CN114975657B - Spad器件结构、spad探测器及spad器件结构制备方法 - Google Patents

Spad器件结构、spad探测器及spad器件结构制备方法 Download PDF

Info

Publication number
CN114975657B
CN114975657B CN202210449273.9A CN202210449273A CN114975657B CN 114975657 B CN114975657 B CN 114975657B CN 202210449273 A CN202210449273 A CN 202210449273A CN 114975657 B CN114975657 B CN 114975657B
Authority
CN
China
Prior art keywords
well
voltage
buried layer
deep
spad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210449273.9A
Other languages
English (en)
Other versions
CN114975657A (zh
Inventor
董杰
徐跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210449273.9A priority Critical patent/CN114975657B/zh
Publication of CN114975657A publication Critical patent/CN114975657A/zh
Application granted granted Critical
Publication of CN114975657B publication Critical patent/CN114975657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种SPAD器件结构、SPAD探测器及SPAD器件结构制备方法,主要利用P阱与深N阱、高压P阱与N+埋层之间形成两个的雪崩倍增区来提高器件对不同波段光子的响应效率,其中高压P阱与N+埋层之间的雪崩倍增区可以更好地响应较长波段的光子,P阱与深N阱之间的雪崩倍增区可以响应较短波段的光子,提高了器件的光子探测效率,而且在器件之间可以共用埋层与阴极,极大地减小阵列的面积,提高阵列的填充因子。为宽光谱响应、高密度集成的SPAD阵列设计提供了新思路。

