CN115198163A - 一种具有拉伸塑性的多纳米相强化ods合金的制备方法 - Google Patents

一种具有拉伸塑性的多纳米相强化ods合金的制备方法 Download PDF

Info

Publication number
CN115198163A
CN115198163A CN202210569860.1A CN202210569860A CN115198163A CN 115198163 A CN115198163 A CN 115198163A CN 202210569860 A CN202210569860 A CN 202210569860A CN 115198163 A CN115198163 A CN 115198163A
Authority
CN
China
Prior art keywords
alloy
powder
phase
nano
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210569860.1A
Other languages
English (en)
Other versions
CN115198163B (zh
Inventor
章林
王胜玺
刘烨
李明
林尊民
陈旭
秦明礼
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Xiangtan University
Original Assignee
University of Science and Technology Beijing USTB
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Xiangtan University filed Critical University of Science and Technology Beijing USTB
Priority to CN202210569860.1A priority Critical patent/CN115198163B/zh
Publication of CN115198163A publication Critical patent/CN115198163A/zh
Application granted granted Critical
Publication of CN115198163B publication Critical patent/CN115198163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于高性能金属材料制备研究领域,特别提供了一种具有拉伸塑性的多纳米相强化ODS合金的制备方法。该方法包括如下步骤,S1)将气雾化法制备的预合金粉末与Y2O3粉末按照设定成分混合均匀,在惰性气氛中进行机械合金化反应。S2)将S1)得到的粉末通过SPS烧结技术或热等静压致密化。S3)将S2)得到的样品进行固溶热处理。S4)将S3)得到的样品进行热变形处理。S5)将S4)得到的样品进行时效热处理。本发明的有益效果是,本发明的氧化物弥散强化合金中引入了高体积分数的B2相和纳米氧化物粒子进行强化,表现出优异的高温强度和良好的室温塑形,为铁素体耐热钢的制备和开发提供了一种新的方法。

Description

一种具有拉伸塑性的多纳米相强化ODS合金的制备方法
技术领域
本发明属于高性能金属材料制备研究领域,特别提供了一种具有拉伸塑性的多纳米相强化ODS合金的制备方法。
背景技术
与奥氏体钢和镍基高温合金相比,铁素体钢具有良好的导热性、低的膨胀系数、耐高温腐蚀和较低的成本等优点而应用在许多高温结构材料上,包括汽车排气净化装置、航天飞机的热防护结构及超超临界机组的蒸汽管道、联箱、过热管和再热器等。CsCl结构的B2相和BCC结构的铁素体晶格参数相似(分别为0.28864nm和0.28665nm),可在基体中共格析出。铁素体的主要滑移系为{101}<111>,而具有B2相的主要滑移系是{110}<001>,当基体与NiAl析出物之间的错配足够小时,NiAl析出物将被一对1/2<111>位错剪切而产生强烈的沉淀硬化,从而使合金在宽的温度区间保持较高的强度。纳米氧化物粒子具有优异的热力学稳定性,可以在高温长时间保持粒子尺寸不增加。高温下,氧化物与位错之间的相互作用形成位错环而提高位错滑移阻力,从而提高合金的高温强度。此外,纳米氧化物还可以钉扎晶界,提高合金的晶界强度。将B2相和纳米氧化物共同引入到铁素体合金中,发挥其沉淀强化和弥散强化作用,从而使它们分别在高温区(>650℃)和中温区(550℃-650℃)发挥主要作用以改善合金的高温力学性能。
B2相的强化效果与沉淀的形貌、尺寸、体积分数等密切相关。研究表明B2相强化铁素体合金的高温性能随着沉淀体积分数的增加而提高,高体积分数的沉淀是合金保持良好高温性能的重要保证。但高体积分数的沉淀导致合金低的室温塑形而发生解理断裂。Z.k.Teng等人开发出了B2相体积分数约为17%的FBB8合金,其室温延伸率小于1%,无法满足合金室温加工塑形的要求,极大的限制了合金的应用。
发明内容
针对上述问题,本发明提供一种具有拉伸塑性的多纳米相强化ODS合金的制备方法,以解决现有技术的上述以及其他潜在问题中任一问题。
为达到上述目的,本发明的技术方案是:一种具有拉伸塑性的多纳米相强化ODS合金的制备方法,该制备方法的步骤顺序如下:
S1)将气雾化法制备的预合金粉末与一定量的Y2O3粉末混合均匀,在高纯Ar气氛中高能球磨进行机械合金化反应;
S2)将S1)得到合金粉末通过SPS烧结或热等静压致密化;
S3)将S2)得到的样品进行固溶热处理;
S4)将S3)得到的样品进行热变形处理;热变形一方面促进B2相沉淀的形核,另一方面细化晶粒,在合金冷却过程中利用纳米氧化物粒子的钉扎晶界作用阻止晶粒的长大,使基体由细小的晶粒组成,从而改善合金室温塑形;
S5)将S4)得到的样品进行时效热处理;
进一步,所述铁素体|ODS合金中高体积分数的B2相沉淀与纳米氧化物粒子均匀分布在基体中,表现出优异的高温强度和良好的室温塑形。
进一步,所述S1)的具体步骤为:
S1.1)预合金粉末成分的质量百分数为:Cr 10-14%,Ni 8-12%,Co 8-12%,Al4-8%,Mo 0-2%,Zr 0-2%,Hf 0-2%,余量为Fe和不可避免的杂质;
S1.2)合金中Y2O3粉末的质量百分数为0.3-0.5%;
S1.3)球磨工艺为:按照设定的成分配比进行称量;将粉末混合均匀后在高纯氩气气氛中高能球磨,转速为340-450转/分,球磨时间为40-60h。
进一步,所述S2)致密化的具体工艺参数为:
S2.1)采用SPS烧结制备:机械合金化粉末放入石墨磨具中进行SPS烧结,烧结温度为1050-1200℃,压力为30-50MPa,保温时间为5-10min;
S2.2)采用热等静压制备:用低碳钢将机械合金化粉末包套后进行热等静压,热等静压温度为1000-1150℃,压力为100-200MPa,保温时间为1-3h。
进一步,所述S3)固溶热处理的具体工艺参数为:
固溶热处理温度为1000-1300℃,保温时间为0.5-2h,冷却介质为空气;
进一步,所述S4)热变形处理步骤的具体工艺参数为:
S4.1)所述热变形采用轧制时,轧制温度为800-1100℃,轧制前保温时间为0.5-2h,单次变形量为5-15%,单次轧制变形以后退火5-20min,总变形量为30%-70%,轧制完成冷却方式为空冷。
S4.2)所述热变形为热挤压时,挤压温度为1000-1300℃,挤压前保温时间为0.5-2h,挤压比为(4-20):1。
进一步,所述S5)时效热处理的具体工艺参数为:
时效热处理温度为500-800℃,保温时间为0.5-240h,冷却介质为空气。
本发明的有益效果是:
1.由于采用上述技术方案,本发明的合金在预合金中引入Co,提高了B2相和基体的高温稳定性。
2.本发明引入了B2相和纳米氧化物粒子,B2相的体积分数大于20%,且B2相均匀分布在基体中。
3.本发明制备的多纳米相强化铁素体ODS合金基体由尺寸小于1μm的细晶组成,在外加载荷作用下晶粒变形更加均匀,具有优良的室温拉伸塑性,断前延伸率超过10%,满足室温加工塑形的要求。
附图说明:
图1为本发明的一种具有拉伸塑性的多纳米相强化ODS合金的制备方法的工艺流程图。
图2为采用本发明的方法具有拉伸塑性的多纳米相强化ODS合金的沉淀相FESEM图和纳米氧化物粒子的TEM图。
图3为采用本发明的方法制备得到具有拉伸塑性的多纳米相强化ODS合金的晶粒分布示意图。
图4为本发明的实施例2制备得到的具有拉伸塑性的多纳米相强化ODS合金的室温拉伸曲线示意图。
具体实施方式:
下面结合附图和具体实施例对本发明的技术方案做进一步说明。
如图1所示,本发明一种具有拉伸塑性的多纳米相强化ODS合金的制备方法,该制备方法包括如下步骤:
S1)将预合金粉末与Y2O3粉末进行机械合金化反应,得到合金粉末;
S2)将S1)得到合金粉末进行致密化处理,得到合金块体;
S3)将S2)得到的合金块体进行固溶热处理;
S4)将S3)处理后的合金块体进行热变形处理;
S5)将S4)处理后的合金块体进行时效热处理,即得到具有拉伸塑性的多纳米相强化ODS合金。
所述具有拉伸塑性的多纳米相强化ODS合金由高体积分数的B2相和氧化物共强化;且多纳米相强化ODS合金中B2相的体积分数大于20%;
所述多纳米相强化ODS合金的断前延伸率超过10%。
所述S1)中的预合金粉末为采用气雾化法制备得到;
所述的Y2O3粉末的加入量为预合金粉末的质量的0.3-0.5wt%;
所述机械合金化反应的工艺为:惰性气氛为高纯氩气,高能球磨的转速为340-450转/分,球磨时间为40-60h。
所述预合金粉末成分的质量百分数为:Cr 10-14%,Ni 8-12%,Co 8-12%,Al 4-8%,Mo 0-2%,Zr 0-2%,Hf 0-2%,余量为Fe和不可避免的杂质。
所述S2)中的致密化处理具体工艺为:
S2.1)采用SPS烧结的工艺为:机械合金化粉末放入石墨模具中,烧结温度为1050-1200℃,压力为30-50MPa,保温时间为5-10min;
S2.2)采用热等静压制备:用低碳钢将机械合金化粉末包套后进行热等静压,热等静压温度为1000-1150℃,压力为100-200MPa,保温时间为1-3h。
所述S3)中的固溶热处理参数为:
固溶热处理温度为1000-1300℃,保温时间为0.5-2h,冷却介质为空气。
所述S4)中的热变形处理参数为:
采用轧制热变形,轧制温度为800-1100℃,轧制前保温时间为0.5-2h,单次变形量为5-15%,单次轧制变形以后退火5-20min,总变形量为30%-70%,轧制完成冷却方式为空冷。
所述S4)中的热变形处理参数为:
采用热挤压实现热变形,挤压温度为1000-1300℃,挤压前保温时间为0.5-2h,挤压比为4-20:1。
所述S5)中的时效热处理参数为:
时效热处理温度为500-800℃,保温时间为0.5-240h,冷却介质为空气。
一种具有拉伸塑性的多纳米相强化ODS合金采用上述的制备方法制备得到。
实施例1:成分为Fe-12wt.%Cr-6wt.%Al-10wt.%Co-10wt.%Ni-2wt.%Mo-0.3wt.%Y2O3合金的制备
采用气雾化法制备了成分为Fe-10wt.%Cr-6wt.%Al-10wt.%Co-10wt.%Ni-2wt.%Mo的预合金粉末,根据设定成分将预合金粉末与Y2O3粉末进行称量并混合均匀,然后在高纯Ar气氛中高能球磨进行机械合金化反应,转速为400转/分,球磨时间为50h;球磨后的合金粉末通过SPS烧结进行致密化,烧结温度为1150℃,压力为40MPa,保温时间为10min。烧结致密化后的合金在1150℃保温2h然后在空气中冷却进行固溶处理。固溶处理的样品进行热挤压处理,热挤压温度为1100℃,挤压前保温时间为2h,挤压比为20:1,挤压完成后空冷得到变形样品。将变形样品在650℃时效120h,得到了成分为Fe-12wt.%Cr-6wt.%Al-10wt.%Co-10wt.%Ni-2wt.%Mo-0.3wt.%Y2O3的铁素体ODS合金。
实施例2:成分为Fe-10wt.%Cr-5wt.%Al-12wt.%Co-12wt.%Ni-1.5wt.%Mo-0.5wt.%Zr-0.3wt.%Y2O3合金的制备:
采用气雾化法制备了成分为Fe-10wt.%Cr-5wt.%Al-12wt.%Co-12wt.%Ni-1.5wt.%Mo-0.5wt.%Zr的预合金粉末,根据设定成分将预合金粉末与Y2O3粉末进行称量并混合均匀,然后在高纯Ar气氛中高能球磨进行机械合金化反应,转速为380转/分,球磨时间为45h;球磨后的合金粉末通过SPS烧结进行致密化,烧结温度为1180℃,压力为40MPa,保温时间为5min。烧结致密化后的合金在1200℃保温1h然后在空气中冷却进行固溶处理。固溶处理的样品进行热轧处理,轧制温度为900℃,轧制前保温1h,轧制单次变形量为10%,单次轧制变形后退火20min,总变形量为50%,轧制完成后空冷得到变形样品。将变形样品在700℃时效48h,得到了成分为Fe-10wt.%Cr-5wt.%Al-12wt.%Co-12wt.%Ni-1.5wt.%Mo-0.5wt.%Zr-0.3wt.%Y2O3的铁素体ODS合金。合金中沉淀相的FESEM图和纳米氧化物粒子的TEM图如图2所示,晶粒尺寸分布图如图3所示,室温拉伸曲线如图4所示,合金具有良好的室温塑形,断前延伸率超过10%。
实施例3:成分为Fe-14wt.%Cr-5wt.%Al-8wt.%Co-10wt.%Ni-1wt.%Mo-0.5wt.%Zr-0.3wt.%Y2O3合金的制备
采用气雾化法制备了成分为Fe-14wt.%Cr-5wt.%Al-8wt.%Co-10wt.%Ni-1wt.%Mo-0.5wt.%Zr的预合金粉末,根据设定成分将预合金粉末与Y2O3粉末进行称量并混合均匀,然后在高纯Ar气氛中高能球磨进行机械合金化反应,转速为450转/分,球磨时间为60h;球磨后的合金粉末通过热等静压进行致密化,用低碳钢对机械合金化粉末进行包套,然后进行热等静压,烧结温度为1150℃,压力为150MPa,保温时间为1.5h。烧结致密化后的合金在1250℃保温0.5h然后在空气中冷却进行固溶处理。固溶处理的样品进行热挤压处理,热挤压温度为1200℃,挤压前保温时间为1.5h,挤压比为15:1,挤压完成后空冷得到变形样品。将变形样品在750℃时效50h,得到了成分为Fe-14wt.%Cr-5wt.%Al-8wt.%Co-10wt.%Ni-1wt.%Mo-0.5wt.%Zr-0.3wt.%Y2O3的铁素体ODS合金。
实施例4:成分为Fe-10wt.%Cr-7wt.%Al-12wt.%Co-12wt.%Ni-2wt.%Mo-0.5wt.%Zr-0.5wt.%Hf-0.4wt.%Y2O3合金的制备
采用气雾化法制备了成分为Fe-10wt.%Cr-7wt.%Al-12wt.%Co-12wt.%Ni-2wt.%Mo-0.5wt.%Zr-0.5wt.%Hf的预合金粉末,根据设定成分将预合金粉末与Y2O3粉末进行称量并混合均匀,然后在高纯Ar气氛中高能球磨进行机械合金化反应,转速为420转/分,球磨时间为55h;球磨后的合金粉末通过热等静压进行致密化,用低碳钢对机械合金化粉末进行包套,然后进行热等静压,烧结温度为1100℃,压力为200MPa,保温时间为2h。烧结致密化后的合金在1250℃保温1h然后在空气中冷却进行固溶处理。固溶处理的样品进行热轧处理,轧制温度为1000℃,轧制前保温1h,轧制单次变形量为15%,单次轧制变形后退火15min,总变形量为60%,轧制完成后空冷得到变形样品。将变形样品在700℃时效100h,得到了成分为Fe-10wt.%Cr-7wt.%Al-12wt.%Co-12wt.%Ni-2wt.%Mo-0.5wt.%Zr-0.5wt.%Hf-0.3wt.%Y2O3的铁素体ODS合金。
本发明一种具有拉伸塑性的多纳米相强化ODS(Oxide dispersion-strengthenedalloy)合金的制备方法,其原理为:将气雾化法制备的含Co的预合金粉末与Y2O3粉末按照设定的成分混合均匀,通过高能球磨进行机械合金化,再通过热等静压或者SPS烧结技术进行致密化处理。将烧结的样品进行固溶处理、热变形处理和随后的时效处理,热变形一方面促进B2相沉淀的形核,另一方面细化晶粒,在合金冷却过程中利用纳米氧化物粒子的钉扎晶界作用阻止晶粒的长大,使基体由细小的晶粒组成,从而改善合金室温塑形,最终得到了B2相体积分数大于20%,且具有良好室温塑形的铁素体ODS(氧化物弥散强化)合金。
以上内容是结合具体的优选实施方式对本发明作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演和替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种具有拉伸塑性的多纳米相强化ODS合金的制备方法,其特征在于,所述制备方法包括如下步骤:
S1)将预合金粉末与Y2O3粉末进行机械合金化反应,得到合金粉末;
S2)将S1)得到合金粉末进行致密化处理,得到合金块体;
S3)将S2)得到的合金块体进行固溶热处理;
S4)将S3)处理后的合金块体进行热变形处理;
S5)将S4)处理后的合金块体进行时效热处理,即得到具有拉伸塑性的多纳米相强化ODS合金。
2.根据权利要求1所述的制备方法,其特征在于,所述具有拉伸塑性的多纳米相强化ODS合金由高体积分数的B2相和氧化物共强化;且多纳米相强化ODS合金中B2相的体积分数大于20%;
所述多纳米相强化ODS合金的断前延伸率超过10%。
3.根据权利要求1所述的制备方法,其特征在于,所述S1)中的预合金粉末为采用气雾化法制备得到;
所述的Y2O3粉末的加入量为预合金粉末的质量的0.3-0.5wt%;
所述机械合金化反应的工艺为:惰性气氛为高纯氩气,高能球磨的转速为340-450转/分,球磨时间为40-60h。
4.根据权利要求3所述的制备方法,其特征在于,所述预合金粉末成分的质量百分数为:Cr 10-14%,Ni 8-12%,Co 8-12%,Al 4-8%,Mo 0-2%,Zr 0-2%,Hf 0-2%,余量为Fe和不可避免的杂质。
5.根据权利要求1所述的制备方法,其特征在于,所述S2)中的致密化处理具体工艺为:
S2.1)采用SPS烧结的工艺为:机械合金化粉末放入石墨模具中,烧结温度为1050-1200℃,压力为30-50MPa,保温时间为5-10min;
S2.2)采用热等静压制备:用低碳钢将机械合金化粉末包套后进行热等静压,热等静压温度为1000-1150℃,压力为100-200MPa,保温时间为1-3h。
6.根据权利要求1所述的制备方法,其特征在于,所述S3)中的固溶热处理参数为:
固溶热处理温度为1000-1300℃,保温时间为0.5-2h,冷却介质为空气。
7.根据权利要求1所述的制备方法,其特征在于,所述S4)中的热变形处理参数为:
采用轧制热变形,轧制温度为800-1100℃,轧制前保温时间为0.5-2h,单次变形量为5-15%,单次轧制变形以后退火5-20min,总变形量为30%-70%,轧制完成冷却方式为空冷。
8.根据权利要求1所述的制备方法,其特征在于,所述S4)中的热变形处理参数为:
采用热挤压实现热变形,挤压温度为1000-1300℃,挤压前保温时间为0.5-2h,挤压比为4-20:1。
9.根据权利要求1所述的制备方法,其特征在于,所述S5)中的时效热处理参数为:
时效热处理温度为500-800℃,保温时间为0.5-240h,冷却介质为空气。
10.一种具有拉伸塑性的多纳米相强化ODS合金,其特征在于,所述多纳米相强化ODS合金采用如权利要求1-9任意一项所述的制备方法制备得到。
CN202210569860.1A 2022-05-24 2022-05-24 一种具有拉伸塑性的多纳米相强化ods合金的制备方法 Active CN115198163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210569860.1A CN115198163B (zh) 2022-05-24 2022-05-24 一种具有拉伸塑性的多纳米相强化ods合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210569860.1A CN115198163B (zh) 2022-05-24 2022-05-24 一种具有拉伸塑性的多纳米相强化ods合金的制备方法

Publications (2)

Publication Number Publication Date
CN115198163A true CN115198163A (zh) 2022-10-18
CN115198163B CN115198163B (zh) 2023-04-25

Family

ID=83576884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210569860.1A Active CN115198163B (zh) 2022-05-24 2022-05-24 一种具有拉伸塑性的多纳米相强化ods合金的制备方法

Country Status (1)

Country Link
CN (1) CN115198163B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441573A1 (en) * 1990-02-06 1991-08-14 Daido Tokushuko Kabushiki Kaisha Heat-resistant alloy
US6375705B1 (en) * 1999-03-26 2002-04-23 U. T. Battelle, Llc Oxide-dispersion strengthening of porous powder metalurgy parts
CN103233182A (zh) * 2013-06-07 2013-08-07 北京科技大学 纳米β′相和纳米氧化物复合强化铁基ODS合金的方法
JP2014198900A (ja) * 2013-03-29 2014-10-23 コリア アトミック エナジー リサーチ インスティチュート フェライト系酸化物分散強化合金及びその製造方法
CN106636933A (zh) * 2016-12-05 2017-05-10 北京科技大学 一种制备多相强化铁素体合金的方法
CN112941407A (zh) * 2021-01-27 2021-06-11 中国核动力研究设计院 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法
CN113444962A (zh) * 2021-06-10 2021-09-28 湘潭大学 一种制备多纳米相强化铁基合金的方法
CN113477929A (zh) * 2021-04-15 2021-10-08 中国工程物理研究院材料研究所 一种高强韧ods钢的高通量制备与成分工艺优选方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441573A1 (en) * 1990-02-06 1991-08-14 Daido Tokushuko Kabushiki Kaisha Heat-resistant alloy
US6375705B1 (en) * 1999-03-26 2002-04-23 U. T. Battelle, Llc Oxide-dispersion strengthening of porous powder metalurgy parts
JP2014198900A (ja) * 2013-03-29 2014-10-23 コリア アトミック エナジー リサーチ インスティチュート フェライト系酸化物分散強化合金及びその製造方法
CN103233182A (zh) * 2013-06-07 2013-08-07 北京科技大学 纳米β′相和纳米氧化物复合强化铁基ODS合金的方法
CN106636933A (zh) * 2016-12-05 2017-05-10 北京科技大学 一种制备多相强化铁素体合金的方法
CN112941407A (zh) * 2021-01-27 2021-06-11 中国核动力研究设计院 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法
CN113477929A (zh) * 2021-04-15 2021-10-08 中国工程物理研究院材料研究所 一种高强韧ods钢的高通量制备与成分工艺优选方法
CN113444962A (zh) * 2021-06-10 2021-09-28 湘潭大学 一种制备多纳米相强化铁基合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙端君等: "Y2O3含量对Ni-20Cr-5Al合金高温抗氧化性能的影响", 《机械工程材料》 *

Also Published As

Publication number Publication date
CN115198163B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN108145156B (zh) 一种高性能tzm钼合金棒材的制备方法
CA1192477A (en) Method of producing columnar crystal superalloy material with controlled orientation
CN110373561B (zh) 一种粉末锻造制备高致密度细晶钛合金的方法
CN114086049B (zh) 2.0GPa级超高屈服强度塑性CoCrNi基中熵合金及其制备方法
CN108570569B (zh) 一种氮化铝弥散强化铜复合材料的内氮化制备方法
CN109570508B (zh) 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法
CN109897991B (zh) 一种高熵晶界修饰的纳米晶合金粉末及其制备方法
CN105274445A (zh) 一种氧化物弥散强化低活化钢及其制备方法
CN114645180B (zh) 一种双相增强铝合金及其制备方法
CN114150238B (zh) 一种Ti-Al-Nb基复合材料及其制备方法
CN112322933A (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
JP7450639B2 (ja) 低積層欠陥エネルギー超合金、構造部材及びその使用
CN115011858A (zh) 高强度高塑性CoCrNiAlTi多主元合金及其制备方法
US6328827B1 (en) Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom
CN113862499A (zh) 一种新型双态组织钛基复合材料的加工制造方法
CN109518021A (zh) 一种高强度铁钴镍合金的制备方法
CN115198163B (zh) 一种具有拉伸塑性的多纳米相强化ods合金的制备方法
CN115404385B (zh) 一种有优异室温拉伸延展性的难熔高熵合金及其制备方法
CN115194069A (zh) 一种Ti175合金大尺寸整体叶盘锻件的制备方法
CN112064011A (zh) 一种制备具有复杂形状的多纳米相强化铁素体合金的方法
CN117305675B (zh) 一种高温高熵合金及其制备方法和应用
CN108677079B (zh) 一种基于第二类组织强化的奥氏体合金及其制备方法
CN112593161B (zh) 高强度Sc复合纳米氧化物弥散强化Fe基合金及其制备方法
CN108165889A (zh) 一种具有高的最大磁导率的低膨胀合金及制备方法
CN117884617A (zh) 一种高塑性的再结晶态钼及钼合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant