CN115301226B - 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法 - Google Patents

用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法 Download PDF

Info

Publication number
CN115301226B
CN115301226B CN202211068810.1A CN202211068810A CN115301226B CN 115301226 B CN115301226 B CN 115301226B CN 202211068810 A CN202211068810 A CN 202211068810A CN 115301226 B CN115301226 B CN 115301226B
Authority
CN
China
Prior art keywords
catalyst
cerium
water gas
reverse water
gas shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211068810.1A
Other languages
English (en)
Other versions
CN115301226A (zh
Inventor
王燕刚
邹旭晖
李溪
沈张锋
潘云翔
曹勇勇
夏启能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202211068810.1A priority Critical patent/CN115301226B/zh
Publication of CN115301226A publication Critical patent/CN115301226A/zh
Application granted granted Critical
Publication of CN115301226B publication Critical patent/CN115301226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法,该催化剂是由活性组分铌铈固溶体及其表面包覆的氮化碳所组成。其制备方法包括如下:首先将铌酸铵草酸盐制成水溶液后与尿素混合,搅拌至溶解,再加入硝酸铈搅拌至充分溶解;随后将所得溶液置于烘箱一定温度下烘干,将得到的晶体研磨均匀;将研磨后的材料于空气气氛下高温焙烧,冷却后得到逆水煤气变换反应催化剂。该催化剂具有一定的介孔结构,且表面富含氧空位和不含镍钴等过渡金属等特点,在逆水煤气变换反应中表现出很好的催化活性和产物选择性,而且制备方法简单,易于工业化放大。

Description

用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及 其制备方法
技术领域
本发明涉及一种用于逆水煤气变换反应的催化剂,具体的说是一种用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法,属于催化剂制备技术领域。
背景技术
因人类的生产活动燃烧了大量的化石能源,空气中主要的温室气体——二氧化碳(CO2)的浓度正在不断上升,引发一系列严峻的环境问题,如气候变暖、冰川融化和海洋酸化等,已严重威胁到人类的生存环境。同时,CO2也是世界上储量最丰富和最为廉价的C1资源,其资源化利用已成为当今世界研究的热门课题之一。其中二氧化碳逆水煤气变换反应(CO2+H2=CO+H2O)被认为是最有应用前景的反应之一,通过该反应制备CO,将在未来成为替代煤化工生产合成气的有效方案,进一步实现推进工业绿色化学反应。所以开发具有高活性、高稳定性和高选择性的逆水煤气变换反应催化剂对二氧化碳的利用和能源的生产具有重大的意义。
逆水煤气变换反应是一个可逆反应,一般情况下,适用于水煤气变换反应的催化剂也适用于逆水煤气变换反应,这类催化剂以过渡金属基催化剂为主。但是逆水煤气变换反应属于吸热反应,高温有利于二氧化碳的转化和一氧化碳的形成。
研究发现小的过渡金属颗粒有助于提高一氧化碳的选择性(ACS Catal.,2013,3:2449-2455),然而虽然过渡金属基催化剂具有良好的选择性,但其热稳定差,高温下易烧结,活性也不够高。目前,常采用可还原性氧化物作为载体,利用载体和活性金属之间可以形成强相互作用来促进高分散金属颗粒的形成。但在高温环境中仍然会出现团聚现象。贵金属由于其很高的反应活性而受到了高度关注,并被应用到了逆水煤气变换反应中。例如,Kim等将Pt纳米粒子分别负载到TiO2和Al2O3上,负载量为1%。这种方法有效提升了Pt活性位点的暴露面,而由于催化剂载体对强相互作用的影响较大,导致催化剂的活性不稳定,且CO的选择性较低,因此不能实现更多的推广应用(Appl.Catal.B-Environ.,2012,119:100-108)。典型的贵金属催化剂或CuZnAl催化剂的反应温度都需高于400℃才能使CO2转化率接近热力学平衡(React.Chem.Eng.,2021,6(6):954-76),因此具有高活性和良好稳定性的逆水煤气变换催化剂还有待开发。
发明内容
本发明提供了一种用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,以解决现有技术中逆水煤气反应催化剂的催化温度过高,容易导致催化剂烧结,降低催化剂和反应器的使用寿命,能耗高的问题。
为解决技术问题,本发明的解决方案是:
一种用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,该方法包括如下步骤:
(a)铌酸铵草酸盐制成水溶液后与尿素混合,充分搅拌至溶解,再加入硝酸铈(Ce(NO3)2·6H2O)在40-70℃下搅拌1-2小时;
元素铌与铈的摩尔比为1/39~2/3;铌酸铵草酸盐与硝酸铈质量之和与尿素的质量比为0.1~1;
(b)将(a)所得溶液置于烘箱干燥,干燥温度为60-100℃,时间为10-24小时,将得到的晶体研磨均匀;
(c)将(b)研磨后的材料于空气气氛下焙烧,焙烧时间为2-4小时,焙烧温度为400-600℃,得到氮化碳包覆的铌铈固溶体催化剂。
本发明将氧化铌与氧化铈复合形成固溶体,合成过程中尿素分解在铌铈固溶体表面形成氮化碳包覆层,有利于二氧化碳的吸附,催化剂能够能抑制逆水煤气变换的副产物甲烷,且不含Fe,Co,Ni等过渡金属,避免了过渡金属在高温逆水煤气反应条件下的烧结导致的催化剂失活。
本发明用尿素结晶法制备氮化碳包覆的铌铈固溶体催化剂,将氧化铌和氧化铈复合形成固溶体,经焙烧处理后制备得到高分散性的纳米催化剂,催化剂由于氮化碳包覆有利于CO2的吸附,且催化剂具有丰富的表面氧空位可以活化CO2,有利于加氢生成CO,解决了目前工业中过渡金属基催化剂由于高温金属烧结导致的活性金属团聚、分散不均匀,以至于催化活性不高的问题。
作为优选,步骤(a)中,铌酸铵草酸盐与硝酸铈的摩尔比为3/7。优选条件下,通过调整铌与铈的摩尔比,得到合适的二氧化碳吸附及催化加氢能力,有利于逆水煤气反应的进行。
作为优选,步骤(a)中,铌酸铵草酸盐与硝酸铈质量之和与尿素的质量比为0.25。优选条件下,尿素在分解过程中使催化剂疏松多孔,同时适量的尿素形成氮化碳包覆层,有利于二氧化碳的吸附。
作为优选,步骤(a)中,铌酸铵草酸盐水溶液的浓度为0.1~4wt%,保证铌酸铵草酸盐充分溶解。
作为优选,步骤(c)所述焙烧的升温速率控制在1~5℃/min。
一种本发明所述的制备方法得到的氮化碳包覆的铌铈固溶体催化剂,该催化剂用于逆水煤气变换反应。
本发明的有益效果是:
1)通过尿素结晶法制备氮化碳包覆的铌铈固溶体催化剂,利用尿素的高温分解在催化剂内形成介孔空隙,增加了催化剂的比表面积,提供了大量活性位点有利于CO2的解离,提高催化剂逆水煤气反应活性;
2)尿素在合成过程中会分解并在铌铈固溶体催化剂表面形成氮化碳包覆层,有利于CO2的吸附;
3)氮化碳包覆的铌铈固溶体催化剂不含过渡金属,避免了过渡金属在高温逆水煤气反应条件下的烧结导致的催化剂失活。催化剂能有效抑制副产物甲烷的生成,且具有较高的催化活性和热稳定性。
附图说明
图1为不同催化剂用于逆水煤气变换反应时二氧化碳转化率曲线;
图2为实施例1制备的催化剂用于逆水煤气变换反应时不同温度下产物一氧化碳的选择性曲线;
图3是实施例1制备的催化剂的透射电镜照片(a)和XRD谱图(b);
图4是实施例1制备的催化剂的热重曲线图。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
铌酸铵草酸盐水合物,Ammonium niobate(v)oxalate hydrate
实施例1
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐1.30g溶解于50ml去离子水中,再加入尿素22.56g,60℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱90℃干燥10h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下500℃焙烧2小时,升温速率控制在5℃/min,得到铌铈摩尔比为3/7的氮化碳包覆的铌铈固溶体催化剂。
实施例2
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐0.077g溶解于77ml去离子水中,再加入尿素17.67g,40℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱60℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下450℃焙烧2小时,升温速率控制在2℃/min,得到铌铈摩尔比为1/39的氮化碳包覆的铌铈固溶体催化剂。
实施例3
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐2.02g溶解于50ml去离子水中,再加入尿素6.36g,70℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌2小时;
(b)将上述溶液置于烘箱100℃干燥10h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下400℃焙烧4小时,升温速率控制在1℃/min,得到铌铈摩尔比为2/3的氮化碳包覆的铌铈固溶体催化剂。
实施例4
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐0.336g溶解于50ml去离子水中,再加入尿素46.7g,70℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱70℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下500℃焙烧2小时,升温速率控制在2℃/min,得到铌铈摩尔比为1/9的氮化碳包覆的铌铈固溶体催化剂。
实施例5
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐0.336g溶解于50ml去离子水中,再加入尿素30g,70℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱80℃干燥16h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下600℃焙烧1小时,升温速率控制在5℃/min,得到铌铈摩尔比为1/9的氮化碳包覆的铌铈固溶体催化剂。
实施例6
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐0.757g溶解于50ml去离子水中,再加入尿素20g,40℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱100℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下600℃焙烧2小时,升温速率控制在5℃/min,得到铌铈摩尔比为1/4的氮化碳包覆的铌铈固溶体催化剂。
实施例7
一种用于逆水煤气反应的氮化碳包覆的铌铈固溶体催化剂的制备方法,具体步骤是:
(a)取铌酸铵草酸盐0.159g溶解于50ml去离子水中,再加入尿素20g,40℃搅拌至彻底溶解,随后加入硝酸铈(Ce(NO3)2·6H2O)4.34g搅拌1小时;
(b)将上述溶液置于烘箱90℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下500℃焙烧2小时,升温速率控制在3℃/min,得到铌铈摩尔比为1/19的氮化碳包覆的铌铈固溶体催化剂。
对比例1
一种用于逆水煤气反应的氧化铌催化剂,制备过程是:
(a)取铌酸铵草酸盐2.02g溶解于50ml去离子水中,随后加入尿素20g,40℃搅拌至彻底溶解;
(b)将上述溶液置于烘箱90℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下500℃焙烧2小时,升温速率控制在5℃/min,得到纯氧化铌催化剂。
对比例2
一种用于逆水煤气反应的氧化铈催化剂,制备过程是:
(a)取硝酸铈4.34g(Ce(NO3)2·6H2O)溶解于50ml去离子水中,随后加入尿素20g,40℃搅拌至彻底溶解;
(b)将上述溶液置于烘箱90℃干燥24h,将得到的晶体研磨均匀;
(c)将上述研磨后样品于空气气氛下500℃焙烧2小时,升温速率控制在5℃/min,得到纯氧化铈催化剂。
将上述制备的催化剂用于逆水煤气变换的气固相反应。取0.2g催化剂,取0.8g石英砂进行稀释,填充至石英反应管中。常压(0.1MPa)下通入反应气体,反应气体组分摩尔比H2:CO2:Ar=4:1:5,反应温度为200-400℃,气体流速为24000mL gcat-1h-1
图1是不同催化剂用于逆水煤气变换反应时二氧化碳转化率曲线,从图中可以看出实施例1制备的催化剂具有最高的活性。
图2是实施例1制备的催化剂用于逆水煤气变换反应时不同温度下产物一氧化碳的选择性曲线。
图3是实施例1制备的催化剂的透射电镜照片(a)和XRD谱图(b),从图3a中可以很清楚地看到铌铈固溶体复合得非常均匀,分散度非常高,且表面有一层清晰的氮化碳包覆层;另外从XRD谱图(图3b)中可以看到对应的铌铈固溶体特征峰非常弥散,说明铌铈固溶体的粒子尺寸比较小。
图4是实施例1制备的催化剂的热重曲线图,该催化剂在400℃附近有明显失重,主要是由于铌铈固溶体表面包覆的氮化碳在空气气氛下氧化分解所致。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本发明所提供的用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (5)

1.一种氮化碳包覆的铌铈固溶体催化剂在逆水煤气变换反应中的应用,其特征在于该催化剂的制备方法包括如下步骤:
(a)铌酸铵草酸盐制成水溶液后与尿素混合,充分搅拌至溶解,再加入硝酸铈在40-70℃下搅拌1-2小时;
元素铌与铈的摩尔比为1/39~2/3;铌酸铵草酸盐与硝酸铈质量之和与尿素的质量比为0.1~1;
(b)将(a)所得溶液置于烘箱干燥,干燥温度为60-100℃,时间为10-24小时,将得到的晶体研磨均匀;
(c)将(b)研磨后的材料于空气气氛下焙烧,焙烧时间为 2-4小时,焙烧温度为400-600℃,得到氮化碳包覆的铌铈固溶体催化剂。
2.根据权利要求1所述的应用,其特征在于:步骤(a)中,铌酸铵草酸盐与硝酸铈的摩尔比为3/7。
3.根据权利要求1所述的应用,其特征在于:步骤(a)中,铌酸铵草酸盐与硝酸铈质量之和与尿素的质量比为0.25。
4.根据权利要求1所述的应用,其特征在于:步骤(a)中,铌酸铵草酸盐水溶液的浓度为0.1~4wt%。
5.根据权利要求1所述的应用,其特征在于:步骤(c)所述焙烧的升温速率控制在1~5℃/min。
CN202211068810.1A 2022-09-02 2022-09-02 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法 Active CN115301226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211068810.1A CN115301226B (zh) 2022-09-02 2022-09-02 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211068810.1A CN115301226B (zh) 2022-09-02 2022-09-02 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN115301226A CN115301226A (zh) 2022-11-08
CN115301226B true CN115301226B (zh) 2024-04-26

Family

ID=83866408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211068810.1A Active CN115301226B (zh) 2022-09-02 2022-09-02 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN115301226B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112824325A (zh) * 2019-11-20 2021-05-21 中国科学院大连化学物理研究所 一种孔状的铈铌氧化物纳米片状材料及制备方法
WO2021192871A1 (ja) * 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866083B1 (en) * 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112824325A (zh) * 2019-11-20 2021-05-21 中国科学院大连化学物理研究所 一种孔状的铈铌氧化物纳米片状材料及制备方法
WO2021192871A1 (ja) * 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法

Also Published As

Publication number Publication date
CN115301226A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN109746022B (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
CN111530492B (zh) 氮掺杂碳纳米管包覆金属镍/碳化钼的复合电催化剂及其制法和应用
CN112916009A (zh) 一种生物质衍生多孔碳限域单原子金属复合材料的制备方法
CN112844403B (zh) 一种乙酸自热重整制氢的钇锰镍类钙钛矿结构催化剂
CN109499577B (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN111111684B (zh) 乙酸自热重整制氢用介孔氧化硅负载钨促进镍基催化剂
CN107597119B (zh) 抗积碳型钴基低温甲烷二氧化碳重整催化剂及其制备方法
CN115770603B (zh) 一种氮掺杂碳包覆铜催化剂及其制备方法和应用
CN115301226B (zh) 用于逆水煤气变换反应的氮化碳包覆的铌铈固溶体催化剂及其制备方法
CN111450834B (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
CN112427041A (zh) 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用
CN116037113A (zh) 一种铜基负载型催化剂及其制备方法和应用
CN112916018B (zh) 一种乙酸自热重整制氢的镨锆复合氧化物钴基催化剂
CN114602496A (zh) 纳米碳负载的铂铁双金属催化剂及其制备方法和在富氢气氛下co选择性氧化反应中的应用
KR101400889B1 (ko) 탄화수소 개질촉매 및 이의 제조방법
CN114308061A (zh) NiAu双金属合金纳米催化剂及其合成与应用
CN114308057B (zh) 乙酸自热重整制氢用钨锰矿型氧化物负载钴基催化剂
CN116037133B (zh) 一种用于乙酸自热重整制氢的钐镨固溶体镍基催化剂
CN113731422A (zh) 一种浆态床甲烷合成催化剂的制备方法
CN114100649B (zh) 一种高导热Fe基催化剂及其制备方法和在费托合成反应中的应用
CN115739143B (zh) 一种Pt/α-MoC-CeO2催化剂及其制备方法和在甲醇水蒸汽制氢中的应用
CN116371421B (zh) 一种负载型催化剂及其制备方法和应用
CN114272928B (zh) 用于乙酸自热重整制氢的镁钛类钙钛矿型镍基催化剂
CN113113614B (zh) Mof-5衍生多孔碳基纳米材料及其制备方法
CN118022754A (zh) Mg2VO4反尖晶石型镍基催化剂用于乙酸自热重整制氢

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant