CN115368894B - 一种激光制备硫氧化物荧光粉的方法 - Google Patents

一种激光制备硫氧化物荧光粉的方法 Download PDF

Info

Publication number
CN115368894B
CN115368894B CN202210992973.2A CN202210992973A CN115368894B CN 115368894 B CN115368894 B CN 115368894B CN 202210992973 A CN202210992973 A CN 202210992973A CN 115368894 B CN115368894 B CN 115368894B
Authority
CN
China
Prior art keywords
ablation
laser
irradiation
reaction kettle
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210992973.2A
Other languages
English (en)
Other versions
CN115368894A (zh
Inventor
李志鹏
马毅
葛智国
吕威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210992973.2A priority Critical patent/CN115368894B/zh
Publication of CN115368894A publication Critical patent/CN115368894A/zh
Application granted granted Critical
Publication of CN115368894B publication Critical patent/CN115368894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/7771Oxysulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种激光制备硫氧化物荧光粉的方法。具体制备过程包括超纯靶材的预处理,激光烧蚀过程的调控以及胶体纳米颗粒的后处理过程。所述超纯靶材的预处理是通过线切割与超声清洗所实现的。所述激光烧蚀过程包括烧蚀液的配比优化,烧蚀压力、温度、气氛、能量、频率、时间等参数的精准调控以及激光烧蚀结合激光辐照的优化工艺。所述纳米颗粒的后处理过程包括高速冷冻离心工艺以及分段热处理过程。本发明所制备的荧光粉具有高纯度、小粒度、窄分布、高结晶度的优点,在场发射显示和LED发光等应用领域可以达到高分辨,高光效的要求,具有很大的应用潜力。

Description

一种激光制备硫氧化物荧光粉的方法
技术领域
本发明属于荧光材料领域,特别涉及一种激光制备硫氧化物荧光粉的方法。
背景技术
液相激光烧蚀法是一种简单、绿色的纳米材料制备技术,通常只需在水中或有机液相条件下进行。近年来,液相激光烧蚀法已被应用于制备一系列具有特殊形貌、微观结构的纳米材料,在光学、显示、探测、生物等领域的性能和应用中,实现了功能化纳米材料的一步制备。
基体对于荧光材料的发光性能有非常重要的影响。稀土掺杂的硫氧化物荧光粉由于其高化学耐久性、热稳定性以及在荧光灯、投影电视系统、场发射系统和生物学应用中的潜在应用,引起了广泛的关注。目前制备硫氧化物材料的方法主要有固相法、溶剂热法、微波法等,但这些方法所制备的荧光粉纯度较低,粒度难以达到纳米级别,很难实现超高分辨器件的使用要求。因此,开发一种制备纳米荧光材料的新兴技术是实现超高分辨应用的必要条件。
发明内容
(一)发明目的
本发明的目的,是针对现有制备工艺难以合成高纯度、小粒度、高光效的硫氧化物荧光粉,从而通过优化激光液相烧蚀条件及后处理工艺,实现高性能硫氧化物荧光粉的可控制备。
(二)技术方案
本发明通过如下技术方案予以实现。
(1)将纯度大于99.9999%的超纯靶材利用线切割机切割成3cm*3cm*3mm的片状试样;
(2)将步骤(1)中线切割后的片状靶材先置于丙酮溶液中超声清洗30min,然后置于超纯水中继续超声清洗30min,清洗完毕后将靶材置于超净干燥箱中,60℃烘干备用;
(3)将步骤(2)中烘干后的片状靶材置于激光光热反应釜中,然后将烧蚀液倒入激光光热反应釜,使靶材上表面距离烧蚀液液面5mm;
(4)将步骤(3)中的光热反应釜与大功率超声波清洗机、旋转位移平台进行组合,其中光热反应釜置于大功率超声波清洗机箱体内部,超声波清洗机置于旋转位移平台上方;
(5)使光热反应釜保持密闭,调节反应釜内部的温度为60℃,压力为2Mpa,并向光热反应釜内部通入氩气,气体流速为80sccm;
(6)启动纳秒激光器,激光经过扩束镜后形成线状激光光束,此时调节激光光路,使得光束进入光热反应釜并落在靶材表面;
(7)分别启动步骤(4)中的大功率超声波清洗机与旋转位移平台,使烧蚀过程中激光能够均匀烧蚀到片状靶材的整个表面,同时伴随超声过程;
(8)调节步骤(6)中纳秒激光器的烧蚀参数,开始对靶材进行烧蚀;
(9)烧蚀完毕后,调整激光器的发射波长至532nm,将烧蚀模式改为辐照模式,调节辐照参数,同时启动步骤(4)中的大功率超声波清洗机和旋转位移平台,使辐照光斑均匀地作用于光热反应釜内的胶体溶液,辐照过程中伴随有超声过程;
(10)辐照完毕后,将光热反应釜内的胶体溶液取出,先以异丙醇为溶剂在高速冷冻离心机中进行三次离心清洗,再以去离子水为溶剂在高速冷冻离心机中进行三次离心清洗;
(11)收集步骤(10)中离心清洗后的颗粒,置于真空管式炉中,调整煅烧参数,进行分段热处理;
(12)收集步骤(11)中分段热处理后的产物即为最终的硫氧化物荧光粉。
进一步地,所述步骤(1)中的超纯靶材成分为Y、La或Gd;
进一步地,所述步骤(3)中的烧蚀液为有机溶剂与稀土硝酸盐溶液的混合溶液,其中有机溶剂包括二甲基亚砜、正丁醇、乙醇和油酸,且分别占烧蚀液体积总量的40%、30%、15%、5%,其中稀土硝酸盐溶液为Tb(NO3)3、Tm(NO3)3、Eu(NO3)3、Sm(NO3)3和Dy(NO3)3中的一种或多种组合,占烧蚀液体积总量的10%;
进一步地,所述步骤(7)和步骤(9)中的大功率超声波清洗机工作频率均为50KHz,旋转位移平台的位移参数均为1cm/min。
进一步地,所述步骤(8)中的烧蚀参数包括烧蚀能量、烧蚀频率、烧蚀时间以及烧蚀波长,其值分别设置为2J、10Hz、30min、1064nm。
进一步地,所述步骤(9)中的辐照参数包括辐照能量、辐照频率以及辐照时间,其值分别设置为1J、10Hz、60min。
进一步地,所述步骤(10)中的高速冷冻离心机工作参数为10000rpm,离心时间为20min。
进一步地,所述步骤(11)中的热处理分为两段,其中第一段为300℃、退火1h,第二段为500℃、退火2h,煅烧过程中通入的气氛均为N2/S混合气氛,气体流速为100sccm。
(三)有益效果
本发明的上述技术方案具有如下有益的技术效果:
(1)本发明所采用的烧蚀靶材具有超高纯度,所制备的荧光粉具有高的发光效率及高的色纯度,基本不受其他外来离子的影响。
(2)本发明提出了一种优化的烧蚀液配比,可以在激光烧蚀及辐照过程中有效地调控颗粒的形貌及粒度,满足器件的实际使用需求。
(3)本发明提出了一种烧蚀结合辐照的荧光粉制备及修饰工艺,在纳米颗粒形成以后通过引入辐照过程可以使粒度分布的更均匀,同时引入的超声过程也可以很好地提高产物的分散性能。
(4)本发明提出的冷冻离心工艺可以很好地保护和分离纳米颗粒,提出的分段热处理工艺可以提高材料的结晶性,对于产物最终的性能有很大的提升。
(5)本发明提出的方法适用于多种斓系硫氧化物体系,通过激活剂离子的调节,可以实现多色可调发光。
附图说明
图1 为本发明中硫氧化物荧光粉的制备流程示意图。
图2为实施例1所得Gd2O2S:Tb3+荧光粉的 XRD谱图。
图3为实施例1所得Gd2O2S:Tb3+荧光粉的 EDX图。
图4为实施例1所得Gd2O2S:Tb3+荧光粉的 SEM谱图。
图5为实施例1所得Gd2O2S:Tb3+荧光粉的 PL谱图。
图6为实施例1所得Gd2O2S:Tb3+荧光粉的 CL谱图。
图7为实施例2所得Gd2O2S:Tm3+荧光粉的 XRD谱图。
图8为实施例2所得Gd2O2S:Tm3+荧光粉的 SEM谱图。
图9为实施例2所得Gd2O2S:Tm3+荧光粉的 PL谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。
实施例1:
(1)超纯靶材的预处理工艺
将纯度大于99.9999%的超纯Gd靶材利用线切割机切割为3cm*3cm*3mm的片状试样,然后将线切割后的片状靶材先置于丙酮溶液中超声清洗30min,后置于超纯水中继续超声清洗30min,清洗完毕后将靶材置于超净干燥箱中,60℃烘干备用。靶材具有高纯度,最终制备出来的荧光材料纯度也很高,不受其它外来元素的干扰,最终的产物可以实现高纯度、高光效以及高纯光色。
(2)激光液相烧蚀工艺
配置10ml烧蚀液,体积及成分占比分别为:40% 二甲基亚砜、30% 正丁醇、15%乙醇、5% 油酸与10% Tb(NO3)3溶液。优化后的烧蚀液可以提供足够的硫源,同时有效地控制烧蚀过程中晶粒的过度长大,对形貌也有一定的控制作用。将烘干后的片状靶材置于激光光热反应釜中,随后将烧蚀液倒入激光光热反应釜,使靶材上表面距离烧蚀液液面5mm。将光热反应釜与大功率超声波清洗机、旋转位移平台进行组合,其中光热反应釜置于大功率超声波清洗机箱体内部,超声波清洗机置于旋转位移平台上方。在烧蚀过程中引入超声可以很大程度上防止纳米颗粒的团聚,烧蚀过程中引入旋转位移平台可以使激光不断烧蚀新的表面,有效地提高烧蚀效率。使光热反应釜保持密闭,调节光热反应釜内部的温度为60℃,压力为2Mpa,并向反应釜内部通入氩气,气体流速为80sccm。对烧蚀过程中温度、压力等参数的精细调节可以优化产物的结晶度、粒度,从而一定程度上提高了最终产物的性能。
启动纳秒激光器,激光经过扩束镜后形成线状激光光束,此时调节激光光路,使得光束进入光热反应釜并落在靶材表面。分别启动大功率超声波清洗机与旋转位移平台,使烧蚀过程中激光能够均匀烧蚀到片状靶材的整个表面,同时伴随超声过程。其中大功率超声波清洗机工作频率为50KHz,旋转位移平台的位移参数为1cm/min。
调节纳秒激光器的烧蚀参数,烧蚀参数包括烧蚀能量,烧蚀频率,烧蚀时间以及烧蚀波长,其值分别设置为2J,10Hz,30min,1064nm。启动激光器,开始对靶材进行烧蚀。
烧蚀完毕后,调整激光器的发射波长至532nm,将烧蚀模式改为辐照模式,调节辐照参数,辐照参数包括辐照能量,辐照频率以及辐照时间,其值分别设置为1J,10Hz,60min。随后启动大功率超声波清洗机和旋转位移平台。大功率超声波清洗机工作频率为50KHz,旋转位移平台的位移参数为1cm/min。使辐照光斑均匀地作用于光热反应釜内的胶体溶液,辐照过程中伴随有超声过程。激光烧蚀+激光辐照的双重调控工艺可以使纳米颗粒的粒度、分散性以及形貌得到进一步优化,对产物的发光效率有很大的提升。
(3)胶体纳米颗粒的后处理工艺
辐照完毕后,将光热反应釜内的胶体溶液取出,先以异丙醇为溶剂在高速冷冻离心机中进行三次离心清洗,再以去离子水为溶剂在高速冷冻离心机中进行三次离心清洗。
收集离心清洗后的颗粒,置于真空管式炉中,调整煅烧参数,进行热处理。热处理分为两段,其中第一段为300℃,退火1h,第二段为500℃,退火2h,煅烧过程中通入的气氛均为N2/S混合气氛,气体流速为100sccm。热处理后的产物即为最终的硫氧化物荧光粉。激光制备的纳米颗粒经退火处理后可以进一步提高结晶度,提高最终荧光产物的性能。
(4)测试结果
图2为实施例1所得Gd2O2S:Tb3+荧光材料的 XRD谱图,可以看出该材料有高的结晶度。
图4为实施例1所得Gd2O2S:Tb3+荧光材料的 SEM谱图,可以看出晶粒粒度分布在20-100nm之间,分散性能良好。
图3为实施例1所得Gd2O2S:Tb3+荧光材料的 EDX图,可以看出材料中含有Gd,Tb,S,O元素,说明激活剂掺杂成功,具有高纯度。
图5为实施例1所得Gd2O2S:Tb3+荧光材料的PL谱图,可以看出材料具有四个较强的发射峰,其中最强发射为545nm,发射强度高。
图6为实施例1所得Gd2O2S:Tb3+荧光材料的CL谱图,可以看出材料具有较高的阴极射线激发发光效率,最强发射在545nm处。
实施例2:将实施例1中激光液相烧蚀工艺中体积分数为10%的Tb(NO3)3溶液替换为体积分数为10%的 Tm(NO3)3溶液,其它制备参数均保持不变。
图7为实施例2所得Gd2O2S:Tm3+荧光材料的XRD谱图,可以看出该材料结晶度较高。
图8为实施例2所得Gd2O2S:Tm3+荧光材料的 SEM图,可以看出晶粒粒度分布在20-100nm之间,分散性能良好。
图9为实施例2所得Gd2O2S:Tm3+荧光材料的PL谱图,可以看出材料的最强发射在455nm处,具有高的发射强度。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (3)

1.一种激光制备硫氧化物荧光粉的方法,具有如下步骤:
(1)将纯度大于99.9999%的超纯靶材利用线切割机切割成3cm*3cm*3mm的片状试样;
(2)将步骤(1)中线切割后的片状靶材先置于丙酮溶液中超声清洗30min,然后置于超纯水中继续超声清洗30min,清洗完毕后将靶材置于超净干燥箱中,60℃烘干备用;
(3)将步骤(2)中烘干后的片状靶材置于激光光热反应釜中,然后将烧蚀液倒入激光光热反应釜,使靶材上表面距离烧蚀液液面5mm;
(4)将步骤(3)中的光热反应釜与大功率超声波清洗机、旋转位移平台进行组合,其中光热反应釜置于大功率超声波清洗机箱体内部,超声波清洗机置于旋转位移平台上方;
(5)使光热反应釜保持密闭,调节反应釜内部的温度为60℃,压力为2Mpa,并向光热反应釜内部通入氩气,气体流速为80sccm;
(6)启动纳秒激光器,激光经过扩束镜后形成线状激光光束,此时调节激光光路,使得光束进入光热反应釜并落在靶材表面;
(7)分别启动步骤(4)中的大功率超声波清洗机与旋转位移平台,使烧蚀过程中激光能够均匀烧蚀到片状靶材的整个表面,同时伴随超声过程;
(8)调节步骤(6)中纳秒激光器的烧蚀参数,开始对靶材进行烧蚀,所述烧蚀参数包括烧蚀能量、烧蚀频率、烧蚀时间以及烧蚀波长,其值分别设置为2J、10Hz、30min、1064nm;
(9)烧蚀完毕后,调整激光器的发射波长至532nm,将烧蚀模式改为辐照模式,调节辐照参数,所述辐照参数包括辐照能量,辐照频率以及辐照时间,其值分别为1J,10Hz,60min;同时启动步骤(4)中的大功率超声波清洗机和旋转位移平台,使辐照光斑均匀地作用于光热反应釜内的胶体溶液,辐照过程中伴随有超声过程;
(10)辐照完毕后,将光热反应釜内的胶体溶液取出,先以异丙醇为溶剂在高速冷冻离心机中进行三次离心清洗,再以去离子水为溶剂在高速冷冻离心机中进行三次离心清洗;
(11)收集步骤(10)中离心清洗后的颗粒,置于真空管式炉中,调整煅烧参数,进行分段热处理,其中第一段为300℃,退火1h,第二段为500℃,退火2h,煅烧过程中通入的气氛均为N2/S混合气氛,气体流速为100sccm;
(12)收集步骤(11)中分段热处理后的产物即为最终的硫氧化物荧光粉;
其中,所述硫氧化物荧光粉为Gd2O2S:Tb3+或Gd2O2S:Tm3+;所述步骤(1)中的超纯靶材成分为Gd;所述步骤(3)中的烧蚀液为有机溶剂与稀土硝酸盐溶液的混合溶液,其中有机溶剂包括二甲基亚砜、正丁醇、乙醇和油酸,且分别占烧蚀液体积总量的40%、30%、15%、5%,其中稀土硝酸盐溶液为Tb(NO3)3、Tm(NO3)3中的一种,占烧蚀液体积总量的10%。
2.根据权利要求1所述的一种激光制备硫氧化物荧光粉的方法,其特征在于,所述步骤(7)和步骤(9)中的大功率超声波清洗机工作频率均为50KHz,旋转位移平台的位移参数均为1cm/min。
3.根据权利要求1所述的一种激光制备硫氧化物荧光粉的方法,其特征在于,所述步骤(10)中的高速冷冻离心机工作参数为10000rpm,离心时间为20min。
CN202210992973.2A 2022-08-18 2022-08-18 一种激光制备硫氧化物荧光粉的方法 Active CN115368894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210992973.2A CN115368894B (zh) 2022-08-18 2022-08-18 一种激光制备硫氧化物荧光粉的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210992973.2A CN115368894B (zh) 2022-08-18 2022-08-18 一种激光制备硫氧化物荧光粉的方法

Publications (2)

Publication Number Publication Date
CN115368894A CN115368894A (zh) 2022-11-22
CN115368894B true CN115368894B (zh) 2023-08-04

Family

ID=84065339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210992973.2A Active CN115368894B (zh) 2022-08-18 2022-08-18 一种激光制备硫氧化物荧光粉的方法

Country Status (1)

Country Link
CN (1) CN115368894B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272589A (ja) * 2004-03-24 2005-10-06 Mitsubishi Chemicals Corp 蛍光体、それを用いた発光装置、画像表示装置及び照明装置
KR100821357B1 (ko) * 2006-10-09 2008-04-11 재단법인서울대학교산학협력재단 반도체 나노 구조체의 제조방법
CN104781729A (zh) * 2012-09-17 2015-07-15 麦考瑞大学 增强稀土掺杂颗粒中的上转换发光
CN113563885A (zh) * 2021-08-04 2021-10-29 北京科技大学 一种Gd2O2S:Tb超细荧光粉的激光液相烧蚀制备方法
CN113663624A (zh) * 2021-08-04 2021-11-19 北京科技大学 一种制备超细阴极射线荧光粉的设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540173B2 (en) * 2010-02-10 2013-09-24 Imra America, Inc. Production of fine particles of functional ceramic by using pulsed laser
WO2016079681A1 (en) * 2014-11-17 2016-05-26 Plasma Diagnostics And Technologies S.R.L. Method for producing colloids comprising nanoparticles
CN113528139B (zh) * 2021-08-04 2022-11-08 北京科技大学 一种激光辐照调控硫氧化物荧光粉形貌和粒径的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272589A (ja) * 2004-03-24 2005-10-06 Mitsubishi Chemicals Corp 蛍光体、それを用いた発光装置、画像表示装置及び照明装置
KR100821357B1 (ko) * 2006-10-09 2008-04-11 재단법인서울대학교산학협력재단 반도체 나노 구조체의 제조방법
CN104781729A (zh) * 2012-09-17 2015-07-15 麦考瑞大学 增强稀土掺杂颗粒中的上转换发光
CN113563885A (zh) * 2021-08-04 2021-10-29 北京科技大学 一种Gd2O2S:Tb超细荧光粉的激光液相烧蚀制备方法
CN113663624A (zh) * 2021-08-04 2021-11-19 北京科技大学 一种制备超细阴极射线荧光粉的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
脉冲激光制备纳米材料研究进展;王莉萍,等;激光与光电子学进展;第58卷(第09期);第112-123页 *

Also Published As

Publication number Publication date
CN115368894A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Hinklin et al. Transparent, polycrystalline upconverting nanoceramics: towards 3‐D displays
Wang et al. Polychromatic visible photoluminescence in porous ZnO nanotubes
CN101786653B (zh) 一种掺杂稀土元素氧化锌一维纳米材料的制备方法和应用
CN105826362A (zh) 一种氧化镓纳米线阵列及其制备方法
CN113563885B (zh) 一种Gd2O2S:Tb超细荧光粉的激光液相烧蚀制备方法
Wan et al. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4: Mn2+ phosphor
CN113620262B (zh) 稀土掺杂氮化硼纳米片的制备方法及纳米片
CN108083325B (zh) 一种CsPbBr3纳米晶及基于微波法合成不同维度CsPbBr3纳米晶的方法
Wang et al. Morphology and optical properties of YVO4: Eu3+ nanoparticles fabricated by laser ablation in ethanol
CN109233821B (zh) 一种多色发光碳量子点及其制备方法与应用
CN102392305B (zh) 一种金属离子掺杂的钇铝石榴石晶体薄膜的制备方法
Xiaoxu et al. Synthesis of Y2O3 phosphor by a hydrolysis and oxidation method
US20220306540A1 (en) Method for preparing infrared radiation ceramic material
CN115368894B (zh) 一种激光制备硫氧化物荧光粉的方法
CN113528139B (zh) 一种激光辐照调控硫氧化物荧光粉形貌和粒径的处理方法
KR101635773B1 (ko) 축광성 형광체 나노분말의 제조방법 및 이에 의해 제조된 축광성 형광체 나노분말을 이용한 형광 도자기의 제조방법
Subannajui Super-fast synthesis of ZnO nanowires by microwave air-plasma
CN110655923A (zh) 一种特定尺寸硒化镉量子点的绿色制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
CN114517091B (zh) 一种稀土离子掺杂氮化硅纳米线及其制备方法
CN110396408B (zh) 一种小粒径YAG:Ce荧光粉的制备方法
CN108642444B (zh) 一种高透明光致发光的氧化锌-聚乙烯复合涂层的制备方法
CN103422058A (zh) 一种掺硼富硅氧化硅薄膜及其制备方法和应用
Yang et al. Fine particle Sr2SiO4: Tb phosphor for the plasma display panel prepared by a combined approach
CN109781670B (zh) 一种上转换荧光增强衬底及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant