CN115400743A - 一种用于吸附锂离子的离子印迹材料及其制备方法 - Google Patents

一种用于吸附锂离子的离子印迹材料及其制备方法 Download PDF

Info

Publication number
CN115400743A
CN115400743A CN202211352709.9A CN202211352709A CN115400743A CN 115400743 A CN115400743 A CN 115400743A CN 202211352709 A CN202211352709 A CN 202211352709A CN 115400743 A CN115400743 A CN 115400743A
Authority
CN
China
Prior art keywords
silica gel
graphene oxide
lithium ions
oxide silica
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202211352709.9A
Other languages
English (en)
Inventor
郑绵平
丁涛
邢恩袁
郑越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Dizhiguang Enterprise Management Co ltd
Original Assignee
Beijing Dizhiguang Enterprise Management Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Dizhiguang Enterprise Management Co ltd filed Critical Beijing Dizhiguang Enterprise Management Co ltd
Priority to CN202211352709.9A priority Critical patent/CN115400743A/zh
Publication of CN115400743A publication Critical patent/CN115400743A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明提供了一种用于吸附锂离子的离子印迹材料及其制备方法,包括以下步骤:将氨基硅胶与氧化石墨烯进行接枝,获得氧化石墨烯硅胶;在氧化石墨烯硅胶上接枝氨基,然后进行双键修饰,获得双键氧化石墨烯硅胶;采用乙烯基磷酸在双键氧化石墨烯硅胶上修饰磷酸基,得磷酸基氧化石墨烯硅胶;将磷酸基氧化石墨烯硅胶置于锂离子溶液中接枝锂离子,得含有锂离子的氧化石墨烯硅胶;将含有锂离子的氧化石墨烯硅胶进行聚合反应,然后洗脱锂离子,制得锂离子印迹聚合物;将锂离子印迹聚合物制成纺丝,制得。通过该方法获得的离子印迹材料可有效解决现有的离子印迹材料存在的成本高以及吸附效果差的问题。

Description

一种用于吸附锂离子的离子印迹材料及其制备方法
技术领域
本发明属于盐湖卤水锂资源回收技术领域,具体涉及一种用于吸附锂离子的离子印迹材料及其制备方法。
背景技术
锂是密度最小的金属,由于独特的物理和化学性质,它被用在众多领域,如航天、医药和锂电池等。因为便携式电子产品和新能源汽车快速发展,近几年锂资源价格和需求量急剧增长。但是根据USGS报道,全球62%的锂资源存在于盐湖卤水中。因此,从盐湖卤水中提取锂资源具有重要的经济意义和战略意义。锂资源分布在锂矿石和液相卤水中(盐湖、海水、地热水),虽然矿石提锂工艺开发程度深,开采时间久远,但矿石中锂的品位低,开采过程能耗大,没有卤水中锂资源开采环保。传统的盐湖卤水中锂资源回收方法主要有沉淀法、盐梯度太阳池法、离子交换膜法、膜分离梯度耦合法、吸附法和离子印迹技术等,它们都有各自的优缺点。其中,离子印迹技术是一种新兴的提取锂离子的方法,离子印迹技术是制备对目标离子具有专一选择性吸附材料的一种有效方法,因为通过这种方式所形成的吸附空位是与模板离子的电荷数、半径大小和空间结构高度匹配。通过离子印迹技术所制备的聚合物对目标离子显示出良好的选择性,并且表面印迹技术很大程度上解决了所制备材料对目标离子吸附速率缓慢等问题。然而,在当前用于盐湖提锂的离子印迹技术中,仍有2个问题阻碍着该技术的发展,一是目前用于提锂的离子印记技术大多选择价格昂贵的冠醚作为功能单体,功能单体成本高的问题;二是功能单体的水溶性差的问题,在离子印迹聚合物的制备中,首先是功能单体与模板离子通过配位形成复合物,在此过程中,希望有尽可能多的功能单体与模板离子进行配位,从而形成更多的印迹孔穴,但是在含有模板离子的水溶液中,功能单体(通常为有机分子)的水溶性往往较差,这也是为什么当前所制备的离子印迹聚合物对目标离子的吸附效果较差的主要原因之一。
发明内容
针对现有技术中存在的上述问题,本发明提供一种用于吸附锂离子的离子印迹材料及其制备方法,通过该方法获得的离子印迹材料可有效解决现有的离子印迹材料存在的成本高以及吸附效果差的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种用于吸附锂离子的离子印迹材料的制备方法,包括以下步骤:
(1)将氨基硅胶与氧化石墨烯进行接枝,获得氧化石墨烯硅胶;
(2)在氧化石墨烯硅胶上接枝氨基,然后进行双键修饰,获得双键氧化石墨烯硅胶;
(3)采用乙烯基磷酸在双键氧化石墨烯硅胶上修饰磷酸基,得磷酸基氧化石墨烯硅胶;
(4)将磷酸基氧化石墨烯硅胶置于锂离子溶液中接枝锂离子,得含有锂离子的氧化石墨烯硅胶;
(5)将含有锂离子的氧化石墨烯硅胶进行聚合反应,然后洗脱锂离子,制得锂离子印迹聚合物;
(6)将锂离子印迹聚合物制成纺丝,干燥,制得IIP@SG/GO离子印迹材料,将其标记为IIP@SG/GO。
进一步地,步骤(1)中氨基硅胶的制备方法如下:将层析硅胶与盐酸混合,在搅拌条件下回流4-8h,抽滤并洗涤至中性,于80-100℃条件下干燥至恒重,得活化硅胶;将活化硅胶分散于甲苯中,然后于搅拌条件下向其中依次加入硅烷偶联剂KH550/KH791的混合物和苯胺,其中KH550/KH791的混合物中两者的质量比为1:1,回流反应15-25h,抽滤后于90-100℃条件下干燥,制得;其中,活化硅胶、甲苯、硅烷偶联剂KH550/KH791和苯胺的质量体积比为(1-2)g:(25-35)ml:(1-2)ml:(1-2)ml。
进一步地,步骤(1)中采用如下方法制备氧化石墨烯硅胶: 将氧化石墨烯分散于N,N-二甲基甲酰胺中,向其中加入N,N'-二环己基碳酰亚胺搅拌至溶解,然后向其中加入氨基硅胶,于50-70℃搅拌条件下反应20-30h,抽滤后洗涤,于50-70℃条件下干燥至恒重,制得;其中氧化石墨烯、N,N-二甲基甲酰胺、N,N'-二环己基碳酰亚胺和氨基硅胶的质量体积比为(0.05-0.1)g:(25-35)ml:(0.5-1.5)g:(1-3)g。
进一步地,步骤(2)中采用如下方法制备双键氧化石墨烯硅胶:将氧化石墨烯硅胶分散于甲苯中,于搅拌条件下依次向其中添加硅烷偶联剂KH791和苯胺,回流反应10-25h,抽滤后于90-100℃条件下干燥,制得氨基氧化石墨烯硅胶,其中,氧化石墨烯硅胶、甲苯、硅烷偶联剂KH791和苯胺的质量体积比为(1.5-2.5)g:(25-35)ml:(1-3)ml:(1-3)ml;
将氨基氧化石墨烯硅胶加入马来酸酐的冰乙酸溶液中,于常温条件下搅拌反应15-25h,抽滤后于55-65℃条件下干燥至恒重,制得;其中,氨基氧化石墨烯硅胶与马来酸酐的冰乙酸溶液的质量体积比为(1-3)g:(25-35)ml。
进一步地,步骤(3)中采用如下方法制备磷酸基氧化石墨烯硅胶:将双键氧化石墨烯硅胶分散于无水乙醇中,在搅拌条件下向其中加入乙烯基磷酸,加热回流反应10-15h,抽滤后于50-70℃条件下干燥,制得,其中双键氧化石墨烯硅胶、无水乙醇和乙烯基磷酸的质量体积比为(1-3)g:(25-35)ml:(3-5)ml。
进一步地,步骤(4)中采用如下方法接枝锂离子:将磷酸氧化石墨烯硅胶置于饱和锂离子溶液中静置12-20h,抽滤后干燥,制得;其中,磷酸氧化石墨烯硅胶与锂离子溶液的质量体积比为(1-3)g:(30-50)ml。
进一步地,步骤(5)中的聚合反应过程如下:将含有锂离子的氧化石墨烯硅胶分散于乙腈中,依次向其中加入二甲基丙烯酸乙二醇酯和偶氮二异丁腈,然后于50-70℃无氧条件下搅拌反应15-30h,抽滤后干燥,再采用酸洗的方式洗脱锂离子,干燥制得;其中,含有锂离子的氧化石墨烯硅胶、乙腈、EGDMA和AIBN的质量体积比为(1-3)g:(25-35)ml:(1-3)ml:(120-180)mg。
进一步地,步骤(6)纺丝的制备过程如下:将锂离子印迹聚合物、N,N-二甲基甲酰胺、聚丙烯腈纤维混合,于80-100℃下磁力搅拌3-5h,配置成浓度为12-14wt%均一透明的纺丝原液,在电压14-16 kV,纺丝液流速0.2-0.3 ml/min,滚筒接收装置转速为400-500rpm/min条件下进行高压静电纺丝,将纺织产物于40-60℃真空干燥即可。
一种用于吸附锂离子的离子印迹材料,采用上述的方法制得。
本发明所产生的有益效果为:
1、本发明中采用乙烯基磷酸作为功能单体,乙烯基磷酸具有价格低廉,来源广泛,便于获得的优点,可有效降低离子印迹材料的制备成本。
2、本发明中将乙烯基磷酸作为功能单体 ,在离子印迹材料中引入P元素,制得IIP@SG/GO材料,IIP@SG/GO吸附前最低非占据轨道(LUMO)分布在-(PO)(OH)2 基团上,吸附Li(I)后则主要遍布于Li原子、P原子和O原子上,进一步证实了吸附过程中配体与金属离子之间的电子转移。稳定化能E(2)反应了电子从占据轨道向空轨道转移的程度,通过探究了-(PO)(OH)2与Li(I)之间的电子转移情况,发现Li(I)的LP(P)-LP*(Li)和LP(O)-LP*(Li)稳定化能E(2)分别为3.43 kJ/mol、4.23 kJ/mol、3.01 kJ/mol 和 2.22 kJ/mol,进一步验证了IIP@SG/GO主要是依靠功能基团中的P原子、O原子与Li(I)形成配位键,达到吸附Li(I)的目的。
3、本发明中将吸附材料制成纺丝的形式,在吸附操作中,纺丝在盐湖卤水中具有更小的流动阻力和优良的渗透性,更利于对锂离子的吸附提取,大大提高锂离子的吸附效率。
附图说明
图1为实施例1中的IIP@SG/GO离子印迹材料吸附Li(I)前和吸附Li(I)后SEM图;
图2为实施例1中的活化硅胶以及IIP@SG/GO离子印迹材料吸附Li(I)前和吸附Li(I)后的红外光谱;
图3为实施例1中的IIP@SG/GO吸附Li(I)前后的XPS分峰拟合曲线。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。
实施例1
一种用于吸附锂离子的离子印迹材料,其制备方法包括以下步骤:
(1)将5.0g层析硅胶与200ml 6mol/L的盐酸混合,在搅拌条件下回流6h,抽滤后用去离子水洗涤至中性,于100℃下干燥至恒重,得活化硅胶;将2.0g活化硅胶分散于30ml甲苯中,然后于搅拌条件下向其中依次加入2ml 硅烷偶联剂KH550/KH791和2ml苯胺,回流反应24h,反应完成后抽滤,于100℃下干燥至恒重,制得氨基硅胶;
将0.068g 氧化石墨烯与30mL N,N-二甲基甲酰胺超声30min使其分散均匀,在搅拌的条件下加入1.0g N,N'-二环己基碳酰亚胺,待其充分溶解后,加入2g氨基硅胶,在搅拌的条件下60℃加热反应24h,反应完成后,抽滤,用N,N'-二环己基碳酰亚胺反复冲洗,最后用乙醇洗涤2次,于真空60℃条件下烘干至恒重,得氧化石墨烯硅胶;
(2)将2.0g氧化石墨烯硅胶分散于30ml甲苯中,于搅拌条件下依次向其中添加2ml硅烷偶联剂KH791和2ml苯胺,回流反应24h,抽滤后于100℃条件下干燥,制得氨基氧化石墨烯硅胶;将2.0g马来酸酐溶于30ml冰乙酸中,然后将2.0g氨基氧化石墨烯硅胶加入马来酸酐的冰乙酸溶液中,于常温条件下搅拌反应24h,抽滤后于60℃条件下干燥至恒重,制得双键氧化石墨烯硅胶;
(3)将2.0g双键氧化石墨烯硅胶分散于30ml无水乙醇中,在搅拌条件下向其中加入4ml乙烯基磷酸,加热回流反应12h,抽滤后于60℃下干燥至恒重,制得磷酸基氧化石墨烯硅胶;
(4)将2.0g磷酸基氧化石墨烯硅胶置于40ml饱和锂离子溶液中静置12h接枝锂离子,得含有锂离子的氧化石墨烯硅胶;
(5)将2.0g含有锂离子的氧化石墨烯硅胶分散于30ml乙腈中,依次向其中加入2ml二甲基丙烯酸乙二醇酯和150mg 偶氮二异丁腈,然后排尽空气,于60℃无氧条件下搅拌反应24h,抽滤后于50℃真空条件下干燥至恒重,再采用酸洗的方式洗脱锂离子,干燥,制得锂离子印迹聚合物;
(6)将0.5g锂离子印迹聚合物、N,N-二甲基甲酰胺、0.5g聚丙烯腈纤维混合,于90℃下磁力搅拌4h,配置成浓度为13wt%均一透明的纺丝原液,在电压15 kV,纺丝液流速0.25 ml/min,滚筒接收装置转速为450 rpm/min下进行高压静电纺丝,将纺织产物于50℃真空干燥,制得IIP@SG/GO离子印迹材料。
实施例2
一种用于吸附锂离子的离子印迹材料,其制备方法包括以下步骤:
(1)将5.0g层析硅胶与200ml 6mol/L的盐酸混合,在搅拌条件下回流8h,抽滤后用去离子水洗涤至中性,于90℃下干燥至恒重,得活化硅胶;将1.5g活化硅胶分散于35ml甲苯中,然后于搅拌条件下向其中依次加入1.5ml 硅烷偶联剂KH550/KH791和1.5ml苯胺,回流反应18h,反应完成后抽滤,于90℃下干燥至恒重,制得氨基硅胶;
将0.05g 氧化石墨烯与25mL N,N-二甲基甲酰胺超声30min使其分散均匀,在搅拌的条件下加入0.8g N,N'-二环己基碳酰亚胺,待其充分溶解后,加入1.5g氨基硅胶,在搅拌的条件下70℃加热反应28h,反应完成后,抽滤,用N,N'-二环己基碳酰亚胺反复冲洗,最后用乙醇洗涤2次,于真空70℃条件下烘干至恒重,得氧化石墨烯硅胶;
(2)将1.5g氧化石墨烯硅胶分散于35ml甲苯中,于搅拌条件下依次向其中添加1.5ml硅烷偶联剂 KH791和1.5ml苯胺,回流反应18h,抽滤后于90℃条件下干燥,制得氨基氧化石墨烯硅胶;将1.5g马来酸酐溶于25ml冰乙酸中,然后将1.5g氨基氧化石墨烯硅胶加入马来酸酐的冰乙酸溶液中,于常温条件下搅拌反应20h,抽滤后于55℃条件下干燥至恒重,制得双键氧化石墨烯硅胶;
(3)将1.5g双键氧化石墨烯硅胶分散于25ml无水乙醇中,在搅拌条件下向其中加入3ml乙烯基磷酸,加热回流反应10h,抽滤后于70℃下干燥至恒重,制得磷酸基氧化石墨烯硅胶;
(4)将1.5g磷酸基氧化石墨烯硅胶置于50ml饱和锂离子溶液中静置15h接枝锂离子,得含有锂离子的氧化石墨烯硅胶;
(5)将1.5g含有锂离子的氧化石墨烯硅胶分散于25ml乙腈中,依次向其中加入1.5ml 二甲基丙烯酸乙二醇酯和120mg 偶氮二异丁腈,然后排尽空气,于50℃无氧条件下搅拌反应20h,抽滤后于60℃真空条件下干燥至恒重,再采用酸洗的方式洗脱锂离子,干燥,制得锂离子印迹聚合物;
(6)将0.5锂离子印迹聚合物、N,N-二甲基甲酰胺、0.5聚丙烯腈纤维混合,于80℃下磁力搅拌3h,配置成浓度为12wt%均一透明的纺丝原液,在电压14 kV,纺丝液流速0.2ml/min,滚筒接收装置转速为400 rpm/min下进行高压静电纺丝,将纺织产物于40℃真空干燥,制得IIP@SG/GO离子印迹材料。
实施例3
一种用于吸附锂离子的离子印迹材料,其制备方法包括以下步骤:
(1)将5.0g层析硅胶与200ml 6mol/L的盐酸混合,在搅拌条件下回流8h,抽滤后用去离子水洗涤至中性,于80℃下干燥至恒重,得活化硅胶;将2g活化硅胶分散于35ml甲苯中,然后于搅拌条件下向其中依次加入1ml硅烷偶联剂 KH550/KH791和1ml苯胺,回流反应22h,反应完成后抽滤,于95℃下干燥至恒重,制得氨基硅胶;
将0.08g 氧化石墨烯与35mL N,N-二甲基甲酰胺超声30min使其分散均匀,在搅拌的条件下加入0.5g N,N'-二环己基碳酰亚胺,待其充分溶解后,加入3g氨基硅胶,在搅拌的条件下65℃加热反应28h,反应完成后,抽滤,用N,N'-二环己基碳酰亚胺反复冲洗,最后用乙醇洗涤2次,于真空65℃条件下烘干至恒重,得氧化石墨烯硅胶;
(2)将2.5g氧化石墨烯硅胶分散于35ml甲苯中,于搅拌条件下依次向其中添加3ml硅烷偶联剂KH791和3ml苯胺,回流反应15h,抽滤后于95℃条件下干燥,制得氨基氧化石墨烯硅胶;将2.0g马来酸酐溶于30ml冰乙酸中,然后将3.0g氨基氧化石墨烯硅胶加入马来酸酐的冰乙酸溶液中,于常温条件下搅拌反应24h,抽滤后于65℃条件下干燥至恒重,制得双键氧化石墨烯硅胶;
(3)将3.0g双键氧化石墨烯硅胶分散于25ml无水乙醇中,在搅拌条件下向其中加入5ml乙烯基磷酸,加热回流反应15h,抽滤后于70℃下干燥至恒重,制得磷酸基氧化石墨烯硅胶;
(4)将3.0g磷酸基氧化石墨烯硅胶置于50ml饱和锂离子溶液中静置18h接枝锂离子,得含有锂离子的氧化石墨烯硅胶;
(5)将3.0g含有锂离子的氧化石墨烯硅胶分散于35ml乙腈中,依次向其中加入3ml二甲基丙烯酸乙二醇酯和140mg 偶氮二异丁腈,然后排尽空气,于50℃无氧条件下搅拌反应18h,抽滤后于70℃真空条件下干燥至恒重,再采用酸洗的方式洗脱锂离子,干燥,制得锂离子印迹聚合物;
(6)将0.5锂离子印迹聚合物、N,N-二甲基甲酰胺、0.5聚丙烯腈纤维混合,于100℃下磁力搅拌5h,配置成浓度为14wt%均一透明的纺丝原液,在电压16 kV,纺丝液流速0.3ml/min,滚筒接收装置转速为500 rpm/min下进行高压静电纺丝,将纺织产物于60℃真空干燥,制得IIP@SG/GO离子印迹材料。
对比例1
在实施例1的基础上,将实施例1中步骤(1)氨基硅胶制备过程中的回流反应时间由24h调整为5h。
对比例2
在实施例1的基础上,将实施例1中步骤(1)氧化石墨烯硅胶制备过程中的回流反应时间由24h调整为6h。
对比例3
在实施例1的基础上,将实施例1中步骤(2)氨基氧化石墨烯硅胶制备过程中的回流反应时间由24h调整为4h。
对比例4
在实施例1的基础上,将实施例1中步骤(2)双键氧化石墨烯硅胶制备过程中搅拌反应时间由24h调整为48h。
对比例5
在实施例1的基础上,将实施例1中步骤(3)回流反应时间由12h调整为4h。
试验例
一、分别采用实施例1-3和对比例1-5中的离子印迹材料对同一来源的盐湖卤水进行吸附处理,盐湖卤水中锂离子含量为356mg/L,每次吸附时间为12h,每吸附一次后采用酸溶液进行洗脱,然后进行下一次吸附,重复吸附5次,计算每一次的锂离子吸附容量,具体结果见表1。
表1:锂离子吸附量统计
Figure 122402DEST_PATH_IMAGE001
通过上表中的数据可以看出,实施例1-3中制得的离子印迹材料对于盐湖卤水中的锂离子具有较强的吸附能力,并且制得的离子印迹材料连续使用5次后依然具有较强的吸附能力;而对比例1-5中改变了制备过程中不同步骤的反应时间,导致反应进行不彻底,因此,影响了所制备的离子印迹材料对于锂离子的吸附效果。
二、分别对实施例1中锂离子吸附前后的IIP@SG/GO离子印迹材料进行微观检测,具体检测结果见图1。
图1是IIP@SG/GO离子印迹材料吸附Li(I)前和吸附Li(I)后SEM图,从图1中(a)中可发现纳米纤维形貌规则,表面光滑,纤维之间分布大量孔隙,纤维直径在200-350 nm之间,这些都使IIP@SG/GO在盐湖卤水中有更小的流动阻力和优良的渗透性,有利于IIP@SG/GO对盐湖卤水中Li(I)的吸附。图1中(b)中吸附后纳米纤维直径比图1中(a)吸附前变粗1.5-2倍,可明显看出吸附后纳米纤维表面变得粗糙,有大量颗粒被吸附在纤维表面。
分别将实施例1中制得的活性硅胶以及锂离子吸附前后的IIP@SG/GO离子印迹材料进行红外检测,具体检测结果见图2。
图2中活化硅胶图2中(a)、IIP@SG/GO吸附Li(Ι)前图2中(b)和吸附后图2中(c)的红外光谱;图2为活化的硅胶、IIP@SG/GO和IIP@SG/GO吸附Li(Ι)的红外光谱,在图2中(a)、图2中(b)和图2中(c)中960 cm-1处都有特征吸收峰,这是硅胶中的Si-OH缔合羟基变角振动峰,与图2中(a)活化硅胶相比,图2中(b)中 IIP@SG/GO在960 cm-1处的吸收峰强度明显减弱,说明部分硅胶表面被占据,表面-OH发生接枝反应。在图2中(b)中,1734 cm-1左右对应EGDMA中的–C(O)OH特征吸收峰,1091 cm-1左右对应着P-OH特征吸收峰,说明乙烯基磷酸参与了IIP@SG/GO的合成,而1640 cm-1处没有特征吸收峰存在,说明不饱和键已经在合成过程中完全聚合。而图2中(b)和图2中(c)吸收峰相似,表明IIP@SG/GO吸附和洗脱Li(Ι)过程对吸附材料结构基本没影响。图1中(b)中吸附后纳米纤维直径比图1中(a)吸附前变粗1.5-2倍,可明显看出吸附后纳米纤维表面变得粗糙,有大量颗粒被吸附在纤维表面。可能原因是功能单体中P-O和P=O与Li(I)进行络合,吸附位点中P和O原子位置发生变化使纳米纤维直径变粗。对比图2中PAN-IIP@SG/GO吸附Li(I)前后的红外光谱,吸附Li(I)后1734 cm-1左右对应EGDMA中的–C(O)OH特征吸收峰和1091 cm-1左右对应着P-OH特征吸收峰向低频迁移,这可能是功能基团已经和Li(I)发生络合反应。
分别对实施例1中锂离子吸附前后的IIP@SG/GO离子印迹材料进行表面分析,具体结果见图3。
图3是IIP@SG/GO吸附Li(I)前后的XPS分峰拟合曲线,在图3中(a)中,吸附前XPS全谱拟合曲线中没有发现Li(I)特征峰,而在吸附后曲线55.9 eV处出现一个新的特征峰,是和P-O进行配位的Li(I)。在图3中(b)中吸附前P-O和P=O特征峰分别出现在530.61 eV和531.62 eV,而吸附后P-O和P=O特征峰分别变为530.74 eV和531.73 eV,在图3中(c)中吸附Li(I)后P的特征峰由133.80 eV变为133.95 eV,可能原因是P-O、P=O和P作为给电子体参与了Li(I)的吸附。

Claims (9)

1.一种用于吸附锂离子的离子印迹材料的制备方法,其特征在于,包括以下步骤:
(1)将氨基硅胶与氧化石墨烯进行接枝,获得氧化石墨烯硅胶;
(2)在氧化石墨烯硅胶上接枝氨基,然后进行双键修饰,获得双键氧化石墨烯硅胶;
(3)采用乙烯基磷酸在双键氧化石墨烯硅胶上修饰磷酸基,获得磷酸基氧化石墨烯硅胶;
(4)将磷酸基氧化石墨烯硅胶置于锂离子溶液中接枝锂离子,得含有锂离子的氧化石墨烯硅胶;
(5)将含有锂离子的氧化石墨烯硅胶进行聚合反应,然后洗脱锂离子,制得锂离子印迹聚合物;
(6)将锂离子印迹聚合物制成纺丝,干燥,制得离子印迹材料。
2.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(1)中氨基硅胶的制备方法如下:将层析硅胶与盐酸混合,在搅拌条件下回流4-8h,抽滤并洗涤至中性,于80-100℃条件下干燥至恒重,得活化硅胶;将活化硅胶分散于甲苯中,然后于搅拌条件下向其中依次加入硅烷偶联剂和苯胺,回流反应15-25h,抽滤后于90-100℃条件下干燥,制得;其中,活化硅胶、甲苯、硅烷偶联剂和苯胺的质量体积比为(1-2)g:(25-35)ml:(1-2)ml:(1-2)ml。
3.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(1)中采用如下方法制备氧化石墨烯硅胶: 将氧化石墨烯分散于N,N-二甲基甲酰胺中,向其中加入N,N'-二环己基碳酰亚胺搅拌至溶解,然后向其中加入氨基硅胶,于50-70℃搅拌条件下反应20-30h,抽滤后洗涤,于50-70℃条件下干燥至恒重,制得;其中氧化石墨烯、N,N-二甲基甲酰胺、N,N'-二环己基碳酰亚胺和氨基硅胶的质量体积比为(0.05-0.1)g:(25-35)ml:(0.5-1.5)g:(1-3)g。
4.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(2)中采用如下方法制备双键氧化石墨烯硅胶:将氧化石墨烯硅胶分散于甲苯中,于搅拌条件下依次向其中添加硅烷偶联剂和苯胺,回流反应10-25h,抽滤后于90-100℃条件下干燥,制得氨基氧化石墨烯硅胶,其中,氧化石墨烯硅胶、甲苯、硅烷偶联剂和苯胺的质量体积比为(1.5-2.5)g:(25-35)ml:(1-3)ml:(1-3)ml;
将氨基氧化石墨烯硅胶加入马来酸酐的冰乙酸溶液中,于常温条件下搅拌反应15-25h,抽滤后于55-65℃条件下干燥至恒重,制得;其中,氨基氧化石墨烯硅胶与马来酸酐的冰乙酸溶液的质量体积比为(1-3)g:(25-35)ml。
5.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(3)中采用如下方法制备磷酸基氧化石墨烯硅胶:将双键氧化石墨烯硅胶分散于无水乙醇中,在搅拌条件下向其中加入乙烯基磷酸,加热回流反应10-15h,抽滤后于50-70℃条件下干燥,制得,其中双键氧化石墨烯硅胶、无水乙醇和乙烯基磷酸的质量体积比为(1-3)g:(25-35)ml:(3-5)ml。
6.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(4)中采用如下方法接枝锂离子:将磷酸氧化石墨烯硅胶置于饱和锂离子溶液中静置12-20h,抽滤后干燥,制得;其中,磷酸氧化石墨烯硅胶与锂离子溶液的质量体积比为(1-3)g:(30-50)ml。
7.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(5)中的聚合反应过程如下:将含有锂离子的氧化石墨烯硅胶分散于乙腈中,依次向其中加入二甲基丙烯酸乙二醇酯和偶氮二异丁腈,然后于50-70℃无氧条件下搅拌反应15-30h,抽滤后干燥,再采用酸洗的方式洗脱锂离子,干燥制得;其中,含有锂离子的氧化石墨烯硅胶、乙腈、二甲基丙烯酸乙二醇酯和偶氮二异丁腈的质量体积比为(1-3)g:(25-35)ml:(1-3)ml:(120-180)mg。
8.如权利要求1所述的用于吸附锂离子的离子印迹材料的制备方法,其特征在于,步骤(6)纺丝的制备过程如下:将锂离子印迹聚合物、N,N-二甲基甲酰胺、聚丙烯腈纤维混合,于80-100℃下磁力搅拌3-5h,配置成浓度为12-14wt%均一透明的纺丝原液,在电压14-16kV,纺丝液流速0.2-0.3 ml/min,滚筒接收装置转速为400-500 rpm/min条件下进行高压静电纺丝,将纺织产物于40-60℃真空干燥即可。
9.一种用于吸附锂离子的离子印迹材料,其特征在于,采用权利要求1-8中任一项所述的方法制得。
CN202211352709.9A 2022-11-01 2022-11-01 一种用于吸附锂离子的离子印迹材料及其制备方法 Withdrawn CN115400743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211352709.9A CN115400743A (zh) 2022-11-01 2022-11-01 一种用于吸附锂离子的离子印迹材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211352709.9A CN115400743A (zh) 2022-11-01 2022-11-01 一种用于吸附锂离子的离子印迹材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115400743A true CN115400743A (zh) 2022-11-29

Family

ID=84167989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211352709.9A Withdrawn CN115400743A (zh) 2022-11-01 2022-11-01 一种用于吸附锂离子的离子印迹材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115400743A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601862A (zh) * 2013-11-18 2014-02-26 南昌航空大学 以大环多醚类烯烃作为功能单体表面聚合法制备磁性锂离子印迹微球的方法
CN104262536A (zh) * 2014-09-15 2015-01-07 江苏大学 一种活性/可控氧化石墨烯表面离子印迹聚合物及其制备方法与应用
CN104892868A (zh) * 2015-05-14 2015-09-09 江苏科技大学 一种特异性吸附dehp的硅胶表面分子印迹聚合物及其制备方法与应用
CN108607523A (zh) * 2018-06-04 2018-10-02 重庆科技学院 一种选择性分离铟的吸附材料及其制备方法
CN109467659A (zh) * 2018-11-16 2019-03-15 中南林业科技大学 一种分子印迹微球及其应用方法
CN110394152A (zh) * 2019-07-05 2019-11-01 重庆科技学院 一种选择性分离钯离子吸附材料的制备方法及产品
CN113101901A (zh) * 2021-03-17 2021-07-13 湖北省烟草科学研究院 一种锰铁磁性氧化石墨烯铅离子印迹材料的制备方法及应用
CN114984926A (zh) * 2022-05-11 2022-09-02 东北电力大学 一种高抗团聚rgo基磁性锂离子印迹聚合物的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601862A (zh) * 2013-11-18 2014-02-26 南昌航空大学 以大环多醚类烯烃作为功能单体表面聚合法制备磁性锂离子印迹微球的方法
CN104262536A (zh) * 2014-09-15 2015-01-07 江苏大学 一种活性/可控氧化石墨烯表面离子印迹聚合物及其制备方法与应用
CN104892868A (zh) * 2015-05-14 2015-09-09 江苏科技大学 一种特异性吸附dehp的硅胶表面分子印迹聚合物及其制备方法与应用
CN108607523A (zh) * 2018-06-04 2018-10-02 重庆科技学院 一种选择性分离铟的吸附材料及其制备方法
CN109467659A (zh) * 2018-11-16 2019-03-15 中南林业科技大学 一种分子印迹微球及其应用方法
CN110394152A (zh) * 2019-07-05 2019-11-01 重庆科技学院 一种选择性分离钯离子吸附材料的制备方法及产品
CN113101901A (zh) * 2021-03-17 2021-07-13 湖北省烟草科学研究院 一种锰铁磁性氧化石墨烯铅离子印迹材料的制备方法及应用
CN114984926A (zh) * 2022-05-11 2022-09-02 东北电力大学 一种高抗团聚rgo基磁性锂离子印迹聚合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO DING等: ""Selective recovery of lithium resources in salt lakes by polyacrylonitrile/ion-imprinted polymer:Synthesis, testing, and computation"", 《POLYMER TESTING》 *
李敏: ""新型功能化吸附材料制备及对镉、铟离子的识别性能"", 《中国优秀硕士论文数据库》 *

Similar Documents

Publication Publication Date Title
CN108912269B (zh) 一种聚咪唑类离子液体基共聚物及其制备方法和应用
CN112774642B (zh) 一种具有对Pb(Ⅱ)选择性吸附功能的纳米磁性吸附剂的制备方法
CN102188957B (zh) 聚乙烯亚胺修饰的磁性多孔吸附剂及其制备方法和应用
CN112679731B (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
CN103709342B (zh) 一种磁性镉离子表面印迹聚合物的制备方法
CN103709341B (zh) 一种磁性锌离子表面印迹聚合物的制备方法
CN102295723B (zh) 一种6-氨基吡啶-3-羧酸螯合树脂及其制备方法
CN111346609B (zh) 一种用于含重金属染料废水的吸附材料及其制备方法
Huang et al. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium (i)
CN109608655A (zh) 一种双功能基团MOFs材料及其制备方法与应用
CN109174034A (zh) 一种铜离子印迹壳聚糖/羧甲基纤维素钠复合吸附剂及其制备方法
CN110527039B (zh) 一种磁性表面分子印迹聚合物及其制备方法和应用
CN109550485A (zh) 一种氨基化磁性壳聚糖的制备方法
Zeng et al. ZIF-8 in-situ growth on amidoximerized polyacrylonitrile beads for uranium sequestration in wastewater and seawater
CN108940222A (zh) 一种磁性壳聚糖基吸附剂的制备方法
CN110918067A (zh) 一种接枝纤维素吸附剂及其制备方法和应用
CN110947371B (zh) 一种改性纤维素基除磷吸附剂的制备方法
CN109453752A (zh) 一种阳离子型磁性纳米颗粒及其制备方法和应用
Zheng et al. Bacterial cellulose nanofibrous ion imprinted aerogel for highly efficient recognition and adsorption of Dy (III)
Ding et al. Selective recovery of lithium resources in salt lakes by polyacrylonitrile/ion-imprinted polymer: Synthesis, testing, and computation
CN113372523B (zh) 一种过渡金属离子修饰的磺酸共价有机框架材料及其制备和应用
CN107413305A (zh) 聚苯胺‑硅藻土/Fe3 O4‑壳聚糖复合材料的制备方法
CN115400743A (zh) 一种用于吸附锂离子的离子印迹材料及其制备方法
CN112851848A (zh) 一种用于选择性分离富集马兜铃酸i的温敏型磁性分子印迹聚合物的制备方法
CN114984926B (zh) 一种高抗团聚rgo基磁性锂离子印迹聚合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20221129