Description

SPAD器件结构、SPAD探测器及SPAD器件结构制备方法
技术领域
本发明涉及一种SPAD器件结构、SPAD探测器及SPAD器件结构制备方法,属于光电探测技术领域。
背景技术
处于盖革模式下的单光子雪崩二极管(Single Photon Avalanche Diode,SPAD)具有响应速度快、雪崩增益大、体积小、重量轻、功耗低等特点,因此它成为了制作单光子探测器的最佳选择。SPAD探测器能够响应单光子量级的微弱光,采集大量携带被探测物体信息的光子,能够对目标物体进行高质量成像,因此它在天文探测、生物波导、放射探测、高能物理、天文测光、光时域反射和量子密钥分配系统等领域都有着广泛地应用,并逐渐成为国内外研究的热点。
然而传统的SPAD器件只有一个雪崩倍增区,仅对特定波段的光子具有较高的响应效率,很难实现宽光谱的高效率响应。例如,传统P+/N阱结构只有一个浅的雪崩倍增区,只对蓝绿光具有较高的响应效率,而对近红外波段光子的探测效率较低,光子探测应用往往需要探测器对能够响应较长波段的近红外光,因此增加SPAD器件的光谱响应范围,提高对近红外波段光子的探测效率成为研究SPAD器件的主要方向。另一方面,传统结构的SPAD器件为了避免边缘提前被击穿,阴极与阳极之间需要保持一定的距离,而且为了防止串扰的发生,器件之间也需要加入起隔离作用的保护环,这些因素使器件的面积进一步增大,导致器件的填充因子不高,影响了阵列的集成度,而且SPAD器件通常以阵列形式应用于探测器中,这种器件大规模的阵列集成会消耗很大的面积,成为设计便携,小型化探测器的阻碍,因此,减小SPAD阵列的面积消耗也成为需要突破的重要问题。针对以上问题,本发明提出了一种具有多个雪崩倍增区且利于减小阵列面积的SPAD结构,能够满足宽光谱响应和高阵列集成度的需求。
发明内容
本发明的目的在于克服现有技术中单光子雪崩二极管探测器探测波长范围窄、阵列集成度不高的不足,提供一种SPAD器件结构、SPAD探测器及SPAD器件结构制备方法,主要利用集成电路工艺中的P阱与深N阱、高压P阱与N+埋层形成多个雪崩倍增区,而且N+埋层的引入使器件之间的阴极共享成为可能,可以在不影响阵列规模的前提下极大地提高阵列的填充因子,为宽光谱响应、高密度集成的SPAD阵列设计提供了新思路。
为解决现有技术问题,本发明公开了一种SPAD器件结构,包括:P型衬底、外延层、N-埋层、N+埋层、深N阱、P阱、高压P阱、高压N阱、N+区、P+区和浅沟槽隔离区;所述P型衬底顶部设有凹槽,所述N-埋层设于凹槽内,所述N-埋层上方设有N+埋层;所述N+埋层上方设有高压P阱,所述高压P阱的外围设有深N阱,所述深N阱的外围设有高压N阱,所述高压P阱与深N阱之间、所述深N阱与高压N阱之间以及所述高压N阱的外围分别设有外延层;所述高压P阱、深N阱以及高压N阱的底部与N+埋层相接触,阱深度可到达外延层底部;所述高压P阱的顶部设有用作阳极的P+区,所述P+区两侧被P阱环绕,所述P阱的下部位于深N阱的上方,并环绕所述高压P阱,所述高压N阱的顶部设有用作阴极的N+区,所述N+区与P阱之间以及所述N+区的外围分别设有浅沟槽隔离区。
进一步地,所述N-埋层的厚度较大,N+埋层的厚度较小。
进一步地,所述P型衬底采用硅、锗硅、砷化镓、氮化镓或铟砷化镓中的任意一种半导体材料。
进一步地,所述SPAD器件形状不仅限于正方形切角,还可以制造成圆形,八边形等多种形状。
相应地,一种SPAD探测器,包括若干个上述的SPAD器件结构,若干个SPAD器件结构呈阵列分布。
进一步地,所述SPAD器件结构的数量为4个,4个SPAD器件结构呈2×2阵列分布。
进一步地,所述的阵列结构中N-埋层与N+埋层位于整个P型衬底内,N-埋层的厚度大于N+埋层的厚度,N+埋层位于N-埋层的上方,N+埋层的上方中心处设有一个高压N阱,中心处的高压N阱的外围依次设有深N阱、高压P阱、深N阱和高压N阱;所述高压P阱与深N阱之间、所述深N阱与高压N阱之间以及所述高压N阱的外围分别设有外延层;所述高压P阱的顶部设有用作阳极的P+区,所述P阱的上部环绕所述P+区,所述P阱的下部位于深N阱的上方,并环绕所述高压P阱,所述高压N阱的顶部设有用作阴极的N+区,所述N+区与P阱之间以及所述N+区的外围分别设有浅沟槽隔离区。
相应地,一种SPAD器件结构的制备方法:
在P型衬底中注入N-埋层;
在N-埋层的上方注入N+埋层;
在N+埋层的上方设置高压P阱;高压P阱的外围设置深N阱;深N阱的外围设置高压N阱;
高压P阱与深N阱之间、深N阱与高压N阱之间以及高压N阱的外围分别设有外延层;
在深N阱上方设置P阱,P阱内侧边与高压P阱接触,外侧边与高压N阱保持一定距离,防止边缘提前被击穿;
在高压N阱的上方设置N+区,用作阴极接触;
在N+区外围设置浅槽沟道隔离区。
在高压P阱的上方设置P+区,用作阳极接触,P+区边缘用P阱包裹。
本发明具有的有益效果:
1、光子响应范围宽:该结构结合了高压P阱(3)与重掺杂N+埋层(7)之间、深N阱(4)与P阱(2)之间的两个雪崩倍增区,其深度不同。两个不同深度的雪崩倍增区提高了器件对不同波段范围光子的响应效率,增大了器件的光谱响应范围。
2、近红外波段光子响应效率高:该器件在P型衬底(9)中设有一个浓度不高且宽度较宽的N-埋层(8)和一个较薄的重掺杂N+埋层(7),N+埋层(7)与其上方的高压P阱(3)形成一个位于外延层底部的雪崩倍增区,位置较深,增大了SPAD器件对近红外光子的探测效率,并且在重掺杂N+埋层的下方形成一个较宽的低浓度N-埋层,增大了耗尽区宽度,提高了对近红外波段光子的吸收效率。
3、暗计数低:器件中N+埋层与高压P阱、深N阱与P阱之间的两个雪崩倍增区离器件表面较远,减小了表面缺陷对雪崩倍增的影响,进一步降低了器件的暗计数。
4、便于阵列集成,提高阵列集成度:本发明中N-埋层(8)与N+埋层(7)位于P型衬底(9)中,在其上面形成多个器件,高压N阱(6)与N+区(5)构成器件的阴极,两个器件之间可以共同利用一个阴极,进而使大规模阵列集成的面积消耗减少,提高阵列的填充因子与集成度。
5、制造成本低:所设计SPAD器件的制备工艺与CMOS工艺兼容,避免了单独制定的昂贵成本。
附图说明
图1是本发明提出的单光子雪崩二极管截面示意图;
图2是本发明提出的单光子1-雪崩二极管俯视示意图;
图3是本发明提出的2×2阵列俯视示意图;
图4是本发明提出的2×2阵列的横截面示意图;
图5是图4结构进行二维器件仿真得到的电场分布图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-P+区;2-P阱;3-高压P阱;4-深N阱;5-N+区;6-高压N阱;7- N+埋层;8- N-埋层;9-P型衬底;10-外延层;11-浅槽沟道隔离区。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,本发明的一种SPAD器件结构,包括P型衬底9、外延层10、N-埋层8、N+埋层7、深N阱4、P阱2、高压P阱3、高压N阱6、N+区5、P+区1和浅沟槽隔离区11。所述的N-埋层8与N+埋层7位于P型衬底9内, N+埋层7厚度较薄,位于N-埋层8的上方。P型衬底9的上方为外延层10,所述的深N阱4、P阱2、高压P阱3、高压N阱6位于外延层10中,深N阱4、高压P阱3、高压N阱6位于N+埋层7的上方,高压P阱3位于器件的中间,深N阱4在高压P阱3的周围,高压N阱6在深N阱4的外围,高压P阱3与深N阱4之间、深N阱4与高压N阱6之间分别用一定宽度的外延层10隔离。P阱2位于深N阱4的上方,环绕在高压P阱3的外侧。高压P阱3的顶部为P+区1,作为SPAD器件的阳极,其周围被P阱2包裹,高压N阱6的顶部为N+区5,作为SPAD器件的阴极,在P阱与N+区之间设有浅沟槽隔离区11。P阱2与深N阱4之间形成一个处于外延层10中间的雪崩倍增区,高压P阱3与N+埋层7之间形成了一个处于外延层10底部的雪崩倍增区。所提出的器件结构能够将阴极与埋层进行共享,形成具有高集成度的阵列结构。
P型衬底9材料不仅限于硅(Si)半导体,还可以利用锗硅(GeSi)、砷化镓(GaAs)、氮化镓(GaN)和铟砷化镓(InGaAs)等多种半导体材料作为衬底。
本发明的SPAD器件结构形状不仅限于正方形切角,还可以制造成圆形、八边形等多种形状,能够有效减小边角电场的集中程度,提高器件的耐压能力。
在本发明所提出的SPAD器件结构中,P型衬底9中N-埋层8的厚度较宽,约为2 µm,N+埋层7的厚度较窄,约为0.5 µm,在外延层10中,为了防止高压P阱3与深N阱4之间的提前击穿,二者之间间隔的外延层10宽度约为1µm,为了防止P阱2与高压N阱6之间的击穿,中间的间隔的外延层10的宽度约为1.5 µm。
图2为本发明所提出单个器件结构的俯视图,图3为本发明所提出的阵列集成应用方案俯视图。该阵列不仅限于2×2阵列,还可以用同样的方式拓展至更大规模的阵列,将器件的埋层与阴极共享,极大地提高阵列的填充因子,使芯片的利用率更高。
沿图3的 AA´或BB´的截面图为阵列集成方案的剖面图,如图4所示。该结构中N-埋层8与N+埋层7位于P型衬底9内,N+埋层7在N-埋层8的上面,在P型衬底9上的外延层10中设有两个高压P阱3、深N阱4和高压N阱6,深N阱4的上方设有P阱2,环绕在高压P阱3的外侧。高压P阱3的顶部为P+区1,其周围被P阱2包裹,高压N阱6的顶部为N+区5,在P阱2与N+区5之间设有浅沟槽隔离区11。这些阱制作在同一埋层上,与N-埋层8和N+埋层7共同构成两个SPAD器件。每个器件的P+区1位于高压P阱3的顶部,构成SPAD器件的阳极,位于高压N阱6顶部的N+区5构成SPAD器件的阴极。两个器件之间将N+区5与高压N阱6连接在一起形成共用的阴极,衬底中的埋层与高压N阱6相接使其回路完整,N+区5作为SPAD器件公共的阴极,接同一个电位,减小了阵列的面积消耗,提高了大规模阵列的填充因子。在N+区5的两边设有浅沟槽隔离区11进行隔离。每个P阱2与深N阱4之间形成处于外延层10中间的雪崩倍增区,每个高压P阱3与N+埋层7之间形成了处于外延层10底部的雪崩倍增区,不同深度雪崩区的存在拓宽了器件的光谱响应范围。
制作本发明提出的SPAD器件结构的工艺步骤为:
1、在P型衬底9中先注入一个较宽的低浓度N-埋层8。
2、在N-埋层8的上方注入一个窄的重掺杂N+埋层7。
3、在P型衬底9的上方形成一定厚度的外延层10。
4、进行一定时间的退火,会有部分重掺杂N+埋层7的部分扩散进外延层10中。
5、在表面阴极接触的N+区5两侧形成浅槽沟道隔离区11。
6、在重掺杂N+埋层7的上方形成高压P阱3、深N阱4和高压N阱6。
7、在深N阱4上方形成P阱2,P阱2比深N阱4略宽,内侧边与高压P阱3接触,外侧边与高压N阱6保持一定距离,防止边缘提前被击穿。
8、在高压N阱6的表面形成重掺杂N+区5,用作阴极接触。
9、在高压P阱3的表面形成重掺杂P+区1,该P+区1边缘被P阱2所包裹,用作阳极接触。
在本发明所提出的结构中,器件的两个雪崩倍增区分别在重掺杂N+埋层与高压P阱交界处和P阱与深N阱交界处形成。当SPAD器件工作在盖革模式下时,一旦检测到光子后,器件内部产生电子空穴对,电子或空穴进入雪崩倍增区,并在雪崩倍增区强电场的作用下加速获得能量,与晶格发生碰撞,产生大量的载流子,从而在阴极和阳极之间检测到瞬间变大的电流,这一过程形成连锁反应,只需要一个光子便会快速引起大电流的产生,准确检测到光子的到来。该结构分别在重掺杂N+埋层7与高压P阱3的交界处和P阱2与深N阱4之间的交界处形成两个雪崩倍增区,深度不同,不仅有利于吸收近红外波段的光子,而且对更宽范围波长的光子都具有较高的响应效率。多个SPAD器件能够共享埋层与阴极进行阵列集成,极大地减小所消耗的面积,提高阵列的填充因子。
本发明的一个实施例:
根据图4所示的结构,使用Silvaco TCAD仿真工具对器件结构进行二维工艺仿真,并对所得器件进行电学特性仿真。得到图5所示的I-V特性曲线。由图5可知,该SPAD器件的雪崩击穿电压约为24.9 V。显示了所提出结构的可行性,该器件在P阱2与深N阱4交界处、高压P阱3与重掺杂N+埋层7交界处形成雪崩倍增区,雪崩倍增区深度较深,不仅有利于吸收近红外波段的光子,而且因其两个雪崩倍增区位置不同,对宽波段范围的光子都具有较高的响应效率。将两个SPAD器件将埋层与阴极进行共享,能够极大地减小所消耗的面积,提高阵列的填充因子与阵列集成度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。同时在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。且在本发明的附图中,填充图案只是为了区别图层,不做其他任何限定。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种SPAD器件结构,其特征在于,包括:P型衬底(9)、外延层(10)、N-埋层(8)、N+埋层(7)、深N阱(4)、P阱(2)、高压P阱(3)、高压N阱(6)、N+区(5)、P+区(1)和浅沟槽隔离区(11);所述P型衬底(9)顶部设有凹槽,所述N-埋层(8)设于凹槽内,所述N-埋层(8)上方设有N+埋层(7);所述N+埋层(7)上方设有高压P阱(3),所述高压P阱(3)的外围设有深N阱(4),所述深N阱(4)的外围设有高压N阱(6),所述高压P阱(3)与深N阱(4)之间、所述深N阱(4)与高压N阱(6)之间以及所述高压N阱(6)的外围分别设有外延层(10);所述高压P阱(3)、深N阱(4)以及高压N阱(6)的底部与N+埋层(7)相接触,阱深度可到达外延层底部;所述高压P阱(3)的顶部设有用作阳极的P+区(1),所述P阱(2)的上部环绕所述P+区(1),所述P阱(2)的下部位于深N阱(4)的上方,并环绕所述高压P阱(3),所述高压N阱(6)的顶部设有用作阴极的N+区(5),所述N+区(5)与P阱(2)之间以及所述N+区(5)的外围分别设有浅沟槽隔离区(11)。
2.根据权利要求1所述的一种SPAD器件结构,其特征在于,所述N-埋层(8)的厚度大于N+埋层(7)的厚度。
3.根据权利要求1所述的一种SPAD器件结构,其特征在于,所述P型衬底(9)采用硅、锗硅、砷化镓、氮化镓或铟砷化镓中的任意一种半导体材料。
4.一种SPAD探测器,其特征在于,包括若干个如权利要求1-3任一所述的SPAD器件结构,若干个SPAD器件结构呈阵列分布。
5.根据权利要求4所述的一种SPAD探测器,其特征在于,所述SPAD器件结构的数量为4个,4个SPAD器件结构呈2×2阵列分布。
6.根据权利要求5所述的一种SPAD探测器,其特征在于,
所述的阵列结构中N-埋层(8)与N+埋层(7)位于整个P型衬底(9)内,N-埋层(8)的厚度大于N+埋层(7)的厚度,N+埋层(7)位于N-埋层(8)的上方,N+埋层(7)的上方中心处设有一个高压N阱(6),中心处的高压N阱(6)的外围依次设有深N阱(4)、高压P阱(3)、深N阱(4)和高压N阱(6);所述高压P阱(3)与深N阱(4)之间、所述深N阱(4)与高压N阱(6)之间以及所述高压N阱(6)的外围分别设有外延层(10);所述高压P阱(3)的顶部设有用作阳极的P+区(1),所述P阱(2)的上部环绕所述P+区(1),所述P阱(2)的下部位于深N阱(4)的上方,并环绕所述高压P阱(3),所述高压N阱(6)的顶部设有用作阴极的N+区(5),所述N+区(5)与P阱(2)之间以及所述N+区(5)的外围分别设有浅沟槽隔离区(11)。
7.一种SPAD器件结构的制备方法,其特征在于:
在P型衬底(9)中注入N-埋层(8);
在N-埋层(8)的上方注入N+埋层(7);
在N+埋层(7)的上方设置高压P阱(3);高压P阱(3)的外围设置深N阱(4);深N阱(4)的外围设置高压N阱(6);
高压P阱(3)与深N阱(4)之间、深N阱(4)与高压N阱(6)之间以及高压N阱(6)的外围分别设有外延层(10);
在深N阱(4)上方设置P阱(2),P阱(2)内侧边与高压P阱(3)接触,外侧边与高压N阱(6)保持一定距离,防止边缘提前被击穿;
在高压N阱(6)的上方设置N+区(5),用作阴极接触;
在N+区(5)外围设置浅槽沟道隔离区(11);
在高压P阱(3)的上方设置P+区(1),用作阳极接触,P+区(1)边缘用P阱(2)包裹。
CN202210449273.9A 2022-04-27 2022-04-27 Spad器件结构、spad探测器及spad器件结构制备方法 Active CN114975657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210449273.9A CN114975657B (zh) 2022-04-27 2022-04-27 Spad器件结构、spad探测器及spad器件结构制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210449273.9A CN114975657B (zh) 2022-04-27 2022-04-27 Spad器件结构、spad探测器及spad器件结构制备方法

Publications (2)

Publication Number Publication Date
CN114975657A CN114975657A (zh) 2022-08-30
CN114975657B true CN114975657B (zh) 2023-07-14

Family

ID=82979343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210449273.9A Active CN114975657B (zh) 2022-04-27 2022-04-27 Spad器件结构、spad探测器及spad器件结构制备方法

Country Status (1)

Country Link
CN (1) CN114975657B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425101B (zh) * 2022-09-19 2024-04-16 南京邮电大学 一种双结单光子雪崩二极管、探测器及制作方法
CN115347072B (zh) * 2022-10-17 2022-12-20 季华实验室 双结型单光子雪崩二极管、光电探测器阵列

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
CN110416335A (zh) * 2019-08-05 2019-11-05 南京邮电大学 硅基近红外单光子雪崩二极管探测器及其制作方法
WO2020053564A1 (en) * 2018-09-10 2020-03-19 The University Court Of The University Of Glasgow Single photon avalanche detector, method for use therefore and method for its manufacture
CN113314638A (zh) * 2021-05-21 2021-08-27 武汉光迹融微科技有限公司 近红外单光子雪崩二极管探测器及制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185796A (zh) * 2015-09-30 2015-12-23 南京邮电大学 一种高探测效率的单光子雪崩二极管探测器阵列单元
WO2020053564A1 (en) * 2018-09-10 2020-03-19 The University Court Of The University Of Glasgow Single photon avalanche detector, method for use therefore and method for its manufacture
CN110416335A (zh) * 2019-08-05 2019-11-05 南京邮电大学 硅基近红外单光子雪崩二极管探测器及其制作方法
CN113314638A (zh) * 2021-05-21 2021-08-27 武汉光迹融微科技有限公司 近红外单光子雪崩二极管探测器及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高探测效率CMOS单光子雪崩二极管器件;王巍;鲍孝圆;陈丽;徐媛媛;陈婷;王冠宇;;光子学报(第08期);全文 *

Also Published As

Publication number Publication date
CN114975657A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN105185796B (zh) 一种高探测效率的单光子雪崩二极管探测器阵列单元
US11329185B2 (en) Avalanche diode along with vertical PN junction and method for manufacturing the same field
CN106449770B (zh) 防止边缘击穿的环形栅单光子雪崩二极管及其制备方法
CN104810377B (zh) 一种高集成度的单光子雪崩二极管探测器阵列单元
CN113314638B (zh) 近红外单光子雪崩二极管探测器及制作方法
CN114975657B (zh) Spad器件结构、spad探测器及spad器件结构制备方法
US9178100B2 (en) Single photon avalanche diode for CMOS circuits
CN110416335A (zh) 硅基近红外单光子雪崩二极管探测器及其制作方法
CN115425101B (zh) 一种双结单光子雪崩二极管、探测器及制作方法
CN114914325B (zh) 一种多结的近红外单光子雪崩二极管及制备方法
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
US20200185560A1 (en) Spad-type photodiode
CN209804690U (zh) 半导体紫外光光电检测器和紫外辐射检测系统
CN107342338A (zh) 一种多漂移环结构的紫外雪崩漂移探测器及探测方法
CN103904152A (zh) 光电探测器及其制造方法和辐射探测器
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
CN115548157B (zh) 一种具有宽漂移区的双结单光子雪崩二极管及其制备方法
US20220149087A1 (en) Single-photon avalanche diode devices with shaped junction regions
Xu et al. High-Performance Lateral Avalanche Photodiode Based on Silicon-on-Insulator Structure
CN206574724U (zh) 一种紫外雪崩光电二极管探测器
CN113574680B (zh) 雪崩光电探测器(变型)及其制造方法(变型)
CN114843353A (zh) 光栅-结型复合雪崩单光子检测器及其制作方法
CN220474635U (zh) 一种单光子雪崩二极管单元及探测器
US11967664B2 (en) Photodiodes with serpentine shaped electrical junction
EP4336568A1 (en) Planar inp-based spad and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant