CN113380912A - 一种高性能单光子像素spad结构 - Google Patents

一种高性能单光子像素spad结构 Download PDF

Info

Publication number
CN113380912A
CN113380912A CN202110644303.7A CN202110644303A CN113380912A CN 113380912 A CN113380912 A CN 113380912A CN 202110644303 A CN202110644303 A CN 202110644303A CN 113380912 A CN113380912 A CN 113380912A
Authority
CN
China
Prior art keywords
deep
junctions
doping
silicon surface
depletion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110644303.7A
Other languages
English (en)
Inventor
武大猷
江建明
张睿轶
李高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Silicon Printing Technology Co ltd
Original Assignee
Shanghai Silicon Printing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Silicon Printing Technology Co ltd filed Critical Shanghai Silicon Printing Technology Co ltd
Priority to CN202110644303.7A priority Critical patent/CN113380912A/zh
Publication of CN113380912A publication Critical patent/CN113380912A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种高性能单光子像素spad结构,涉及集成电路技术领域。本发明包括硅表面、阴极、阳极,阴极上加高压,阳极上接地;在硅表面进行多次掺杂不同性质的杂质,将N型杂质和P型杂质的离子注入能量,形成多个PN结背靠背,最后通过并联的方式,将多个反偏的PN结并联;采用多次掺杂,使信号从深处能够有效引出,并且使任意两PN结均为并联,从而在纵向上有效增加空间耗尽区深度;阴极和深N阱注入与P型杂质之间使用外延层低浓度掺杂做隔离;阳极和深P阱注入与N型杂质之间使用外延层低浓度掺杂做隔离。本发明有效的扩展了耗尽区的深度,提高了探测效率,减少光电子的扩散时间,从而降低时间抖动,可有效降低SPAD雪崩电压。

Description

一种高性能单光子像素spad结构
技术领域
本发明属于集成电路技术领域,特别是涉及一种高性能单光子像素spad结构。
背景技术
SPAD物理结构是一个反向的PN结,工作状态下,其在阴极N和阳极P两端加很高的反向偏压,让二极管工作在盖革模式。当光子在其耗尽区被吸收时,由于高的电场强度发生载流子倍增效应,使PN结反向电阻瞬间降低,产生很高的反向电流。而常用的SPAD结构中,反向偏压在15V以上,这导致SPAD不容易兼容标准CMOS电路,同时高的电压需要强的隔离手段,这导致单个像素尺寸巨大,不能提高探测的空间分辨率,严重限制了其在手机等微小型设备中的应用。
发明内容
本发明提供了一种高性能单光子像素spad结构,解决了以上问题。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明的一种高性能单光子像素spad结构,包括硅表面、阴极、阳极,所述阴极上加高压,所述阳极上接地;
在所述硅表面进行多次掺杂不同性质的杂质,并调制为:将N型杂质和P型杂质的离子注入能量,形成多个PN结背靠背,最后通过并联的方式,将多个反偏的PN结并联;
任意两相互接触的PN结形成空间耗尽区,同时在垂直方向上,所述P型杂质采用深P阱注入引出并接入至接地电压上,所述N型杂质采用深N阱注入引出并接于高压上;所述深P阱注入和深N阱注入采用多次掺杂,使信号从深处能够有效引出,并且使任意两PN结均为并联,从而在纵向上有效增加空间耗尽区深度;
所述阴极和深N阱注入与P型杂质之间使用外延层低浓度掺杂做隔离;所述阳极和深P阱注入与N型杂质之间使用外延层低浓度掺杂做隔离。
进一步地,所述N型杂质采用的种类为磷或者砷;所述P型杂质采用的种类为硼或者铟。
进一步地,所述硅表面下部通过改变离子注入能量,在硅表面下部形成N-P-N-P-N形式的掺杂组分重复的结构。
本发明相对于现有技术包括有以下有益效果:
1、当添加反偏压时,只要其中任何一个PN结发生雪崩,便可产生一个有效事件;多个并联的耗尽区在不增加击穿电压情况下,有效的扩展了耗尽区的深度,提高了探测效率。
2、由于在深处增加耗尽区,因此在P-Rich和N-Rich中产生的光电荷可以迅速扩散进入相邻耗尽区,减少光电子的扩散时间,从而降低时间抖动。
3.由于采用多次调制,每个PN结不需要做的很宽,可有效降低SPAD雪崩电压。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种高性能单光子像素spad结构具体实施例1的结构截面示意图;
图2为本发明一种高性能单光子像素spad结构具体实施例2的结构截面示意图;
图3为现有传统的PSAD像素图形结构截面示意图;
图4为现有传统的PSAD像素图形结构顶视图;
附图中,各标号所代表的部件列表如下:
N+-阴极,P+-阳极,BV-高压,GND-接地,DNW-深N阱注入,DPW-深P阱注入,EPI-外延层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
工业中常用的SPAD结构如图3-4所示,在硅表面下注入比较浅的N型替位式杂质,在其更深处掺入P型替位式杂质,在两种掺杂界面的附近形成了空间耗尽区。其在纵向尺寸Xd:
Figure BDA0003108487530000041
其中,q为单位电荷量,Na为N型杂质的浓度,Nd为P型杂质的浓度,ε0为真空介电常数,εr为硅的相对介电常数,Vbias为加载PN结两端电压,Vdep为耗尽区内部空间电场的电压降。
工作模式下,在N+加高压BV,一般高于15V,在GND接到地。当光子在耗尽区被收集而导致耗尽区雪崩击穿,瞬间产生很大电流,产生电流脉冲。此区域吸收时才代表一次有效的单光子事件,同时耗尽区比较薄,导致像素对光子探测效率很低,这严重制约着SPAD的感光性能。通常为了提高探测效率,降低富掺杂P型区域P-Rich区的N型杂质掺杂浓度,从而增加耗尽区宽度,但这又需要高的击穿电压使PN结维持在盖革模式,这种结构导致探测效率和工作电压产生了不可调和的矛盾。同时在P型外延层P-epi中吸收的光子后扩散到到耗尽区,然后迅速发生雪崩击穿,由于扩散时间的增加导致测量时产生时间抖动或事件延迟,严重影响传感器探测的时间精度;
如图1-2所示,针对传统SPAD像素结构,探测效率和雪崩电压相矛盾问题,本发明提出一种高性能单光子像素spad结构,其结构包括硅表面、阴极N+、阳极P+,阴极N+上加高压BV,阳极P+上接地GND;
在硅表面进行多次掺杂不同性质的杂质,并调制为:将N型杂质和P型杂质的离子注入能量,形成多个PN结背靠背,最后通过并联的方式,将多个反偏的PN结并联;
任意两相互接触的PN结形成空间耗尽区,同时在垂直方向上,P型杂质采用深P阱注入DPW引出并接入至接地GND电压上,N型杂质采用深N阱注入DNW引出并接于高压BV上;深P阱注入DPW和深N阱注入DNW采用多次掺杂,使信号从深处能够有效引出,并且使任意两PN结均为并联,从而在纵向上有效增加空间耗尽区深度;同时多重掺杂,使有效耗尽区厚度增加,在体硅中产生的光电子可以向上或向下经过短距离扩散,很快进入耗尽区,有效降低时间抖动。同时为了尽可能让发生击穿的位置发生在耗尽区,阴极N+和深N阱注入DNW与P型杂质注入层P-rich之间用EPI低浓度掺杂做隔离,阳极P+和深P阱注入DPW与N型杂质注入层N-rich之间用EPI低浓度掺杂做隔离;
阴极N+和深N阱注入DNW与P型杂质之间使用外延层EPI低浓度掺杂做隔离;阳极P+和深P阱注入DPW与N型杂质之间使用外延层EPI低浓度掺杂做隔离。
其中,N型杂质采用的种类为磷或者砷;P型杂质采用的种类为硼或者铟。
其中,硅表面下部通过改变离子注入能量,在硅表面下部形成N-P-N-P-N形式的掺杂组分重复的结构。
具体实施例1:
如图1所示,在实际工艺中,硅表面直接和二氧化硅接触,这导致表面硅原子的共价键失配,从而产生了大量的暗电流,导致SPAD在没有光照条件下,也容易发生击穿,即暗计数率很高,本实例采用表面P型掺杂结构;本该结构形成了P-N-P-N型的空间掺杂结构,由于硅表面被P型掺杂填充,硅断了的悬挂键被P型杂质捕获,从而降低了暗电流。
具体实施例2:
如图2所示,上述应用中采用P-EPI做隔离,低浓度掺杂PN结构隔离使得耗尽区宽度比较宽,不利于缩小SPAD的尺寸,本例采用N型杂质和P型杂质掺杂做隔离。其中N型杂质的掺杂浓度要低于N-rich,而P型杂质的掺杂要低于P-rich,N型杂质和P型杂质的浓度都高于P型外延层p-epid的浓度;同时硅表面通过挖槽做STI隔离;其中,本具体实施例中,N型采用磷,P型采用硼注入,第一层N型杂质注入层N-rich1,第二层N型杂质注入层N-rich2以及第三层N型杂质注入层N-rich3的能量分别为:40KeV1700KeV和3000KeV;P-rich1 P-rich2能量分别为:300KeV和800KeV。
具体实施例1与具体实施例2的区别在于:
具体实施例1和具体实施例2采用不同的隔离方式,耗尽区都是两对三个;结果就是耗尽区宽度具体实施例2比具体实施例1多两倍,具体实施例1相对于现有技术的宽度也增加了;产生的效果就是提高探测效率,因为具体实施例2的纵向的耗尽区宽度增加了;所以能吸收光的空间区域增加了,即提高探测效率;降低时间抖动,不在耗尽区的都是扩散而来在耗尽区可以瞬间击穿,所以这种的时间抖动更小。
有益效果:
采用本发明的结构具有以下优势:
1、当添加反偏压时,只要其中任何一个PN结发生雪崩,便可产生一个有效事件;多个并联的耗尽区在不增加击穿电压情况下,有效的扩展了耗尽区的深度,提高了探测效率。
2、由于在深处增加耗尽区,因此在P-Rich和N-Rich中产生的光电荷可以迅速扩散进入相邻耗尽区,减少光电子的扩散时间,从而降低时间抖动。
3.由于采用多次调制,每个PN结不需要做的很宽,可有效降低SPAD雪崩电压。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (3)

1.一种高性能单光子像素spad结构,包括硅表面、阴极(N+)、阳极(P+),所述阴极(N+)上加高压(BV),所述阳极(P+)上接地(GND),其特征在于:
在所述硅表面进行多次掺杂不同性质的杂质,并调制为:将N型杂质和P型杂质的离子注入能量,形成多个PN结背靠背,最后通过并联的方式,将多个反偏的PN结并联;
任意两相互接触的PN结形成空间耗尽区,同时在垂直方向上,所述P型杂质采用深P阱注入(DPW)引出并接入至接地(GND)电压上,所述N型杂质采用深N阱注入(DNW)引出并接于高压(BV)上;所述深P阱注入(DPW)和深N阱注入(DNW)采用多次掺杂,使信号从深处能够有效引出,并且使任意两PN结均为并联,从而在纵向上有效增加空间耗尽区深度;
所述阴极(N+)和深N阱注入(DNW)与P型杂质之间使用外延层(EPI)低浓度掺杂做隔离;所述阳极(P+)和深P阱注入(DPW)与N型杂质之间使用外延层(EPI)低浓度掺杂做隔离。
2.根据权利要求1所述的一种高性能单光子像素spad结构,其特征在于,所述N型杂质采用的种类为磷或者砷;所述P型杂质采用的种类为硼或者铟。
3.根据权利要求1所述的一种高性能单光子像素spad结构,其特征在于,所述硅表面下部通过改变离子注入能量,在硅表面下部形成N-P-N-P-N形式的掺杂组分重复的结构。
CN202110644303.7A 2021-06-09 2021-06-09 一种高性能单光子像素spad结构 Withdrawn CN113380912A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110644303.7A CN113380912A (zh) 2021-06-09 2021-06-09 一种高性能单光子像素spad结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110644303.7A CN113380912A (zh) 2021-06-09 2021-06-09 一种高性能单光子像素spad结构

Publications (1)

Publication Number Publication Date
CN113380912A true CN113380912A (zh) 2021-09-10

Family

ID=77573360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110644303.7A Withdrawn CN113380912A (zh) 2021-06-09 2021-06-09 一种高性能单光子像素spad结构

Country Status (1)

Country Link
CN (1) CN113380912A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690337A (zh) * 2021-09-13 2021-11-23 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其制作方法、单光子雪崩二极管阵列
CN114068755A (zh) * 2021-12-29 2022-02-18 上海集成电路研发中心有限公司 雪崩光电二极管及其制作方法
CN114914325A (zh) * 2022-07-18 2022-08-16 西安电子科技大学 一种多结的近红外单光子雪崩二极管及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690337A (zh) * 2021-09-13 2021-11-23 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其制作方法、单光子雪崩二极管阵列
CN113690337B (zh) * 2021-09-13 2023-12-08 武汉新芯集成电路制造有限公司 单光子雪崩二极管及其制作方法、单光子雪崩二极管阵列
CN114068755A (zh) * 2021-12-29 2022-02-18 上海集成电路研发中心有限公司 雪崩光电二极管及其制作方法
CN114914325A (zh) * 2022-07-18 2022-08-16 西安电子科技大学 一种多结的近红外单光子雪崩二极管及制备方法

Similar Documents

Publication Publication Date Title
US11329185B2 (en) Avalanche diode along with vertical PN junction and method for manufacturing the same field
CN113380912A (zh) 一种高性能单光子像素spad结构
US9780247B2 (en) SPAD-type photodiode
WO2012032353A3 (en) Single photon avalanche diode for cmos circuits
CN113314638B (zh) 近红外单光子雪崩二极管探测器及制作方法
CN115425101B (zh) 一种双结单光子雪崩二极管、探测器及制作方法
CN114093962B (zh) 单光子雪崩二极管和光电探测器阵列
CN109713075B (zh) 雪崩二极管和制造雪崩二极管的方法
US10748951B2 (en) Near ultraviolet photocell
CN105206609A (zh) 用于cmos集成电路的紧凑保护环结构
CN111628034A (zh) 光电探测装置的制造方法
CN116207179A (zh) 一种垂直型单光子雪崩二极管器件及其制备方法
CN206574714U (zh) 隔离结构和包含该隔离结构的图像传感器
CN111540805A (zh) 半导体装置和光电探测系统
KR101707896B1 (ko) 실리콘 광 증배 소자
CN220774373U (zh) 半导体器件
CN211980628U (zh) 半导体装置和光电探测系统
CN102903782A (zh) 光电探测器及其制作方法
US20240014341A1 (en) Single photon avalanche diode
KR100275123B1 (ko) 이미지센서의 핀드 포토다이오드 및 그 제조방법
KR100298201B1 (ko) 이미지센서의 저전압 포토다이오드 형성방법
US20180374983A1 (en) Method of manufacturing a spad cell
CN115799363A (zh) 一种高光子探测效率的spad像素结构
US8368166B2 (en) Junction barrier Schottky diode
CN117150769A (zh) 基于面阵spad的高探测效率自聚焦像元设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210910