CN115196696A - 一种钌酸钇纳米催化剂及其制备方法和应用 - Google Patents

一种钌酸钇纳米催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115196696A
CN115196696A CN202210797726.7A CN202210797726A CN115196696A CN 115196696 A CN115196696 A CN 115196696A CN 202210797726 A CN202210797726 A CN 202210797726A CN 115196696 A CN115196696 A CN 115196696A
Authority
CN
China
Prior art keywords
yttrium
quenching process
ruthenate
preparation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210797726.7A
Other languages
English (en)
Inventor
王峰
张正平
刘彤彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202210797726.7A priority Critical patent/CN115196696A/zh
Publication of CN115196696A publication Critical patent/CN115196696A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种钌酸钇纳米催化剂及其制备方法和应用,所述的钌酸钇纳米催化剂由高温热处理后结合淬火工艺得到,淬火的处理过程改变了钌酸钇中的氧的计量比,所述的钌酸钇纳米材料的分子式为
Figure 100004_DEST_PATH_IMAGE001
,其中

Description

一种钌酸钇纳米催化剂及其制备方法和应用
技术领域
本发明属于能源材料领域,尤其是电化学材料制备技术领域,具体涉及一种钌酸钇纳米催化剂及其制备方法和应用。
背景技术
全球能源变革加速推进,清洁能源替代是大势所趋。可再生能源发电技术具有时效性和地域性与实际情况不匹配的缺点,将间隙式可再生能源发电与电转气技术紧密结合,即利用可再生能源所产生的间断性电力通过电解水的方式转化为氢气,是近年来兴起的一种新型大规模工业化储能技术,被称为氢储能。在其中的关键步骤—电解水过程中,主要的过电位来源于氧气析出反应(Oxygen evolution reaction, OER),其缓慢的动力学过程造成额外的电能消耗,因此,需要开发高效的OER催化剂。目前,钌基烧绿石类的高温复杂金属氧化物被作为OER催化剂被广泛研究,以钌酸钇为例,其具有较低的贵金属含量,且在酸性介质中具有优异的稳定性,有望替代商业的IrO2成为质子交换膜电解水装置的阳极催化材料。但这类材料通常涉及到高温制备(1100℃),因此具有高结晶度、较大的颗粒尺寸、较少的缺陷位点,而在金属氧化物基催化剂中,以氧空位为例的缺陷位点可显著改善催化剂的物理化学性质,如对反应中间物质的吸附能力,或作为活性位点提高催化活性,因此,如何在这类高温氧化物中引入大量缺陷位点是提升其OER性能的关键问题。
发明内容
本发明的目的在于解决现有技术问题,提供了一种钌酸钇纳米催化剂及其制备方法和应用,所得催化剂在酸性介质中表现出优异的OER催化活性。且制备方法工艺简单,对于各类高温氧化物的制备具有普适性,有望实现大规模生产。
本发明的技术方案如下:一种钌酸钇纳米催化剂,其分子式为
Figure 941565DEST_PATH_IMAGE001
,其中
Figure 138191DEST_PATH_IMAGE002
,所述的钌酸钇纳米催化剂的尺寸为10-50纳米,具有丰富的缺陷结构。
本发明还保护所述的钌酸钇纳米催化剂的制备方法,由高温热处理后结合淬火工艺得到。其中,淬火的处理过程改变了钌酸钇中的氧的计量比,所述的钌酸钇纳米材料的分子式为
Figure 95783DEST_PATH_IMAGE001
,其中
Figure 790986DEST_PATH_IMAGE002
更进一步的,所述的制备方法包括如下步骤:
(1)将金属盐溶于水,再加入柠檬酸得到澄清溶液,将溶液烘干陈化后,得到干燥的凝胶中间物质;
(2)将步骤(1)中得到的凝胶中间物质置于800-1100℃空气中进行24 h以上的煅烧;
(3)通过一步淬火工艺得到所述的催化剂。
在本发明的优选实施方式中,所述的金属盐为氯化钌和硝酸钇,两者的摩尔比为1:1。
在本发明的优选实施方式中,金属盐和柠檬酸的摩尔比介于1:1~1:2之间。
在本发明的优选实施方式中,金属盐浓度为0.05~1 mol/L。
在本发明的优选实施方式中,煅烧结束后的淬火工艺中的冷却介质为0~20摄氏度的水或盐溶液,即保温结束后立即置于水中或盐水中冷却;所述的盐溶液选自氯化钠、氯化钾、硫酸钠、硫酸钾水溶液中的一种或几种。
在本发明的优选实施方式中,煅烧结束后的淬火工艺中的冷却介质为0~20摄氏度的空气或惰性气,即保温结束后立即置于相应气氛中进行吹扫冷却;所述的惰性气选自氮气、氩气、二氧化碳中的一种或几种。
在本发明的优选实施方式中,煅烧结束后的淬火工艺中的冷却介质为干冰或液氮,即保温结束后立即置于干冰或液氮中进行冷却。
在本发明还保护上述催化剂在酸性介质中电催化氧气析出反应中的应用。
与现有技术相比,本发明具有如下优点:
(1)制备工艺简单,相比与传统制备方法仅多一步淬火处理工艺便可得到具有高浓度缺陷结构的钌酸钇催化材料。高温煅烧过程中原子运动剧烈,急速的冷却过程可将高温下的高浓度缺陷结构瞬间保留至室温,无需引入额外的缺陷原子,且对于各类高温氧化物的合成具有普适性。
(2)制备所得到的钌酸钇纳米材料作为酸性介质的析氧反应催化剂在等同情况下极大的降低了反应过电位,显著降低了能耗,具有优异的析氧催化性能。
附图说明
下面结合附图对本发明进一步说明:
图1是实施例1中得到的催化剂的XRD图;
图2是实施例1中所得到的催化剂的SEM图;
图3是实施例1中所得到的催化剂的TEM图;
图4是实施例1中所得到的催化剂的EPR图;
图5是实施例1中所得到的催化剂在 0.1 M HClO4溶液中的极化曲线;
图6是实施例1中所得到的催化剂在 0.1 M HClO4溶液中进行恒电流测试所得到的电压-时间曲线。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚,本发明用以下具体实施例进行说明,但本发明绝非限于这些例子。
实施例1
(1)将0.840 g柠檬酸溶解于10 mL去离子水中,加入0.38 g硝酸钇,0.21 g三氯化钌,超声溶解均匀,将上述溶液置于80℃热台上加热烘干,陈化,得到蓬松的干燥凝胶;
(2)将上述凝胶置于马弗炉中,升温至1100℃保温24 h。
(3)保温结束后立即置于20℃的水中淬火冷却,之后抽滤,烘干得到
Figure 783213DEST_PATH_IMAGE001
对所得的样品进行XRD分析,结果见图1,表现为纯相的钌酸钇。一步淬火过程对钌酸钇的相纯度没有影响。其表面形貌用SEM进行观察,如图2。进一步使用透射电子显微镜观察其结构变化,如图3。添加一步淬火工艺后,其表面的粗糙度增加,说明淬火处理对于缺陷的增加有显著作用。使用EPR表征了材料表面的氧空位浓度,淬火处理后钌酸钇表现为氧空位的增多,使材料中氧化学计量比发生变化,如图4所示。该催化剂具有优异的氧析出催化活性,其在酸性介质中的活性表现如图5所示。该催化剂同时具有优异的稳定性,在长时间反应之后活性不产生衰减,如图6所示。
实施例2
(1)将0.42 g柠檬酸溶解于10 mL去离子水中,加入0.19 g硝酸钇,0.10 g三氯化钌,超声溶解均匀,将上述溶液置于80℃热台上加热烘干,陈化,得到蓬松的干燥凝胶;
(2)将上述凝胶置于马弗炉中,升温至1100℃保温24 h。
(3)保温结束后立即置于干冰中淬火冷却,得到
Figure 416319DEST_PATH_IMAGE001
实施例3
1)将0.42 g柠檬酸溶解于10 mL去离子水中,加入0.19 g硝酸钇,0.10 g三氯化钌,超声溶解均匀,将上述溶液置于80℃热台上加热烘干,陈化,得到蓬松的干燥凝胶;
(2)将上述凝胶置于马弗炉中,升温至1100℃保温24 h。
(3)保温结束后立即置于氮气中吹扫进行淬火冷却,得到
Figure 595628DEST_PATH_IMAGE001
实施例4
1)将0.42 g柠檬酸溶解于10 mL去离子水中,加入0.19 g硝酸钇,0.10 g三氯化钌,超声溶解均匀,将上述溶液置于80℃热台上加热烘干,陈化,得到蓬松的干燥凝胶;
(2)将上述凝胶置于马弗炉中,升温至1100℃保温24 h。
(3)保温结束后立即置于20℃饱和硫酸钾水溶液中冷却,之后洗涤,抽滤,烘干得到
Figure 808434DEST_PATH_IMAGE001
以上实施例显示和描述了本发明的主要特征和主要优点进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种钌酸钇纳米催化剂,其特征在于,其分子式为
Figure DEST_PATH_IMAGE001
,其中
Figure 285961DEST_PATH_IMAGE002
,所述的钌酸钇纳米催化剂的尺寸为10-50纳米 ,具有丰富的缺陷结构。
2.根据权利要求1所述的钌酸钇纳米催化剂的制备方法,其特征在于,由高温热处理后结合淬火工艺得到。
3.根据权利要求2所述的制备方法,其特征在于,包括如下步骤:
(1)将金属盐溶于水,再加入柠檬酸得到澄清溶液,将溶液烘干陈化后,得到干燥的凝胶中间物质;
(2)将步骤(1)中得到的凝胶中间物质置于800-1100℃空气中进行24 h以上的煅烧;
(3)通过一步淬火工艺得到所述的催化剂。
4.根据权利要求3所述的制备方法,其特征在于,所述的金属盐为氯化钌和硝酸钇,两者的摩尔比为1:1。
5.根据权利要求4所述的制备方法,其特征在于,金属盐和柠檬酸的摩尔比介于1:1~1:2之间。
6.根据权利要求3所述的制备方法,其特征在于,金属盐浓度为0.05~1 mol/L。
7.根据权利要求3所述的制备方法,其特征在于,煅烧结束后的淬火工艺中的冷却介质为0~20摄氏度的水或盐溶液,即保温结束后立即置于水中或盐水中冷却;所述的盐溶液选自氯化钠、氯化钾、硫酸钠、硫酸钾水溶液中的一种或几种。
8.根据权利要求3所述的制备方法,其特征在于,煅烧结束后的淬火工艺中的冷却介质为0~20摄氏度的空气或惰性气,即保温结束后立即置于相应气氛中进行吹扫冷却;所述的惰性气选自氮气、氩气、二氧化碳中的一种或几种。
9.根据权利要求3所述的制备方法,其特征在于,煅烧结束后的淬火工艺中的冷却介质为干冰或液氮,即保温结束后立即置于干冰或液氮中进行冷却。
10.权利要求1所述的钌酸钇纳米催化剂,或是权利要求2-9中任一项所述的制备方法制备得到的钌酸钇纳米催化剂在酸性介质中电催化氧气析出反应中的应用。
CN202210797726.7A 2022-07-08 2022-07-08 一种钌酸钇纳米催化剂及其制备方法和应用 Pending CN115196696A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210797726.7A CN115196696A (zh) 2022-07-08 2022-07-08 一种钌酸钇纳米催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210797726.7A CN115196696A (zh) 2022-07-08 2022-07-08 一种钌酸钇纳米催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115196696A true CN115196696A (zh) 2022-10-18

Family

ID=83580670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210797726.7A Pending CN115196696A (zh) 2022-07-08 2022-07-08 一种钌酸钇纳米催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115196696A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457098B1 (ko) * 2013-11-05 2014-11-04 한국과학기술연구원 촉매, 이를 이용한 전극 및 해당 촉매를 이용한 건식 개질 방법
CN109382101A (zh) * 2018-11-09 2019-02-26 南京师范大学 一种Ru/Y(OH)3杂合纳米结构及其制备方法和应用
CN110227452A (zh) * 2019-05-24 2019-09-13 南方科技大学 一种铋掺杂的钌酸钇及其制备方法和析氧应用
CN110745881A (zh) * 2019-09-30 2020-02-04 南方科技大学 钙掺杂的钌酸钇及其制备方法和在电化学装置中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457098B1 (ko) * 2013-11-05 2014-11-04 한국과학기술연구원 촉매, 이를 이용한 전극 및 해당 촉매를 이용한 건식 개질 방법
CN109382101A (zh) * 2018-11-09 2019-02-26 南京师范大学 一种Ru/Y(OH)3杂合纳米结构及其制备方法和应用
CN110227452A (zh) * 2019-05-24 2019-09-13 南方科技大学 一种铋掺杂的钌酸钇及其制备方法和析氧应用
CN110745881A (zh) * 2019-09-30 2020-02-04 南方科技大学 钙掺杂的钌酸钇及其制备方法和在电化学装置中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TONGTONG LIU等: "Quenching as a Route to Defect-Rich Ru-Pyrochlore Electrocatalysts toward the Oxygen Evolution Reaction", SMALL METHODS, vol. 6, pages 7 - 8 *
明亮等: "医用实验化学 第2版", 南京东南大学出版社, pages: 108 *

Similar Documents

Publication Publication Date Title
He et al. Defect engineering on electrocatalysts for gas-evolving reactions
CN101820066B (zh) 一种金属单质/多壁碳纳米管型复合材料及其制备方法和应用
CN107245727A (zh) 一种多孔磷化钴纳米线催化剂的制备方法
CN111545250B (zh) 一种具有高效电催化全解水性能的钌催化剂及其应用
CN109706476B (zh) 一种碳布表面原位生长w18o49自支撑电极材料的制备方法
CN110743603A (zh) 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用
Liu et al. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
CN111653792A (zh) 一种同步制备多级孔钴和氮共掺杂纳米棒负载铂钴合金纳米氧还原电催化剂的方法
CN111530483B (zh) 一种自支撑Ni掺杂WP2纳米片阵列电催化剂及其制备方法
CN111203206B (zh) 一种CeO2基电催化产氧催化剂及其制备方法和应用
CN108565469B (zh) 一种钴-氮掺杂碳复合材料及其制备方法
CN114672822B (zh) 一种用于硝酸盐还原制氨的反钙钛矿相氮化物三维自支撑电极材料及其制备方法与应用
CN114606510B (zh) 一种层状铱基钙钛矿纳米片催化剂、制备方法及其在电催化析氧反应中的应用
CN115196696A (zh) 一种钌酸钇纳米催化剂及其制备方法和应用
CN117004960A (zh) 铱钌催化剂及其制备方法和应用、质子交换膜水电解槽
He et al. Prussian blue analog derived Cu doped Co3O4 catalyst for promoting electrocatalytic nitrate reduction to ammonia
CN115491699A (zh) 一种纳米铜基催化剂及其制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN114100619A (zh) 甲烷二氧化碳重整催化剂及其制备方法
CN111686729A (zh) 一种钙钛矿型二氧化碳电还原催化剂及其制备方法
Kuang et al. Efficient electrocatalytic CO 2 conversion into formate with Al x Bi y O z nanorods in a wide potential window
CN113769769B (zh) 镍-铁磷化物/石墨烯/镍复合材料、其制备方法及应用
Liu et al. Fabrication of Ce‐doped Hollow NiCo2O4 Nanoprisms with Heterointerface from MOF‐Engaged Strategy for Oxygen Evolution Reaction
CN112795950B (zh) 一种二维Ni-Ir多孔纳米片及其制备方法与应用
Li et al. Exploring the potential Ru-based catalysts for commercial-scale polymer electrolyte membrane water electrolysis: A systematic review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination