CN115321979B - 一种多元素掺杂的铅基压电陶瓷及其制备方法 - Google Patents
一种多元素掺杂的铅基压电陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN115321979B CN115321979B CN202210917503.XA CN202210917503A CN115321979B CN 115321979 B CN115321979 B CN 115321979B CN 202210917503 A CN202210917503 A CN 202210917503A CN 115321979 B CN115321979 B CN 115321979B
- Authority
- CN
- China
- Prior art keywords
- piezoelectric ceramic
- ball milling
- lead
- hours
- raw materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
- C04B35/493—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5116—Ag or Au
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明属于压电陶瓷材料技术领域,具体涉及一种多元素掺杂的四元系铅基压电陶瓷及其制备方法与应用。所述多元素掺杂铅基压电陶瓷,其化学式为xPb(Mg1/3Nb2/3)O3‑yPb(Zn1/ 3Nb2/3)O3‑(1‑x‑y)Pb(ZrzTi1‑z)O3‑aMnCO3‑bLa2O3‑cCeO2‑dCuO;通过将原料进行球磨,预烧,制成生坯,排胶处理,在空气中烧结等过程制备获得。本发明所制备的多元素掺杂四元铅基压电陶瓷在1kV/mm的电场下的逆压电系数最高达到1150pm/V,压电常数d33最高达到880pC/N,平面机电耦合系数kp最高达到83.68%,介电损耗tanδ不高于0.02。所述压电陶瓷材料与AZ31B镁合金和环氧树脂匹配层、钨粉和环氧树脂备衬层封装后的换能器,室温至100℃的谐振频率波动低于1%,‑6dB带宽最高达到79%,插入损耗不高于‑15dB。
Description
发明领域
本发明属于压电陶瓷材料技术领域,具体涉及一种多元素掺杂的铅基压电陶瓷及其制备方法与应用。
背景技术
超声换能器是可以进行电能和声能相互转换的装置,被广泛应用于工业、医学、军事等领域。用来发射声波的换能器称为发射器,可以将电能先转换成机械能,再将机械能转换成声能,一般要求换能器有大的输出功率和高的能量转换效率;用来接收声波的换能器称为接收器,可以先将声能转换成机械能,再转换成电能,一般要求宽的频带和高的灵敏度。超声换能器种类很多,有压电换能器、磁致伸缩换能器、静电换能器(电容型换能器)、机械型换能器等。目前压电陶瓷材料具有超高的机电转换效率(可以达到80%以上)、容易成型、通过调控成分可以获得不同的性能、价格低廉、性能稳定等优点,成为超声研究及应用中最常用的材料。
目前广泛应用于超声换能器的压电陶瓷材料为铅基材料,有一元系、二元系、三元系等。一元系有钛酸铅、偏铌酸铅等,二元系有锆钛酸铅、偏铌酸铅钡等,三元系主要是在锆酸铅—钛酸铅二元系基础上发展起来的固溶体压电陶瓷,种类很多,例如铌镁—锆—钛酸铅、铌锌—锆—钛酸铅、铌钴—锆—钛酸铅、铌锰—锆—钛酸铅等。相比一元系和二元系,多元系在性能的调制上有更大的选择空间,同时具有优异的烧结性能(烧结范围拓宽、烧结温度降低、铅挥发量降低)、显微结构(均匀致密、气孔率低、无明显异常晶粒长大现象)、机械强度、时间和温度稳定性等。因此目前的超声换能器用压电陶瓷材料的研究侧重于多元系。
压电陶瓷材料的性能直接决定超声换能器的分辨率。随着超声换能器在小型化和微型化检测领域的应用拓展,特别是医学超声成像领域的浅表血管、皮下组织、眼睛等超声成像的要求,对铅基压电材料的压电系数和机电耦合系数也提出了更高的要求。
发明内容
为克服上述技术的缺陷,本发明的目的在于提供一种Mn,La,Ce,Cu多元素掺杂xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3四元系铅基压电陶瓷及其制备方法,所制备的压电陶瓷在1kV/mm的电场下的逆压电系数最高达到1150pm/V,压电常数d33最高达到880pC/N,平面机电耦合系数kp最高达到83.68%,介电损耗tanδ不高于0.02。该陶瓷与AZ31B镁合金和环氧树脂匹配层、钨粉和环氧树脂备衬层封装后的换能器,室温至100℃的谐振频率波动低于1%,-6dB带宽不低于75%,插入损耗不高于-15dB。
为了达到上述目的,本发明的技术方案为:
一方面,本发明提供一种多元素掺杂的四元系铅基压电陶瓷,具体为Mn,La,Ce,Cu多元素掺杂xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3四元系铅基压电陶瓷;其化学式为xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3-aMnCO3-bLa2O3-cCeO2-dCuO;
其中x为0.01~0.15,y为0.01~0.15,z为0.5~0.55,a为0.001~0.05,b为0.001~0.05,c为0.001~0.05,d为0.001~0.05。
另一方面,本发明提供一种所述多元素掺杂的四元系铅基压电陶瓷的制备方法,包括以下步骤:
(1)分别称取PbO,TiO2,MgO,La2O3,CeO2,CuO,ZnO,Nb2O5,ZrO2和MnCO3;
(2)将步骤(1)称取好的混合原料依次进行一次球磨、预烧、二次球磨、二次预烧、三次球磨、制备出生坯;
(3)将步骤(2)得到的生坯缓慢升温至400-600℃,保温进行排胶处理;然后继续升温至1350-1450℃,保温;然后迅速降温至1200-1300℃,保温,烧结全程在空气气氛中进行,即可得到多元素掺杂铅基压电陶瓷。
进一步地,步骤(1)所述的PbO,MgO,Nb2O5,ZnO,ZrO2,TiO2,MnCO3,La2O3,CeO2和CuO摩尔比为1:0-0.05:0-0.20:0-0.025:0.35-0.55:0.315-0.5:0.001-0.15:0.0005-0.075:0.001-0.15:0.001-0.15。
进一步地,步骤(2)中所述的一次球磨的过程为:将称取好的原料放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质超纯水,其中原料、锆球、超纯水的质量比为1:10-15:3-6。
进一步地,步骤(2)中所述的一次球磨、二次球磨和三次球磨的时间为8-20小时。
进一步地,步骤(2)中所述的预烧与二次预烧的预烧温度为800-1000℃,保温时间3-6小时。
进一步地,步骤(3)所述的升温至400-600℃的速率为1-5℃/min,升温后的保温时间为3-6小时。
进一步地,步步骤(3)所述的升温至1350-1450℃的速率为1-5℃/min,升温后的保温时间为1-5分钟。
进一步地,步骤(3)所述的降温至1200-1300℃的速率为10-20℃/min,降温后的保温时间为5-10小时。
进一步地,所述制备方法,具体包括如下步骤:
步骤(1):原料PbO,MgO,Nb2O5,ZnO,ZrO2,TiO2,MnCO3,La2O3,CeO2,CuO在真空干燥箱内干燥10-20小时,干燥温度为80-100℃,并按照化学计量比称取;所述的PbO,MgO,Nb2O5,ZnO,ZrO2,TiO2,MnCO3,La2O3,CeO2和CuO摩尔比为1:0.0033-0.05:0.0067-0.20:0.003-0.025:0.35-0.55:0.315-0.5:0.001-0.15:0.0005-0.075:0.001-0.15:0.001-0.15;
步骤(2):一次球磨:将称取好的原料放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质超纯水,其中原料、锆球、超纯水的质量比为1:10-15:3-6,将混合物置于行星球磨机上球磨混料8-20小时;
预烧:将一次球磨后的混合料烘干后,在马弗炉中预烧合成铅基压电陶瓷粉末,预烧温度为800-1000℃,保温时间3-6小时;
二次球磨:将预烧后的铅基粉末再次放入球磨罐中,加入适量球磨介质超纯水,置于行星球磨机上球磨混料8-20小时;
二次预烧:将二次球磨后的混合料烘干后,在马弗炉中二次预烧合成铅基粉末,预烧温度为800-1000℃,保温时间3-6小时;
三次球磨:将完成二次预烧后的铅基粉末再次放入球磨罐中,加入适量球磨介质超纯水,置于行星球磨机上球磨混料8-20小时;
制备生坯:将三次球磨后的混合料在烘箱烘干后,加入适量聚乙烯醇缩丁醛或聚乙烯醇作为粘结剂进行研磨造粒,在2MPa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆片生坯;
步骤(3)排胶烧结:将步骤(7)得到的圆片生坯以1-5℃/min的升温速度至400-600℃保温3-6小时进行排胶处理,然后以1-5℃/min升温速度升温至1350-1450℃,保温1-5分钟,然后以10-20℃/min降温速度迅速降温至1200-1300℃,保温5-10小时,烧结全程在空气气氛中进行,烧结采用马弗炉。
再一方面,本发明提供所述压电陶瓷的应用,具体包括在制备超声换能器中的应用。
与现有技术相比,本发明具有以下有益效果
本发明通过在xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3四元铅基压电陶瓷掺杂Mn,La,Ce和Cu元素得到多元素掺杂的四元系铅基压电陶瓷xPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-(1-x-y)Pb(ZrzTi1-z)O3-aMnCO3-bLa2O3-cCeO2-dCuO。所制备的压电陶瓷在1kV/mm的电场下的逆压电系数最高达到1150pm/V,压电常数d33最高达到880pC/N,平面机电耦合系数kp最高达到83.68%,介电损耗tanδ不高于0.02。该陶瓷与AZ31B镁合金和环氧树脂匹配层、钨粉和环氧树脂备衬层封装后的换能器,室温至100℃的谐振频率波动低于1%,-6dB带宽最高达到79%,插入损耗不高于-15dB。
附图说明
图1为实施例1中制备的压电陶瓷的X射线衍射(XRD)图谱。
图2为实施例1中制备的压电陶瓷的扫描电子显微镜(SEM)照片。
图3为实施例1中制备的压电陶瓷的电滞回线。
图4为实施例1中制备的压电陶瓷的电极应变电场曲线。
图5为实施例2中制备的压电陶瓷的扫描电子显微镜(SEM)照片。
图6为实施例2中制备的压电陶瓷的介电常数随温度的变化曲线。
图7为实施例2中制备的压电陶瓷的电滞回线。
图8为实施例2中制备的压电陶瓷的电极应变电场曲线。
图9为实施例3中制备的压电陶瓷的扫描电子显微镜(SEM)照片。
图10为实施例3中制备的压电陶瓷的电滞回线。
图11为实施例4中制备的压电陶瓷的扫描电子显微镜(SEM)照片。
图12为实施例4中制备的压电陶瓷的介电常数随温度的变化曲线。
图13为实施例4中制备的压电陶瓷的电滞回线。
图14为实施例4中制备的压电陶瓷的电极应变电场曲线。
具体实施方式
下面将以实施例的方式对本申请作进一步的详细描述,以使本领域技术人员能够实践本申请。应当理解,可以采用其他实施方式,并且可以做出适当的改变而不偏离本申请的精神或范围。为了避免对于使本领域技术人员能够实践本申请来说不必要的细节,说明书可能省略了对于本领域技术人员来说已知的某些信息。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围仅由所附权利要求界定。以下的实施例便于更好地理解本申请,但并不用来限制本申请的范围。
以下实施例1-4中所制备的多元素掺杂四元铅基压电陶瓷的铁电、压电、介电性能根据中华人民共和国国家标准压电陶瓷材料性能测试方法纵向压电应变常d33的静态测试(GB/T3389.2-1999);《铁电陶瓷材料电滞回线的准静态测试方法》(GB/T6426-1999);《介电晶体介电性能的试验方法》(GB/T16822-1997);《压电陶瓷材料性能测试方法电场应变特性的测试》(GB/T16304-2008);《压电陶瓷材料性能测试方法柱体纵向长度伸缩振动模式》(GB/T3389.5-1995);《压电陶瓷材料性能测试方法性能参数的测试》(GB/T3389-2008)所公开的方法进行测试。
实施例1
Mn,La,Ce和Cu多元素共掺杂的Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(ZrzTi1-z)O3四元铅基压电陶瓷,其化学式为0.05Pb(Mg1/3Nb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3-0.9Pb(ZrzTi1-z)O3-0.01MnCO3-0.01La2O3-0.005CeO2-0.005CuO。
上述压电陶瓷具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在950℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2)并进行第三次球磨,球磨12小时烘干后加入聚乙烯醇缩丁醛粘结剂进行研磨造粒,在2MPa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯;
(4)将步骤(3)得到的圆片以3℃/min的升温速度至600℃保温3小时进行排胶处理,排胶后的圆片然后以5℃/min升温速度升温至1350℃,保温5分钟,然后以20℃/min降温速度迅速降温至1300℃,保温8小时,烧结全程在空气气氛中进行,烧结采用马弗炉。对烧结后的陶瓷进行晶体结构和显微结构的分析;
(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的压电陶瓷的XRD图谱见图1,从图中可以看出,制备的铅基压电陶瓷结晶性良好且无明显杂相,呈现典型的MPB结构;从图2陶瓷的SEM照片可以看出,陶瓷烧结致密,无明显气孔。对本实施例所制备的陶瓷进行铁电、压电、介电性能测试,从图3的电滞回线看出,陶瓷具有良好的铁电性能;从图4的单极应变电场曲线可以看出,在1kV/mm的电场下,陶瓷的d33 *达到1150pm/V。其他的电学性能分别为:压电常数d33=880pC/N;平面机电耦合系数kp=83.68%;介电常数ε=2887,介电损耗tanδ=0.015。该陶瓷与AZ31B镁合金和环氧树脂匹配层、钨粉和环氧树脂备衬层封装后的换能器,室温至100℃的谐振频率波动只有0.79%,-6dB带宽79%,插入损耗-15dB。
实施例2
Mn,La,Ce和Cu多元素共掺杂的Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(ZrzTi1-z)O3四元铅基压电陶瓷,其化学式为0.1Pb(Mg1/3Nb2/3)O3-0.1Pb(Zn1/3Nb2/3)O3-0.8Pb(ZrzTi1-z)O3-0.05MnCO3-0.02La2O3-0.01CeO2-0.01CuO。
上述压电陶瓷具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在950℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2)并进行第三次球磨,球磨12小时烘干后加入聚乙烯醇缩丁醛粘结剂进行研磨造粒,在2MPa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯;
(4)将步骤(3)得到的圆片以3℃/min的升温速度至600℃保温3小时进行排胶处理,排胶后的圆片然后以5℃/min升温速度升温至1450℃,保温1分钟,然后以20℃/min降温速度迅速降温至1200℃,保温10小时,烧结全程在空气气氛中进行,烧结采用马弗炉。对烧结后的陶瓷进行晶体结构和显微结构的分析;
(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的压电陶瓷的SEM图如图5所示,陶瓷烧结致密,无明显气孔。对本实施例所制备的陶瓷进行铁电、压电、介电性能测试,从图6的介温曲线可以看出,陶瓷MPB温区处于室温附近;从图7的电滞回线看出,陶瓷具有良好的铁电性能;从图8的单极应变电场曲线可以看出,在1kV/mm的电场下,陶瓷的d33 *达到910pm/V。其他的电学性能分别为:压电常数d33=650pC/N;平面机电耦合系数kp=75.68%;介电常数ε=2671,介电损耗tanδ=0.015。该陶瓷与AZ31B镁合金和环氧树脂匹配层、钨粉和环氧树脂备衬层封装后的换能器,室温至100℃的谐振频率波动只有0.82%,-6dB带宽75%,插入损耗-23dB。
实施例3
Mn,La,Ce和Cu多元素共掺杂的Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(ZrzTi1-z)O3四元铅基压电陶瓷,其化学式为0.15Pb(Mg1/3Nb2/3)O3-0.15Pb(Zn1/3Nb2/3)O3-0.7Pb(ZrzTi1-z)O3-0.05MnCO3-0.05La2O3-0.015CeO2-0.015CuO。
上述压电陶瓷具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在900℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2)并进行第三次球磨,球磨12小时烘干后加入聚乙烯醇粘结剂进行研磨造粒,在2MPa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯;
(4)将步骤(3)得到的圆片以3℃/min的升温速度至600℃保温3小时进行排胶处理,排胶后的圆片然后以5℃/min升温速度升温至1400℃,保温5分钟,然后以20℃/min降温速度迅速降温至1350℃,保温6小时,烧结全程在空气气氛中进行,烧结采用马弗炉。对烧结后的陶瓷进行晶体结构和显微结构的分析;
(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的压电陶瓷的SEM照片,见图9,从图中可以看出,制备的铅基压电陶瓷烧结致密,无明显气孔。对本实施例所制备的陶瓷进行铁电、压电、介电性能测试,从图10的电滞回线看出,陶瓷具有良好的铁电性能;其他的电学性能分别为:压电常数d33=850pC/N;平面机电耦合系数kp=76.98%;介电常数ε=2608,介电损耗tanδ=0.019。
实施例4
Mn,La,Ce和Cu多元素共掺杂的Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(ZrzTi1-z)O3四元铅基压电陶瓷,其化学式为0.05Pb(Mg1/3Nb2/3)O3-0.05Pb(Zn1/3Nb2/3)O3-0.9Pb(ZrzTi1-z)O3-0.01MnCO3-0.01La2O3-0.05CeO2-0.05CuO。
上述压电陶瓷具体制备流程包括以下步骤:
(1)根据上述按化学通式的化学计量比称取原料,所有原料在真空干燥箱内干燥10小时,干燥温度为100℃;上述原料与氧化锆球和超纯水共同加入到尼龙球磨罐中,置于行星球磨机上球磨混料12小时;其中原料、锆球、超纯水的质量比为1:15:6;
(2)将球磨后的混合料烘干后,置于马弗炉内在900℃预烧4小时;
(3)将预烧后粉体再次球磨12小时烘干后,重复步骤(2)并进行第三次球磨,球磨12小时烘干后加入聚乙烯醇粘结剂进行研磨造粒,在2MPa下单向加压成型,得到直径约10mm,厚度约1mm的陶瓷圆形生坯;
(4)将步骤(3)得到的圆片以3℃/min的升温速度至600℃保温3小时进行排胶处理,排胶后的圆片然后以5℃/min升温速度升温至1400℃,保温5分钟,然后以20℃/min降温速度迅速降温至1300℃,保温6小时,烧结全程在空气气氛中进行,烧结采用马弗炉。对烧结后的陶瓷进行晶体结构和显微结构的分析;
(5)将烧结后的陶瓷两面印刷高温银浆,在600℃下烘烤0.5小时。然后置于70℃的硅油中,在电场强度为4kV/mm直流电场下极化30分钟,静置24小时后进行电学性能测试。
本实施例制备的压电陶瓷的SEM图如图11所示,陶瓷烧结致密,无明显气孔。对本实施例所制备的陶瓷进行铁电、压电、介电性能测试,从图12的介温曲线可以看出,陶瓷MPB温区处于室温附近;从图13的电滞回线看出,陶瓷具有良好的铁电性能;从图14的单极应变电场曲线可以看出,在1kV/mm的电场下,陶瓷的d33 *达到1050pm/V。其他的电学性能分别为:压电常数d33=800pC/N;平面机电耦合系数kp=81.34%;介电常数ε=2699,介电损耗tanδ=0.016。
Claims (5)
1.一种多元素掺杂的四元系铅基压电陶瓷的制备方法,其特征在于,所述陶瓷为Mn,La,Ce,Cu多元素掺杂的Pb(Mg1/3Nb2/3)O3 -Pb(Zn1/3Nb2/3)O3 -Pb(ZrzTi1-z )O3四元系铅基压电陶瓷;其化学式为0 .05Pb(Mg1 / 3Nb2/ 3) O3 -0 .05Pb(Zn1/3Nb2/ 3) O3 -0 .9Pb (ZrzTi1-z )O3 -0 .01MnCO3 -0 .01La2 O3 -0 .005CeO2 -0 .005CuO;所述z为0 .5-0 .55;
所述制备方法包括以下步骤:
(1)分别称取PbO,Ti O2,MgO,La2O3,CeO2,CuO,ZnO,Nb2O5,ZrO2和MnCO3;
(2)将步骤(1)称取好的混合原料依次进行球磨、预烧、二次球磨、二次预烧、三次球磨、制备出生坯;
(3)将步骤(2)得到的生坯缓慢升温至400-600℃,保温进行排胶处理;然后继续升温至1350-1450℃,保温;然后迅速降温至1200-1300℃,保温,烧结全程在空气气氛中进行,即可得到多元素掺杂铅基压电陶瓷;
步骤(3)中,所述升温至1350-1450℃的速率为1-5℃/min,升温后的保温时间为1-5分钟。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述球磨的过程为:将称取好的原料放入尼龙球磨罐中,球磨罐中放入适量氧化锆球,加入适量球磨介质超纯水,其中原料、锆球、超纯水的质量比为1:(10-15):(3-6)。
3.根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述的升温至400-600℃的速率为1-5℃/min,升温后的保温时间为3-6小时。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述的降温至1200-1300℃的速率为10-20℃/min,降温后的保温时间为5-10小时。
5.权利要求1-4任一项所述的方法制备的压电陶瓷在制备超声换能器中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210917503.XA CN115321979B (zh) | 2022-08-01 | 2022-08-01 | 一种多元素掺杂的铅基压电陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210917503.XA CN115321979B (zh) | 2022-08-01 | 2022-08-01 | 一种多元素掺杂的铅基压电陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115321979A CN115321979A (zh) | 2022-11-11 |
CN115321979B true CN115321979B (zh) | 2023-08-25 |
Family
ID=83919690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210917503.XA Active CN115321979B (zh) | 2022-08-01 | 2022-08-01 | 一种多元素掺杂的铅基压电陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115321979B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115321978B (zh) * | 2022-08-01 | 2023-08-25 | 苏州思若梅克电子科技有限公司 | 一种多层铅基压电陶瓷及其制备方法 |
CN115894021B (zh) * | 2022-12-26 | 2024-01-16 | 西安创研电子科技有限公司 | 一种高机械品质因数硬性压电陶瓷材料及其制备方法 |
CN117326866B (zh) * | 2023-12-01 | 2024-02-23 | 山东利恩斯智能科技有限公司 | 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法 |
CN117865672B (zh) * | 2023-12-08 | 2024-09-03 | 西安外事学院 | 应用于驱动器的低滞回耐高温铅基压电陶瓷及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1460093A (zh) * | 2001-03-30 | 2003-12-03 | Tdk株式会社 | 压电陶瓷及其制造方法以及压电元件 |
CN113716957A (zh) * | 2021-08-04 | 2021-11-30 | 深圳麦克韦尔科技有限公司 | 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8470211B2 (en) * | 2006-04-13 | 2013-06-25 | Agency For Science, Technology And Research | Ferroelectric ceramic material with a low sintering temperature |
-
2022
- 2022-08-01 CN CN202210917503.XA patent/CN115321979B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1460093A (zh) * | 2001-03-30 | 2003-12-03 | Tdk株式会社 | 压电陶瓷及其制造方法以及压电元件 |
CN113716957A (zh) * | 2021-08-04 | 2021-11-30 | 深圳麦克韦尔科技有限公司 | 陶瓷及其制备方法、陶瓷粉体、压电陶瓷和雾化装置 |
Non-Patent Citations (1)
Title |
---|
王雨等.烧成温度对Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3陶瓷介电老化性能的影响.《功能材料》.1994,第25卷(第3期),第238-242页. * |
Also Published As
Publication number | Publication date |
---|---|
CN115321979A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115321979B (zh) | 一种多元素掺杂的铅基压电陶瓷及其制备方法 | |
JP5063606B2 (ja) | 圧電単結晶及びその製造方法、並びにその圧電単結晶を利用した圧電応用部品及び誘電応用部品 | |
WO2009116683A1 (en) | Piezoelectric material | |
JP2518703B2 (ja) | 積層型複合圧電体およびその製造方法 | |
KR101738983B1 (ko) | 압전 세라믹 소결체, 압전 세라믹 소결체의 제조 방법 및 전자기기 | |
CN110845230A (zh) | 一种三元系铌钪酸铅-铌镁酸铅-钛酸铅陶瓷及其制备方法 | |
EP2269965B1 (en) | Piezoelectric ceramic and piezoelectric ceramic composition | |
CN118063212A (zh) | 一种锆钛酸铅压电陶瓷材料及其制备方法 | |
JP4496579B2 (ja) | 圧電セラミック組成物 | |
KR930002641B1 (ko) | 강유전성 세라믹스 | |
CN115403375B (zh) | 一种锆钛酸铅压电陶瓷材料及其制备方法 | |
CN112759390A (zh) | 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法 | |
JP3468461B2 (ja) | 圧電セラミック組成物 | |
CN107056281B (zh) | 一种高应变钛酸铋钠基陶瓷及其制备方法 | |
JP2001294482A (ja) | 圧電磁器 | |
JPH0516380B2 (zh) | ||
JPH10324569A (ja) | 圧電体磁器組成物 | |
JP3384048B2 (ja) | 圧電磁器組成物 | |
JP3214055B2 (ja) | アクチュエータ用圧電セラミック組成物 | |
WO2006093002A1 (ja) | 圧電磁器組成物 | |
US20230329120A1 (en) | Piezoelectric single crystal including internal electric field, method for manufacturing same, and piezoelectric and dielectric application components using same | |
JP2811801B2 (ja) | アクチュエータ用圧電セラミック組成物 | |
US12031232B2 (en) | Piezoelectric single crystal, fabrication method therefor, and piezoelectric and dielectric application parts using same | |
CN115504783B (zh) | 一种knn基无铅压电陶瓷及其制备方法 | |
US11812665B1 (en) | Hard piezoelectric ceramic composition for multilayer piezoelectric transformers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |