测器,包括上述任一所述的二极管。
进一步地,所述探测器包括:深雪崩区和浅雪崩区,所述深雪崩区包括p型衬底,所述p型衬底内设有p型埋层,所述p型埋层上方设有重掺杂n型埋层,所述重掺杂n型埋层上方设有高压p阱和轻掺杂p阱,所述轻掺杂p阱表面注入P+区,作为二极管的阳极,所述高压p阱外围设有高压n阱,所述高压n阱的表面注入重掺杂N+区,作为二极管的阴极;所述N+区和P+区之间设有浅沟槽隔离,所述高压p阱和重掺杂n型埋层的交界处形成深雪崩区;
所述浅雪崩区包括在所述轻掺杂p阱中设有n阱,所述n阱的表面设有N+区,作为二极管的阴极,所述高压n阱表面注入N+区,与n阱的表面设有N+区形成的阴极接同一电位,所述轻掺杂p阱表面注入P+区,作为二极管的阳极,在n阱和高压p阱的交界处形成浅雪崩区。
一种双结单光子雪崩二极管的制备方法,所述方法包括:
在p型衬底中注入形成一个p型埋层;
在p型埋层的上方注入形成一个重掺杂n型埋层;
在p型衬底的上方形成一定厚度的p型外延层;
进行一定时间的退火,重掺杂n型埋层部分会扩散进入p型外延层;
在重掺杂n型埋层上方中心形成一个高压p阱;
在p型埋层与重掺杂n型埋层的外围留出预定宽度的p型外延层,并在两边形成高压p阱;
在中间的高压p阱上方形成环形的轻掺杂p阱;
在重掺杂n型埋层上方形成环形的高压n阱;
在高压p阱上的环形轻掺杂p阱内形成n阱;
在高压n阱和n阱的表面形成重掺杂的N+区,用作阴极接触;
在p阱表面形成重掺杂的P+区,用作阳极接触;
在高压p阱表面形成重掺杂的P+区,用作衬底电极。
与现有技术相比,本发明所达到的有益效果:
(1)成本低且可集成:雪崩二极管的制备工艺与CMOS工艺兼容,既可以避免单独定制的昂贵成本,又可以与雪崩二极管探测器的后端电路制作在同一块芯片上;
(2)双雪崩区结构:该器件有两个雪崩区,分别为重掺杂n型埋层和高压p阱形成的深雪崩区和高压p阱和n阱形成的浅雪崩区,深雪崩区能够大幅提高SPAD探测器对近红外光子的探测效率,双雪崩区共同工作能够提高器件整体的光子探测效率;
(3)探测精度高:该器件在p型衬底中的p型埋层和重掺杂n型埋层形成了屏蔽二极管,能够阻止衬底慢光生载流子扩散对SPAD探测器响应速度的影响,提高器件探测精度。
附图说明
图1是本发明提出的新型结构单光子雪崩二极管的横截面示意图;
图2是本发明提出结构的单光子雪崩二极管的八边形俯视图;
图3是本发明提出结构的单光子雪崩二极管的圆形俯视图;
图4是本发明提出结构的单光子雪崩二极管的切角正方形俯视图;
图5是图1结构进行二维器件仿真得到的电场分布图;
图6是图1结构进行二维器件仿真得到的电流-电压特性曲线;
图中:1-N+区;2-n阱;3-高压n阱;4-重掺杂n型埋层;5-P+区;6-轻掺杂p阱;7-高压p阱;8-p型埋层;9-p型外延层;10-p型衬底;11-浅沟槽隔离。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明提出了一种双结单光子雪崩二极管,该二极管有两个有源区,其中距离表面较远的PN结为深雪崩区,包括N+区1、高压n阱3、重掺杂n型埋层4、P+区5、轻掺杂p阱6、高压p阱7和浅沟槽隔离11。首先在p型衬底10中形成一个p型埋层8,然后在p型埋层8的上方形成一个重掺杂n型埋层4,再在其上形成高压p阱7和轻掺杂p阱6,P+区5被注入在轻掺杂p阱6表面,作为器件的阳极。在高压p阱7周围形成高压n阱3,重掺杂N+区1被注入在高压n阱3的表面,作为器件的阴极,N+区1和P+区5之间设有浅沟槽隔离11。深雪崩区在高压p阱7和重掺杂n型埋层4的交界处形成。
距离表面较近的PN结为浅雪崩区,包括N+区1、n阱2、P+区5、轻掺杂p阱6、高压p阱7和浅沟槽隔离11。在环型轻掺杂p阱6中形成n阱2及其表面的N+区1,作为器件的阴极,与高压n阱3和表面N+注入1形成的阴极接同一电位,浅雪崩区与深雪崩区共用轻掺杂p阱6和P+区5形成的阳极,浅雪崩区在n阱2和高压p阱7的交界处形成。另外,在器件有源区外围的p型衬底10上形成高压p阱7和表面P+区5,作为衬底电极。
本实施例中的衬底材料不仅限于硅半导体,还可以利用锗硅、砷化镓、氮化镓、碳化硅和铟镓砷等多种半导体材料作为衬底。
本实施例中的二极管可以设计成八边形图2、圆形图3和切角正方形图4的结构,以此来减弱器件边角电场的集中程度,减少边缘过早击穿的现象,使器件的耐压性能更好。
图2、图3和图4沿AA’方向的剖面图如图1所示,该结构衬底厚度约为4 µm,p型外延层的厚度约为5 µm,整体厚度约9 µm,深雪崩区中心的深度在距离表面约3.3 µm处,浅雪崩区中心的深度在距离表面1.1 µm处,都比传统SPAD器件的PN结雪崩区要深,提高了器件对近红外光子的探测效率,且两个雪崩区的探测效果叠加,整个光谱的光子探测效率都得到提高。
本发明还提供一种探测器,所述探测器包括:深雪崩区和浅雪崩区,所述深雪崩区包括p型衬底10,所述p型衬底10内设有p型埋层8,所述p型埋层8上方设有重掺杂n型埋层4,所述重掺杂n型埋层4上方设有高压p阱7和轻掺杂p阱6,所述轻掺杂p阱6表面注入P+区5,作为二极管的阳极,所述高压p阱7外围设有高压n阱3,所述高压n阱3的表面注入重掺杂N+区1,作为二极管的阴极;所述N+区1和P+区5之间设有浅沟槽隔离11,所述高压p阱7和重掺杂n型埋层4的交界处形成深雪崩区;
所述浅雪崩区包括在所述轻掺杂p阱6设有n阱2,所述n阱2的表面设有N+区1,作为二极管的阴极,所述高压n阱3表面注入N+区1,与n阱2的表面设有N+区1形成的阴极接同一电位,所述轻掺杂p阱6表面注入P+区5,作为二极管的阳极,在n阱2和高压p阱7的交界处形成浅雪崩区。
本发明在上述二极管的基础上,公开了一种双结单光子雪崩二极管的制备方法,所述方法包括:
在p型衬底10中注入形成一个p型埋层8;
在p型埋层8的上方注入形成一个重掺杂n型埋层4;
在p型衬底10的上方形成一定厚度的p型外延层9;
进行一定时间的退火,重掺杂n型埋层4部分会扩散进入p型外延层9;
在重掺杂n型埋层4上方中心形成一个高压p阱7;
在p型埋层8与重掺杂n型埋层4的外围留出预定宽度的p型外延层9,并在两边形成高压p阱7;
在中间的高压p阱7上方形成环形的轻掺杂p阱6;
在重掺杂n型埋层4上方形成环形的高压n阱3;
在高压p阱7上的环形轻掺杂p阱6内形成n阱2;
在高压n阱3和n阱2的表面形成重掺杂的N+区1,用作阴极接触;
在p阱6表面形成重掺杂的P+区5,用作阳极接触;
在高压p阱7表面形成重掺杂的P+区5,用作衬底电极。
当二极管工作在盖革模式下时,一旦检测到光子后,会在中性区产生一对电子-空穴对,电子或空穴在电场作用下进入耗尽区,并在耗尽区强电场的作用下加速,与晶格原子发生碰撞并产生大量的电子-空穴对,单个光生载流子即可触发自我维持的雪崩效应,迅速在阴极和阳极之间产生肉眼可见的宏观电流,能够实现单光子探测。在本发明所提出的结构中,利用重掺杂n型埋层4和高压p阱7形成深PN结作为主雪崩区,高压p阱7和靠近表面的n阱2再形成一个浅PN结,在提高器件对近红外光子探测效率的同时,保证了器件对可见光波段光子的响应度,故本发明提出的多结结构能够整体提升器件的探测效率。在p型衬底10和重掺杂n型埋层4之间设有浓度很高的p型埋层8,不但能够减小SPAD器件的串联电阻,增强深雪崩区的电场,提高器件的雪崩触发几率。同时,在高压n阱3和高压p阱7之间的p型外延层9宽度约为1.5 µm,在阴极和阳极之间都加上了浅沟槽隔离11,p型外延层9和浅沟槽隔离11共同作为保护环,有效地抑制边缘电场,防止边缘被提前击穿。另外,在器件有源区外围设有高压p阱7和P+区5构成的衬底电极,能够进行衬底隔离,可以避免相邻SPAD之间的串扰问题;p型埋层8和重掺杂n型埋层4形成了屏蔽二极管,能够阻止衬底慢光生载流子扩散对SPAD探测器响应速度的影响,提高器件探测精度。
本发明的一个实施例:
根据图1所示的器件结构,使用Silvaco TCAD仿真工具对器件结构进行了二维工艺仿真,并对所得器件进行电学特性仿真。得到图5所示的器件I-V特性曲线和图6所示的器件电场分布图。由图5可知该SPAD器件的雪崩击穿电压为17.8 V。图6为该SPAD器件在Vbias=26 V时的电场分布,由于该器件的主要雪崩倍增区为高压p阱7和重掺杂n型埋层4之间形成的深雪崩区,位置较深。图6中也可以看出强电场都分布在深雪崩区附近,有效提高了该器件对近红外光波段的光谱响应度,且由于p型外延层9和浅沟槽隔离11共同作用保护环的存在,有效防止器件有源区边缘提前击穿现象发生,该保护环起到良好的保护作用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

1.一种双结单光子雪崩二极管,其特征在于,包括深雪崩区和浅雪崩区,所述深雪崩区包括p型衬底(10),所述p型衬底(10)内设有p型埋层(8),所述p型埋层(8)上方设有重掺杂n型埋层(4),所述重掺杂n型埋层(4)上方设有高压p阱(7)和轻掺杂p阱(6),所述轻掺杂p阱(6)表面注入P+区(5),作为二极管的阳极,所述高压p阱(7)外围设有高压n阱(3),所述高压n阱(3)的表面注入重掺杂N+区(1),作为二极管的阴极;所述N+区(1)和P+区(5)之间设有浅沟槽隔离(11),所述高压p阱(7)和重掺杂n型埋层(4)的交界处形成深雪崩区;
所述浅雪崩区包括在所述轻掺杂p阱(6)中设有n阱(2),所述n阱(2)的表面设有N+区(1),作为二极管的阴极,所述高压n阱(3)表面注入N+区(1),与n阱(2)的表面设有N+区(1)形成的阴极接同一电位,所述轻掺杂p阱(6)表面注入P+区(5),作为二极管的阳极,在n阱(2)和高压p阱(7)的交界处形成浅雪崩区。
2.根据权利要求1所述的双结单光子雪崩二极管,其特征在于,所述p型衬底(10)的上方还设有p型外延层(9)。
3.根据权利要求1所述的双结单光子雪崩二极管,其特征在于,所述高压p阱(7)和表面的P+区(5)作为p型衬底(10)的衬底电极。
4.根据权利要求1所述的双结单光子雪崩二极管,其特征在于,所述p型衬底(10)采用硅、锗硅、砷化镓、氮化镓、碳化硅和铟镓砷中的任意一种半导体材料。
5.根据权利要求1所述的双结单光子雪崩二极管,其特征在于,所述二极管形状为八边形、圆形和切角正方形中任意一种结构。
6.一种双结单光子雪崩二极管的探测器,其特征在于,包括权利要求1-5任一所述的二极管。
7.根据权利要求6所述的双结单光子雪崩二极管的探测器,其特征在于,所述探测器包括:深雪崩区和浅雪崩区,所述深雪崩区包括p型衬底(10),所述p型衬底(10)内设有p型埋层(8),所述p型埋层(8)上方设有重掺杂n型埋层(4),所述重掺杂n型埋层(4)上方设有高压p阱(7)和轻掺杂p阱(6),所述轻掺杂p阱(6)表面注入P+区(5),作为二极管的阳极,所述高压p阱(7)外围设有高压n阱(3),所述高压n阱(3)的表面注入重掺杂N+区(1),作为二极管的阴极;所述N+区(1)和P+区(5)之间设有浅沟槽隔离(11),所述高压p阱(7)和重掺杂n型埋层(4)的交界处形成深雪崩区;
所述浅雪崩区包括在所述轻掺杂p阱(6)中设有n阱(2),所述n阱(2)的表面设有N+区(1),作为二极管的阴极,所述高压n阱(3)表面注入N+区(1),与n阱(2)的表面设有N+区(1)形成的阴极接同一电位,所述轻掺杂p阱(6)表面注入P+区(5),作为二极管的阳极,在n阱(2)和高压p阱(7)的交界处形成浅雪崩区。
8.一种双结单光子雪崩二极管的制备方法,其特征在于,所述方法包括:
在p型衬底(10)中注入形成一个p型埋层(8);
在p型埋层(8)的上方注入形成一个重掺杂n型埋层(4);
在p型衬底(10)的上方形成一定厚度的p型外延层(9);
进行一定时间的退火,重掺杂n型埋层(4)部分会扩散进入p型外延层(9);
在重掺杂n型埋层(4)上方中心形成一个高压p阱(7);
在p型埋层(8)与重掺杂n型埋层(4)的外围留出预定宽度的p型外延层(9),并在两边形成高压p阱(7);
在中间的高压p阱(7)上方形成环形的轻掺杂p阱(6);
在重掺杂n型埋层(4)上方形成环形的高压n阱(3);
在高压p阱(7)上的环形轻掺杂p阱(6)内形成n阱(2);
在高压n阱(3)和n阱(2)的表面形成重掺杂的N+区(1),用作阴极接触;
在p阱(6)表面形成重掺杂的P+区(5),用作阳极接触;
在高压p阱(7)表面形成重掺杂的P+区(5),用作衬底电极。
CN202211136469.9A 2022-09-19 2022-09-19 一种双结单光子雪崩二极管、探测器及制作方法 Active CN115425101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211136469.9A CN115425101B (zh) 2022-09-19 2022-09-19 一种双结单光子雪崩二极管、探测器及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211136469.9A CN115425101B (zh) 2022-09-19 2022-09-19 一种双结单光子雪崩二极管、探测器及制作方法

Publications (2)

Publication Number Publication Date
CN115425101A true CN115425101A (zh) 2022-12-02
CN115425101B CN115425101B (zh) 2024-04-16

Family

ID=84203782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211136469.9A Active CN115425101B (zh) 2022-09-19 2022-09-19 一种双结单光子雪崩二极管、探测器及制作方法

Country Status (1)

Country Link
CN (1) CN115425101B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115548157A (zh) * 2022-12-05 2022-12-30 西安电子科技大学 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN116031324A (zh) * 2023-03-29 2023-04-28 季华实验室 一种单光子雪崩二极管及制作方法
CN117059694A (zh) * 2023-10-11 2023-11-14 深圳阜时科技有限公司 单光子雪崩二极管、制备方法、光电检测装置和电子设备
CN117316961A (zh) * 2023-11-24 2023-12-29 季华实验室 雪崩二极管装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019295A1 (en) * 2008-07-10 2010-01-28 Stmicroelectronics (Research & Development) Limited Single photon avalanche diodes
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
CN113314638A (zh) * 2021-05-21 2021-08-27 武汉光迹融微科技有限公司 近红外单光子雪崩二极管探测器及制作方法
CN114975657A (zh) * 2022-04-27 2022-08-30 南京邮电大学 Spad器件结构、spad探测器及spad器件结构制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019295A1 (en) * 2008-07-10 2010-01-28 Stmicroelectronics (Research & Development) Limited Single photon avalanche diodes
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
CN113314638A (zh) * 2021-05-21 2021-08-27 武汉光迹融微科技有限公司 近红外单光子雪崩二极管探测器及制作方法
CN114975657A (zh) * 2022-04-27 2022-08-30 南京邮电大学 Spad器件结构、spad探测器及spad器件结构制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115548157A (zh) * 2022-12-05 2022-12-30 西安电子科技大学 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN115548157B (zh) * 2022-12-05 2023-03-07 西安电子科技大学 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN116031324A (zh) * 2023-03-29 2023-04-28 季华实验室 一种单光子雪崩二极管及制作方法
CN117059694A (zh) * 2023-10-11 2023-11-14 深圳阜时科技有限公司 单光子雪崩二极管、制备方法、光电检测装置和电子设备
CN117059694B (zh) * 2023-10-11 2024-02-13 深圳阜时科技有限公司 单光子雪崩二极管、制备方法、光电检测装置和电子设备
CN117316961A (zh) * 2023-11-24 2023-12-29 季华实验室 雪崩二极管装置
CN117316961B (zh) * 2023-11-24 2024-03-12 季华实验室 雪崩二极管装置

Also Published As

Publication number Publication date
CN115425101B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
CN113314638B (zh) 近红外单光子雪崩二极管探测器及制作方法
CN115425101B (zh) 一种双结单光子雪崩二极管、探测器及制作方法
CN107958944B (zh) 雪崩二极管及其制造方法
CN104810377B (zh) 一种高集成度的单光子雪崩二极管探测器阵列单元
CN110416335A (zh) 硅基近红外单光子雪崩二极管探测器及其制作方法
EP3206234B1 (en) Semiconductor element with a single photon avalanche diode and method for manufacturing such semiconductor element
JP2015041746A (ja) シングルフォトンアバランシェダイオード
CN114914325B (zh) 一种多结的近红外单光子雪崩二极管及制备方法
JP2017005276A (ja) シングルフォトンアバランシェダイオード
CN108511467B (zh) 一种近红外宽光谱的cmos单光子雪崩二极管探测器及其制作方法
CN114975657B (zh) Spad器件结构、spad探测器及spad器件结构制备方法
CN109891605B (zh) 雪崩光电二极管
CN109300992B (zh) 一种高探测效率的单光子雪崩二极管及其制作方法
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
CN113299786B (zh) 半导体器件及其制造方法
CN203218303U (zh) 光电探测器和辐射探测器
CN103904152B (zh) 光电探测器及其制造方法和辐射探测器
CN108538865B (zh) 一种硅基三光电探测器
CN113380912A (zh) 一种高性能单光子像素spad结构
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
CN115548157B (zh) 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
CN116207179A (zh) 一种垂直型单光子雪崩二极管器件及其制备方法
CN114843353A (zh) 光栅-结型复合雪崩单光子检测器及其制作方法
CN206574724U (zh) 一种紫外雪崩光电二极管探测器
CN114242826A (zh) 单光子雪崩二极管及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant