CN115132838A - 半导体结构 - Google Patents

半导体结构 Download PDF

Info

Publication number
CN115132838A
CN115132838A CN202111119390.0A CN202111119390A CN115132838A CN 115132838 A CN115132838 A CN 115132838A CN 202111119390 A CN202111119390 A CN 202111119390A CN 115132838 A CN115132838 A CN 115132838A
Authority
CN
China
Prior art keywords
island
portions
layer
semiconductor structure
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111119390.0A
Other languages
English (en)
Inventor
陈柏安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvoton Technology Corp
Original Assignee
Nuvoton Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvoton Technology Corp filed Critical Nuvoton Technology Corp
Publication of CN115132838A publication Critical patent/CN115132838A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本申请实施例提供一种半导体结构,半导体结构包含:基板、通道层、阻障层、栅极电极、源极电极及漏极电极以及多个岛状结构,通道层设置于基板上。阻障层设置于通道层上,栅极电极设置于阻障层上,源极电极及漏极电极分别设置于栅极电极的相对侧,且分别与阻障层接触,多个岛状结构设置于栅极电极与漏极电极之间,且对应于多个岛状结构的在通道层的上表面上的二维电子气为不连续。

Description

半导体结构
技术领域
本申请关于半导体结构,特别是关于其内包含使得通道层的上表面上的二维电子气为不连续的岛状结构的半导体结构。
背景技术
由于氮化镓(GaN)材料具有宽能隙(band-gap)、高抗热性、高电子饱和速率、以及极强的极化(polarization)效应等拥有各种优秀的特性,因此被广泛应用。举例而言,目前氮化镓半导体已广泛地应用于包含异质接面结构的高电子迁移率半导体(high electronmobility transistor,HEMT)。
然而,在高电子迁移率半导体中,经常困于崩溃电压(breakdown voltage)不足、导通电阻(on-resistance)过大和/或电场分布(electric field distribution)不均匀,而导致整个高电子迁移率半导体的电性性能下降的问题。是以,虽然现存的半导体结构已逐步满足它们既定的用途,但它们仍未在各方面皆彻底的符合要求。因此,关于进一步加工后可做为高电子迁移率半导体的半导体结构仍有一些问题需要进行克服。
发明内容
鉴于上述问题,本申请通过进一步设置多个岛状结构于阻障层上、于通道层中或贯穿通道层与阻障层,使得对应于前述多个岛状结构的通道层的上表面上的二维电子气为不连续,以使半导体结构的崩溃电压提升、使导通电阻降低和/或使电场分布更加均匀,来提高整体半导体结构的电性性能。
根据一些实施例,提供半导体结构。半导体结构包含:半导体结构包含:基板、通道层、阻障层、栅极电极、源极电极及漏极电极以及多个岛状结构。通道层设置于基板上。阻障层设置于通道层上。栅极电极设置于阻障层上。源极电极及漏极电极分别设置于栅极电极的相对侧,且分别与阻障层接触。多个岛状结构设置于栅极电极与漏极电极之间,且对应于多个岛状结构的在通道层的上表面上的二维电子气(two-dimensional electron gas,2DEG)为不连续(discontinuous)。
本申请的半导体结构可应用于多种类型的半导体装置,为让本申请的特征和优点能更明显易懂,下文特举出较佳实施例,并配合所附图式,作详细说明如下。
附图说明
通过以下的详述配合所附图式,我们能更加理解本申请实施例的观点。值得注意的是,根据工业上的标准惯例,一些部件(feature)可能没有按照比例绘制。事实上,为了能清楚地讨论,不同部件的尺寸可能被增加或减少。
图1至图3是根据本申请的一些实施例,绘示在各个阶段形成半导体结构的剖面示意图;
图4至图6是根据本申请的一些实施例,绘示在各个阶段形成半导体结构的剖面示意图;
图7至图9是根据本申请的一些实施例,绘示在各个阶段形成半导体结构的剖面示意图;以及
图10至图13是根据本申请的一些实施例,绘示半导体结构的俯视示意图。
[符号说明]
1,2,3:半导体结构
100:基板
200:缓冲层
300:通道层
310:二维电子气
400:阻障层
500:化合物半导体层
510:栅极电极
600:岛状结构
610:第一部分
620:第二部分
630:第三部分
700:源极电极
800:漏极电极
d12,d23,dD,dG:距离
P:路径
R1:主动区域
R2:非主动区域
R3:区域
s1:第一间距
s2:第二间距
s3:第三间距
t1:第一厚度
t2:第二厚度
t3:第三厚度
w1:第一宽度
w2:第二宽度
w3:第三宽度
具体实施方式
以下揭露提供了很多不同的实施例或范例,用于实施所提供的半导体结构的不同元件。各元件和其配置的具体范例描述如下,以简化本申请实施例。当然,这些仅仅是范例,并非用以限定本申请。举例而言,叙述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接触的实施例,也可能包含额外的元件形成在第一和第二元件之间,使得它们不直接接触的实施例。此外,本申请实施例可能在不同的范例中重复参考数字和/或字母。如此重复是为了简明和清楚,而非用以表示所讨论的不同实施例和/或形态之间的关系。
以下描述实施例的一些变化。在不同图式和说明的实施例中,相似的参考数字被用来标明相似的元件。可以理解的是,在方法的前、中、后可以提供额外的操作,且一些叙述的操作可为了该方法的其他实施例被取代或删除。
再者,空间上的相关用语,例如“上”、“下”、“在…上方”、“在…下方”及类似的用词,除了包含图式绘示的方位外,也包含使用或操作中的装置的不同方位。当装置被转向至其他方位时(旋转90度或其他方位),则在此所使用的空间相对描述可同样依旋转后的方位来解读。在此,“约”、“大约”、“大抵”的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内,或3%之内,或2%之内,或1%之内,或0.5%之内。应注意的是,说明书中所提供的数量为大约的数量,亦即在没有特定说明“约”、“大约”、“大抵”的情况下,仍可隐含“约”、“大约”、“大抵”的含义。
图1至图3是根据本申请的一些实施例,说明半导体结构在各个阶段的剖面示意图。
参照图1,提供基板100,基板100上形成有缓冲层200、通道层300、以及阻障层400。缓冲层200可设置于基板100上。通道层300可设置于缓冲层200上,亦即缓冲层200可设置于基板100与通道层300之间。阻障层400可设置于通道层300上。
在一实施例中,基板100可以为包含块材半导体(bulk semiconductor)基板、绝缘体上覆半导体(semiconductor-on-insulator,SOI)基板或类似基板。一般而言,绝缘体上覆半导体基板包括形成于绝缘体上的半导体材料的膜层。举例而言,此绝缘层可为,氧化硅(silicon oxide)层、氮化硅(silicon nitride)层、多晶硅(poly-silicon)层、或上述膜层的堆叠组合。提供上述绝缘层于基板上,通常是硅(silicon)或氮化铝(AlN)基板。基板100可为经掺杂(例如,使用p型或n型掺质(dopant))或未掺杂的基板。基板100亦可为其他种类的基板,例如多层(multi-layered)基板或渐进(gradient)基板。在一些实施例中,基板100可以是半导体基板或陶瓷基板,例如氮化镓(Gallium Nitride,GaN)基板、碳化硅(SiC)基板、氮化铝基板或蓝宝石基板。在一些实施例中,基板100为硅基板或碳化硅基板。
在一实施例中,通道层300与基板100之间的晶格差排(dislocation)和/或晶格差异会造成缺陷和/或应变(strain)的产生。然而,缓冲层200可减少或防止上述缺陷和/或应变。在一实施例中,缓冲层200的材料可以包含III-V族化合物半导体材料,例如III族氮化物。举例而言,缓冲层200的材料可以为或包含氮化镓、氮化铝、氮化铝镓(AlGaN)、氮化铝铟(AlInN)、前述的单层或多层组合、或其他任何合适的材料。在一些实施例中,可以通过沉积工艺来形成缓冲层200。上述形成缓冲层200的沉积工艺可为有机金属化学气相沉积(MetalOrganic Chemical Vapor Deposition,MOCVD)、原子层沉积(Atomic Layer Deposition,ALD)、分子束外延(Molecular Beam Epitaxy,MBE)、液相外延(Liquid Phase Epitaxy,LPE)、其组合、或其类似工艺,但不限于此。
在一实施例中,基板100与缓冲层200之间可进一步设置成核层。前述成核层的材料可以为或包含氮化铝、氮化铝镓、其组合、或其他任何合适的材料。可通过沉积工艺来形成成核层。上述形成成核层的沉积工艺可为有机金属化学气相沉积、原子层沉积、分子束外延、液相外延、其组合、或其类似工艺,但不限于此。成核层可减少和/或防止基板100与设置于基板100上的其他层之间的晶格差异,提升结晶品质。
在一实施例中,通道层300的材料可以包含一或多种III-V族化合物半导体材料,例如:III族氮化物,但不限于此。举例而言,通道层300的材料可以为或可以包含氮化镓、氮化铝镓、氮化铝铟、氮化铟镓(InGaN)、氮化铟铝镓(InAlGaN)、其组合、或其他任何合适的材料,但不限于此。可通过沉积工艺来形成通道层300。上述形成通道层300的沉积工艺可为有机金属化学气相沉积、原子层沉积、分子束外延、液相外延、其组合、或其类似工艺,但不限于此。在一实施例中,通道层300可包含氮化镓。
在一实施例中,阻障层400的材料可以包含III-V族化合物半导体材料,例如III族氮化物。举例而言,阻障层400可以为或包含氮化铝、氮化铝镓、氮化铝铟、氮化铟铝镓、其组合、或其他任何合适的材料,但不限于此。阻障层400可以包含单层或多层结构。可以通过沉积工艺来形成阻障层400,例如有机金属化学气相沉积、原子层沉积、分子束外延、液相外延、其组合、或其类似工艺,但不限于此。在一实施例中,阻障层400可包含氮化铝镓。在一些实施例中,通道层300及阻障层400中没有使用掺质掺杂。在一些其他实施例中,通道层300及阻障层400可使用n型掺质。
通过作为通道层300的氮化镓以及作为阻障层400的氮化铝镓之间的异质界面造成的晶格常数差异,形成二维电子气(two-dimensional electron gas,2DEG)310在通道层300的上表面附近。在一实施例中,二维电子气310形成在通道层300中且邻近阻障层400。在一些实施例中,前述二维电子气通道能够提供后续形成的高电子迁移率半导体的导电载子,因此能够作为电流路径。
参照图2,化合物半导体层500形成于阻障层400上。在一实施例中,化合物半导体层500可以为经p型掺杂。在一实施例中,化合物半导体层500可包含p型掺杂的氮化镓。化合物半导体层500可以抑制化合物半导体层500下方的二维电子气的形成。也就是说,对应于化合物半导体层500下方的二维电子气可为不连续(discontinuous),亦即使得前述二维电子气为空乏区(depleted region)。因此,通过设置化合物半导体层500于后续形成的栅极电极及阻障层400之间,来使得后续形成的高电子迁移率半导体具有常关(normally-off)状态,故而得以克服传统高电子迁移率半导体具有常开(normally-on)状态的疑虑。
在一实施例中,化合物半导体层500可由前述沉积工艺来形成。举例来说,可以通过沉积工艺在阻障层400上形成化合物半导体材料层;接着在化合物半导体材料层上形成遮罩层;并在遮罩层上形成光阻,以暴露遮罩层的一部分;接着使遮罩层图案化,以形成经图案化的遮罩;通过经图案化的遮罩暴露化合物半导体材料层的一部分;并接着使前述化合物半导体材料层图案化,也就是刻蚀化合物半导体材料层未被经图案化的遮罩覆盖的部分,以形成化合物半导体层500。在一实施例中,化合物半导体层500具有第一厚度t1。
需特别说明的是,在一实施例中,除了形成化合物半导体层500在阻障层400上之外,形成多个岛状结构600在阻障层400上且在介于后续形成的栅极电极与漏极电极之间。由于形成在阻障层400上的多个岛状结构600可包括类似于或相同于化合物半导体层500的材料,因此多个岛状结构600亦可具有透过(through)阻障层400来抑制二维电子气310的形成的效果。举例而言,在一实施例中,多个岛状结构600包含p型掺杂的氮化镓(GaN)或p型掺杂的氮化铝镓(AlGaN)。是以,对应于多个岛状结构600在通道层300的上表面上的二维电子气310为不连续,亦即使得介于后续形成的栅极电极与漏极电极之间的二维电子气为不连续。换句话说,抵销对应于多个岛状结构600的二维电子气310。具体而言,在一实施例中,位于多个岛状结构600下方的二维电子气310为不连续,也就是为空乏区。在本文中,用语不连续代表二维电子气中的导电能力差异甚大。在一实施例中,由于栅极电极与漏极电极之间的导电路径长度是影响高压元件的崩溃电压的主要因素之一,因此多个岛状结构600可仅形成于后续形成的栅极电极与漏极电极之间,而不形成于后续形成的栅极电极与源极电极之间,以降低制造成本。
在一实施例中,形成化合物半导体层500于阻障层400上及形成多个岛状结构600在阻障层400上在不同工艺中执行。在一实施例中,在形成化合物半导体层500于阻障层400上的工艺中,同时形成多个岛状结构600在阻障层400上。换句话说,化合物半导体层500与多个岛状结构600在同一工艺中形成,因此化合物半导体层500与多个岛状结构600由相同材料形成且具有相同厚度。当化合物半导体层500与多个岛状结构600在相同工艺中形成,可降低形成工艺的成本。在一实施例中,化合物半导体层500具有第一厚度t1;多个岛状结构600具有第二厚度t2;以及化合物半导体层500与多个岛状结构600皆由p型掺杂的氮化镓(p-GaN)形成且第一厚度t1实质上等于第二厚度t2,然不限于此,第一厚度t1可不同于第二厚度t2。在一实施例中,多个岛状结构600可依据半导体结构的电性性能需求来调整数量。举例而言,多个岛状结构600可包含第一部分610、第二部分620及第三部分630。然而,关于多个岛状结构600的布置方式,将于后进行详细说明。
参照图3,在一实施例中,接续使栅极电极510形成于化合物半导体层500上。在一些实施例中,栅极电极510的材料可为导电材料,举例而言,导电材料可包含金属、金属氮化物、半导体材料、其组合、或其他任何合适的导电材料,但不限于此。在一些实施例中,金属可为金(Au)、镍(Ni)、铂(Pt)、钯(Pd)、铱(Ir)、钛(Ti)、铬(Cr)、钨(W)、铝(Al)、铜(Cu)、其类似物、或其组合,但不限于此。半导体材料可为多晶硅、或多晶锗。上述的导电材料可通过例如化学气相沉积法(chemical vapor deposition,CVD)、溅射(sputtering)、电阻加热蒸发法、电子束蒸发法、其组合或其类似工艺。类似地,可先形成导电材料层于化合物半导体层500上,再经由图案化工艺来形成栅极电极510。
再者,在一实施例中,形成贯穿阻障层400并暴露通道层300的一部分的接触通孔(未显示)。前述接触通孔可设置于栅极电极510的两侧,且前述接触通孔与栅极电极510之间的横向距离可根据所需高电子迁移率半导体的电性性能调整。然后,沉积导电材料于接触通孔中。在一实施例中,导电材料可与用于形成栅极电极510的导电材料为相同或不同,且可使用与用于形成栅极电极510的沉积工艺相同或不同的工艺来沉积。接着使经沉积的导电材料图案化,以形成设置于栅极电极510的一侧且与通道层300接触的源极电极700、以及设置于栅极电极510的另一侧且与通道层300接触的漏极电极800,而获得本申请的半导体结构1。其中,半导体结构1可经进一步工艺而形成高电子迁移率半导体。
图4至图6是根据本申请的一些实施例,绘示在各个阶段形成半导体结构的剖面示意图。与前述内容相同或相似处于此不在加以赘述。
参照图4,在一实施例中,提供基板100;形成缓冲层200在基板100上;以及形成多个岛状结构600在缓冲层200上。也就是说,多个岛状结构600可位于后续形成的通道层300中。在一实施例中,可通过前述沉积工艺来形成多个岛状结构600。举例来说,可以通过沉积工艺在缓冲层200上形成岛状结构材料层;接着在岛状结构材料层上形成经图案化的遮罩;通过经图案化的遮罩暴露岛状结构材料层的一部分;接着使岛状结构材料层图案化,以形成多个岛状结构600。由于多个岛状结构600形成在缓冲层200与通道层300之间的界面处,所以形成工艺简易,且不易损坏通道层300,而避免通道层300的可靠性下降的问题。在一实施例中,多个岛状结构600包括p型GaN。在一实施例中,多个岛状结构600可包含第一部分610、第二部分620及第三部分630,且可具有第三厚度t3。
在另一实施例中,多个岛状结构600不限制于形成在缓冲层200的上表面上,多个岛状结构600亦可形成于通道层300中但不与缓冲层200接触。举例来说,可以先形成通道层的一部分于缓冲层200上,接着形成多个岛状结构600于前述通道层的一部分,之后再形成通道层的另一部分于多个岛状结构600上,以使得多个岛状结构600设置于通道层300中。
参照图5,接着,以诸如MOCVD的外延工艺形成通道层300于缓冲层200及多个岛状结构600上,并形成阻障层400于缓冲层上。在一实施例中,多个岛状结构600皆由p型GaN形成。且如前所述,接着形成化合物半导体层500在阻障层400上,并形成栅极电极510在化合物半导体层500上。
参照图6,形成源极电极700以及漏极电极800在栅极电极510的相对侧上,而获得本申请的半导体结构2,其中源极电极700及漏极电极800,分别与通道层300接触。其中,半导体结构2可经进一步工艺而形成高电子迁移率半导体。在一些实施例中,其中源极电极700及漏极电极800,分别与阻障层400接触,即前述源极电极700及漏极电极800的深度未到达通道层300(未显示)。
需要说明的是,多个岛状结构600可以透过通道层300向上影响在通道层300的上表面上的二维电子气310,使得对应的二维电子气310为不连续。具体而言,在一实施例中,位于多个岛状结构600上方的二维电子气310为不连续,也就是为空乏区。此外,无论是多个岛状结构600设置于通道层300的垂直深度、多个岛状结构600具有的第三厚度t3和/或多个岛状结构600的数量,皆可以依据所需的半导体结构的电性性能来调整。在一实施例中,相较于使多个岛状结构600形成在阻障层400上,因为使多个岛状结构600形成在通道层300中,可让多个岛状结构600更接近位在通道层300的上表面上的二维电子气310,所以可以设置较薄的多个岛状结构600,举例而言,设置具有小于第一厚度t1和/或第二厚度t2的第三厚度t3的多个岛状结构600,而也能够使对应的二维电子气310为不连续。
因此,可以通过使得多个岛状结构600形成在通道层300中,来提升用于形成多个岛状结构600的形成工艺的裕度,并减少工艺成本。详细而言,由于能够依据所需的半导体结构的电性性能,来调整形成在通道层300中的多个岛状结构600的厚度,因此可以设置具有各种适当厚度的多个岛状结构600,从而提升工艺裕度。另外,由于可以设置较薄的多个岛状结构600,因此能够减少多个岛状结构600的形成工艺的形成时间,例如:沉积时间,并减少需要使用的沉积材料,从而减少形成工艺的成本。
图7至图9是根据本申请的一些实施例,绘示在各个阶段形成半导体结构的剖面示意图。与前述内容相同或相似处于此不在加以赘述。
参照图7,类似于图1,提供基板100,并依序形成缓冲层200、通道层300、阻障层400。
参照图8,在缓冲层200上形成贯穿通道层300及阻障层400的多个岛状结构600,并在阻障层400上依序形成化合物半导体层500及栅极电极510。在一实施例中,可通过形成经图案化的遮罩于阻障层400上,以暴露阻障层400的一部分;接着使前述阻障层400及通道层300图案化,经过刻蚀工艺去除未经遮蔽的阻障层400及通道层300,以形成贯穿阻障层400及通道层300的多个岛状结构位置(未显示);并在岛状结构位置中填充岛状结构材料,来形成多个岛状结构600。前述岛状结构材料可包括或可为绝缘材料,诸如氧化硅、氮化硅、其组合或其类似物。在另一实施例中,可通过植入(implant)工艺来形成多个岛状结构600。举例而言,可以通过植入N2、Ar、Br、其类似物或其组合来形成多个岛状结构600。
在一实施例中,多个岛状结构600可贯穿阻障层400但不贯穿通道层300。具体而言,多个岛状结构600可贯穿阻障层400及在通道层300的上表面上的二维电子气,而不贯穿通道层300。多个岛状结构600的底表面与通道层300的底表面可不接触,亦即多个岛状结构600的底表面与缓冲层200的顶表面可不接触,且可间隔一距离。由于多个岛状结构600贯穿通道层300的上表面上的二维电子气,因此也能够使对应于多个岛状结构600的二维电子气为不连续。换句话说,由于多个岛状结构600贯穿二维电子气,实质上没有二维电子气在介于多个岛状结构600中的相邻的岛状结构之间。
因此,通过植入工艺来形成多个岛状结构600,除了能够达到使得二维电子气为不连续,还能够简化形成多个岛状结构600的工艺,并使得多个岛状结构600的形成工艺更容易与现有工艺相容,进而提升工艺裕度并降低工艺成本。举例而言,可以依据所需的半导体结构的电性性能,来调整植入遮罩、植入浓度、经植入的掺质种类、植入深度等参数,来弹性地形成多个岛状结构600。
参照图9,形成源极电极700以及漏极电极800在栅极电极510的相对侧上,而获得本申请的半导体结构3。其中,半导体结构3可经进一步工艺而形成高电子迁移率半导体。
需要说明的是,由于多个岛状结构600贯穿阻障层400及通道层300,因此在多个岛状结构600处不会产生二维电子气310,使得对应的二维电子气310为不连续,进而提升半导体结构的崩溃电压并降低导通电阻。
接续上述,图10至图13是根据本申请的一些实施例,绘示半导体结构1、2或3的俯视示意图。图3、图6及图9可为沿着图10的剖面线AA’撷取的剖面示意图。
参照图10,为使便于说明,仅显示阻障层400、栅极电极500、多个岛状结构600、源极电极700、漏极电极800,而省略其它部件。在图10中,多个岛状结构600可显示为设置在阻障层400上的实施例,或是贯穿阻障层400及通道层300的实施例,然而图10所示的多个岛状结构600亦适用于设置在通道层中的实施例。
如图10所示,以俯视图观察时,多个岛状结构600包括沿着平行于栅极电极510的延伸方向排列的多个列岛状部分。举例而言,多个列岛状部分中的每一列沿着横向方向排列,且多个列岛状部分中的每一个岛状部分的长度方向平行于前述横向方向。多个岛状结构600所包括的岛状部分的列数可根据所需电性性能调整。举例而言,可为1~50中的任意整数。为便于说明,以下仅以包括3列的岛状部分进行说明,然本申请不限于此。
接续上述,在一实施例中,多个列岛状部分包括多个第一部分610、多个第二部分620及多个第三部分630。在多个第三部分630中,第一部分610最邻近于栅极电极510;第三部分630最远离该栅极电极,且第二部分620设置于第一部分610及第三部分630之间。
如图10所示,在一实施例中,第一部分610、第二部分620及第三部分630交错设置。通过交错设置的第一部分610、第二部分620及第三部分630,使对应于第一部分610、第二部分620及第三部分630处的二维电子气为不连续,而让导通路径P沿着没有对应于第一部分610、第二部分620及第三部分630处延伸,以形成为非直线形的导通路径P。举例而言,使得导通路径P为锯齿状,然本申请不限制于此,导通路径P可为拉链状、Z型形状或其类似形状。所以,相较于直线形的导通路径P,本申请的半导体结构的导通路径P的总路径长度较大,而能使得源极电极700与漏极电极800之间的距离增加,进而增加崩溃电压。
此外,图10显示后续加工半导体结构1、2或3而形成的高电子迁移率半导体的主动区域R1及非主动区域R2。其中,前述主动区域R1及前述非主动区域R2可经由平台(MESA)工艺来定义。举例而言,在形成前述阻障层400之后,通过干刻蚀(dry etching)工艺,刻蚀阻障层400、通道层300及缓冲层200,以形成绝缘平台(isolation mesa)在基板100上,来隔离基板100上的各半导体结构,且将绝缘平台定义为主动区域R1。
在一些实施例中,多个岛状结构600的至少一部分跨越主动区域R1及非主动区域R2。举例而言,第二部分620跨越主动区域R1及非主动区域R2,以进一步确保导通路径为非直线形状,而提升崩溃电压。再者,在一实施例中,在主动区域R1中的介于栅极电极510与漏极电极800之间的区域R3中,设置有多个岛状结构600的面积与区域R3的总面积的比值为0.05~0.9。当比值小于0.05时,会与现存的半导体结构无明显差异,因此无法提升半导体结构的崩溃电压且亦无法降低导通电阻。而当比值又大于0.9时,则会导致电流太小的负面效果。在一实施例中,多个岛状结构600的面积与区域R3的总面积的比值为0.2~0.6。
如图10所示,第一部分610具有第一宽度w1,且相邻的第一部分610之间具有第一间距s1;第二部分620具有第二宽度w2,且相邻的第二部分620之间具有第二间距s2;以及第三部分630具有第三宽度w3,且相邻的第三部分630之间具有第三间距s3。栅极电极510与第一部分610之间具有距离dG;第一部分610与最邻近前述第一部分610的第二部分620之间具有距离d12;第二部分620与最邻近前述第二部分620的第三部分630之间具有距离d23;以及第三部分630与漏极电极之间具有距离dD
需说明的是,以多个岛状结构600中的第一部分610为例,在固定区域R3的尺寸的情况下,当第一宽度w1固定时,提升第一间距s1会提高电流;而当第一宽度w1固定时,缩短第一间距s1则会提高电场分布的均匀度。此外,在一实施例中,调整多个岛状结构600的厚度,使对应的二维电子气310为不连续;调整多个岛状结构600之间的间距,使得电场分布最佳化。
在图10中,第一宽度w1、第二宽度w2及第三宽度w3实质上相同;第一间距s1、第二间距s2及第三间距s3实质上相同;且距离dG、距离d12、距离d23及距离dD实质上相同。因此,本申请的半导体基板可具有设计单纯,容易设计的有益功效。
参照图11,第一宽度w1大于第二宽度w2,且第二宽度w2大于第三宽度w3;第一间距s1、第二间距s2及第三间距s3实质上相同;且距离dG、距离d12、距离d23及距离dD实质上相同。因此,本申请的半导体基板可具有降低靠近栅极电极510的电场效果。
参照图12,第一宽度w1、第二宽度w2及第三宽度w3实质上相同;第一间距s1小于第二间距s2,且第二间距s2小于第三间距s3;且距离dG、距离d12、距离d23及距离dD实质上相同。因此,本申请的半导体基板可具有平衡靠近栅极电极510和靠近漏极电极800两端电场效果。
参照图13,第一宽度w1、第二宽度w2及第三宽度w3实质上相同;第一间距s1、第二间距s2及第三间距s3实质上相同;且在距离dG及距离dD为实质上相同的情况下,使距离d12小于距离d23。因此,本申请的半导体基板可具有均衡电场和电流大小效果。
另外,本申请所申请的半导体结构亦可以应用于金属-绝缘体-半导体高电子迁移率半导体(MIS-HEMT)中。
综上所述,根据本申请的一些实施例,本申请通过在通道层中、在阻障层上和/或在缓冲层上且贯穿通道层及阻障层的位置处设置多个岛状结构,来使得介于栅极电极与漏极电极之间的二维电子气为空乏区,进而提升半导体结构的崩溃电压并降低导通电阻,来改善后续形成的高电子迁移率半导体的性能。此外,可以依据所需电性性能调整多个岛状结构的厚度、宽度、间距以及交错排列的方式。所以本申请能使得在俯视图观察时,介于栅极电极与漏极电极之间的导通路径为非直线路径,来增加导通路径的总长度,进而提升崩溃电压。再者,由于本申请包括多个岛状结构,因此能够提升电场分布的均匀度。
虽然本申请的实施例及其优点已揭露如上,但应该了解的是,任何所属技术领域中具有通常知识者,在不脱离本申请的专利保护范围内,当可作更动、替代与润饰。此外,本申请的保护范围并未局限于说明书内所述特定实施例中的工艺、机器、制造、物质组成、装置、方法及步骤,任何所属技术领域中具有通常知识者可从本申请一些实施例之揭示内容中理解现行或未来所发展出的工艺、机器、制造、物质组成、装置、方法及步骤,只要可以在此处所述实施例中实施大抵相同功能或获得大抵相同结果皆可根据本申请一些实施例使用。因此,本申请的保护范围包括上述工艺、机器、制造、物质组成、装置、方法及步骤。另外,每一申请专利范围构成个别的实施例,且本申请的保护范围也包括各个申请专利范围及实施例的组合。

Claims (12)

1.一种半导体结构,其特征在于,包含:
一基板;
一通道层,设置于所述基板上;
一阻障层,设置于所述通道层上;
一栅极电极,设置于所述阻障层上;
一源极电极及一漏极电极,分别设置于所述栅极电极的相对侧,且分别与所述阻障层接触;以及
多个岛状结构,设置于所述栅极电极与所述漏极电极之间,且对应于所述多个岛状结构的在所述通道层的上表面上的二维电子气为不连续。
2.根据权利要求1所述的半导体结构,其特征在于,以俯视图观察,所述多个岛状结构包括沿着平行于所述栅极电极的延伸方向排列的多个列岛状部分。
3.根据权利要求2所述的半导体结构,其特征在于,所述多个列岛状部分包括多个第一部分、多个第二部分及多个第三部分;
其中,所述多个第一部分最邻近于所述栅极电极;所述多个第三部分最远离所述栅极电极;且所述多个第一部分、所述多个第二部分及所述多个第三部分交错设置。
4.根据权利要求3所述的半导体结构,其特征在于,所述多个第一部分的一第一宽度大于或等于所述多个第二部分的一第二宽度;且所述第二宽度大于或等于所述多个第三部分的一第三宽度。
5.根据权利要求3所述的半导体结构,其特征在于,所述多个第一部分中的相邻第一部分之间的一第一间距小于或等于所述多个第二部分中的相邻第二部分之间的一第二间距;且所述第二间距小于或等于所述多个第三部分中的相邻第三部分之间的一第三间距。
6.根据权利要求3所述的半导体结构,其特征在于,所述多个第一部分中的一第一部分与最邻近的所述多个第二部分中的一第二部分之间的距离小于或等于所述多个第二部分中的所述第二部分与最邻近的所述多个第三部分中的一第三部分之间的距离。
7.根据权利要求1所述的半导体结构,其特征在于,所述源极电极及所述漏极电极,分别与所述通道层接触。
8.根据权利要求1所述的半导体结构,其特征在于,还包含:
一缓冲层,设置于所述基板与所述通道层之间;以及
一化合物半导体层,设置于所述阻障层与所述栅极电极之间。
9.根据权利要求1所述的半导体结构,其特征在于,所述多个岛状结构设置于所述通道层中。
10.根据权利要求1所述的半导体结构,其特征在于,所述多个岛状结构设置于所述阻障层上。
11.根据权利要求9或10所述的半导体结构,其特征在于,所述多个岛状结构包含p型掺杂的氮化镓或p型掺杂的氮化铝镓。
12.根据权利要求1所述的半导体结构,其特征在于,所述多个岛状结构设置于所述基板上且贯穿所述通道层与所述阻障层。
CN202111119390.0A 2021-03-24 2021-09-24 半导体结构 Pending CN115132838A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110110586A TWI803845B (zh) 2021-03-24 2021-03-24 半導體結構
TW110110586 2021-03-24

Publications (1)

Publication Number Publication Date
CN115132838A true CN115132838A (zh) 2022-09-30

Family

ID=83375730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111119390.0A Pending CN115132838A (zh) 2021-03-24 2021-09-24 半导体结构

Country Status (2)

Country Link
CN (1) CN115132838A (zh)
TW (1) TWI803845B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328682A1 (en) * 2021-04-08 2022-10-13 Excelliance Mos Corporation Gallium nitride high electron mobility transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812573B (zh) * 2023-01-31 2023-08-11 新唐科技股份有限公司 半導體裝置及其形成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073298A1 (ja) * 2010-12-03 2012-06-07 国立大学法人東北大学 テラヘルツ電磁波変換装置
US8921893B2 (en) * 2011-12-01 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit structure having islands between source and drain
TWI613814B (zh) * 2016-11-29 2018-02-01 新唐科技股份有限公司 增強型高電子遷移率電晶體元件
US10833063B2 (en) * 2018-07-25 2020-11-10 Vishay SIliconix, LLC High electron mobility transistor ESD protection structures
JP7065329B2 (ja) * 2018-09-27 2022-05-12 パナソニックIpマネジメント株式会社 窒化物半導体装置及びその製造方法
TWI692868B (zh) * 2019-04-16 2020-05-01 世界先進積體電路股份有限公司 半導體結構
TWI686873B (zh) * 2019-05-09 2020-03-01 世界先進積體電路股份有限公司 半導體裝置及其製造方法
TWI732239B (zh) * 2019-07-04 2021-07-01 世界先進積體電路股份有限公司 半導體結構及其形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220328682A1 (en) * 2021-04-08 2022-10-13 Excelliance Mos Corporation Gallium nitride high electron mobility transistor

Also Published As

Publication number Publication date
TWI803845B (zh) 2023-06-01
TW202238993A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
US8907349B2 (en) Semiconductor device and method of manufacturing the same
TWI663698B (zh) 半導體裝置
JP5841417B2 (ja) 窒化物半導体ダイオード
CN111883588A (zh) 用于hemt器件的侧壁钝化
US11502170B2 (en) Semiconductor device and manufacturing method thereof
TWI641133B (zh) 半導體單元
JP2015026629A (ja) 窒化物半導体装置の構造及び製造方法
US11335797B2 (en) Semiconductor devices and methods for fabricating the same
JP2012019186A (ja) 窒化物系半導体素子及びその製造方法
US20240038886A1 (en) Semiconductor device and method for manufacturing the same
CN115132838A (zh) 半导体结构
JP2017514316A (ja) ヘテロ接合電界効果トランジスタ
JP2018041933A (ja) 半導体装置及び半導体基板
JP2016174140A (ja) 高電子移動度トランジスタ装置及びその製造方法
TWI569439B (zh) 半導體單元
KR101148694B1 (ko) 질화물계 반도체 소자 및 그 제조 방법
US20240038887A1 (en) Semiconductor device and method for manufacturing the same
KR20110067512A (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
CN114270532B (zh) 半导体装置及其制造方法
US20230343864A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2019163075A1 (ja) 半導体装置
US20220376059A1 (en) Semiconductor device structures and methods of manufacturing the same
JP2015008244A (ja) ヘテロ接合電界効果型トランジスタおよびその製造方法
CN117316767B (zh) 一种半导体器件及其制备方法
US11600721B2 (en) Nitride semiconductor apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination