CN115121289A - 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法 - Google Patents

钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法 Download PDF

Info

Publication number
CN115121289A
CN115121289A CN202210798290.3A CN202210798290A CN115121289A CN 115121289 A CN115121289 A CN 115121289A CN 202210798290 A CN202210798290 A CN 202210798290A CN 115121289 A CN115121289 A CN 115121289A
Authority
CN
China
Prior art keywords
barium titanate
heterojunction
organic framework
covalent organic
nanoparticle composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210798290.3A
Other languages
English (en)
Other versions
CN115121289B (zh
Inventor
路建美
李娜君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210798290.3A priority Critical patent/CN115121289B/zh
Publication of CN115121289A publication Critical patent/CN115121289A/zh
Application granted granted Critical
Publication of CN115121289B publication Critical patent/CN115121289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法与应用;将钛酸钡纳米颗粒与含有聚乙烯吡咯烷酮与支化聚乙烯亚胺的溶液混合,得到修饰后的钛酸钡纳米颗粒;将修饰后的钛酸钡纳米颗粒、1,3,5‑三(4‑氨苯基)苯和2,5‑二甲氧基苯‑1,4‑二甲醛混合,通过封装反应得到钛酸钡纳米颗粒复合共价有机骨架异质结本发明选择钛酸钡与共价有机骨架(COFs)组成压电‑光复合材料,结合二者的优势,其催化性能可以得到明显的提升。

Description

钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法
技术领域
本发明涉及无机-有机纳米复合材料及压电-光催化技术领域,具体涉及钛酸钡纳米颗粒/共价有机骨架异质结的制备及其对水体有机污染物的压电-光催化降解去除。
背景技术
随着现代化进程的不断推进,人们的生活水平得到了很大提高,但也因此带来一连串的环境污染与能源短缺问题。为解决这些问题,需要探索并开发新能源驱动的低能耗且普适性强的环境修复技术。光催化材料,能够将太阳能转化为化学能,有望用于解决当前日益严重的环境问题。然而,光生电子与空穴的快速结合导致光催化效率低下,限制了光催化技术的实际应用。虽然已经探索了各种各样的策略来提高光催化效率,如金属或非金属掺杂、形貌调控、带隙工程和异质结结构,但在光催化过程中仍有巨大的有效电荷转移潜力。现有技术公开了一种用于催化降解水中微量有机污染物的钛酸钡纳米材料及其制备和应用,该钛酸钡纳米材料以氢氧化钛前驱物、八水合氢氧化钡分别作为钛酸钡纳米材料的钛源、钡源,以氢氧化钠、乙醇作为反应助剂,通过水热或溶剂热法制备。现有技术公开了一种Ag NWs@BaTiO3芯鞘复合压电光催化材料及其制备方法和应用,表面鞘为压电材料钛酸钡BaTiO3,芯为银纳米线Ag NWs。现有技术公开了钛酸钡/铌酸钾复合压电光催化剂,粒径为30-50nm的BaTiO3纳米球均布在棱柱状的KNbO3上,稳定性较好,具有优良的催化活性。纵观现有技术,关于钛酸钡的催化剂制备方法较复杂,且处理效果还需改善。
发明内容
本发明的目的是提供一种钛酸钡纳米颗粒/共价有机骨架异质结的制备方法,所形成的复合材料在超声振动以及光照的共同作用下可以有效去除水体中的双酚A。作为具体的实施例,首先将聚乙烯吡咯烷酮(PVP)与支化聚乙烯亚胺(BPEI)修饰在钛酸钡的表面,然后通过简单的封装方法将1,3,5-三(4-氨苯基)苯(TAPB)和2,5-二甲氧基苯-1,4-二甲醛(DMTP)在钛酸钡表面缩聚形成TAPB-DMTP-COF(TD-COF)壳层,包裹在钛酸钡纳米颗粒表面上。本发明中的钛酸钡能与TD-COF形成核壳异质结结构,同时具有良好的吸附性能以及压电-光催化性能。实验结果表明在超声和光照共同作用下复合材料去除水体中双酚A的性能比钛酸钡纳米颗粒或者纯TD-COF优异。
为达到上述目的,本发明具体技术方案如下:
一种钛酸钡纳米颗粒复合共价有机骨架异质结,其制备方法包括以下步骤:
(1)将粒径为30~100纳米的钛酸钡纳米颗粒与含有聚乙烯吡咯烷酮(PVP)与支化聚乙烯亚胺(BPEI)的乙醇溶液混合,得到修饰后的钛酸钡纳米颗粒;
(2)将修饰后的钛酸钡纳米颗粒、1,3,5-三(4-氨苯基)苯(TAPB)和2,5-二甲氧基苯-1,4-二甲醛(DMTP)混合,通过封装反应得到钛酸钡纳米颗粒复合共价有机骨架异质结(BTO@TD-COF)。
一种去除水体中污染物的方法,包括以下步骤:将钛酸钡纳米颗粒复合共价有机骨架异质结(BTO@TD-COF)置入含有污染物的水体中,超声和/或光照,完成水体中污染物的去除。
上述技术方案中,步骤(1)中,钛酸钡纳米颗粒为钛酸钡纳米球(BTO);钛酸钡纳米颗粒、PVP、BPEI的质量比为(30~50)∶(0.8~1.2)∶1,优选40∶1∶1;PVP、BPEI的质量和相对于乙醇溶液的重量比为(0.03~0.07)∶1,优选0.05∶1;混合的时间为18~30 h,优选24 h;优选的,将钛酸钡纳米颗粒加入PVP和BPEI乙醇溶液中,磁力搅拌24 h,搅拌结束后离心洗涤,干燥后得到修饰后的钛酸钡纳米颗粒。本发明首先采用PVP以及BPEI修饰钛酸钡纳米颗粒,利于TD-COF在缩聚过程中能在钛酸钡纳米颗粒表面上生长,从而更好的将钛酸钡纳米颗粒包裹起来。
上述技术方案中,步骤(2)中,DMTP和TAPB的摩尔比为(0.5~2)∶1,优选1.5∶1;1,3,5-三(4-氨苯基)苯(TAPB)、修饰后的钛酸钡纳米颗粒的质量比为10.5∶1.95~9.75,优选10.5∶5~6,比如10.5∶5.86。
上述技术方案中,封装反应在乙酸存在下、有机溶剂中进行,优选的,将修饰后的钛酸钡、TAPB和DMTP混合,加入浓度为10~17.5 M,优选17.5 M乙酸常温反应2 h,然后加入8~12 M,优选10 M乙酸在70 oC下继续反应4 h,索氏提取后干燥得到钛酸钡纳米颗粒复合共价有机骨架异质结。有机溶剂为1,4 -二氧六环和正丁醇。
上述技术方案中,将钛酸钡纳米颗粒复合共价有机骨架异质结置入含有污染物的水中,避光搅拌后用超声辅助光照,实现水中污染物的去除。
本发明进一步公开了钛酸钡纳米颗粒/共价有机骨架异质结在降解处理水中污染物中的应用,优选污染物为双酚A。
本发明的优点:
1. 本发明公开的钛酸钡纳米颗粒/共价有机骨架异质结具有稳定性高、性能出色与制备方法简单等优点;
2. 本发明公开的钛酸钡纳米颗粒/共价有机骨架异质结中压电场的存在可以降低自由载流子的复合率,有效促进自由载流子的分离;
3. 本发明首次将COF和钛酸钡材料结合,内置电场的存在能有效提升了COF材料的光催化性能,同时COF材料的优异性能使得复合材料能够处理大量的水体污染物。
附图说明
图1为TAPB-DMTP-COF的扫描电镜图与透射电镜图,其中左上角为透射电镜图;
图2为钛酸钡纳米颗粒/共价有机骨架异质结的扫描电镜图与透射电镜图,其中左上角为透射电镜图;
图3为不同催化剂对水中双酚A的降解曲线图;
图4为钛酸钡纳米颗粒/共价有机骨架异质结的透射电镜图;
图5为钛酸钡纳米颗粒/共价有机骨架异质结对水中双酚A的循环降解曲线图。
具体实施方式
压电材料在受到外界应力时,会在其相对表面产生正负电荷,由此建立的内置电场能够抑制光生电子与空穴复合。本发明将压电与光催化有效结合,达到十分优异的污染物降解能力。共价有机骨架材料(COFs),是一类新兴的晶体多孔有机材料,由于其具有大的比表面积、良好的孔隙度,结合钛酸钡,在水污染处理方面同时展现出良好的吸附以及降解能力,成为一种应用于环境修复方向很有前途的光催化剂。本发明通过简单的封装方法得到钛酸钡纳米颗粒/共价有机骨架异质结,在超声和光照的同时作用下,实现降解水体污染物的目的。本发明的原料为现有产品,具体制备操作以及测试方法为常规技术。
实施例一 钛酸钡的表面修饰,具体步骤如下:
将含有 200 mg 钛酸钡纳米球(D90粒径50 nm,购自阿拉丁(上海)试剂有限公司)的10 mL乙醇滴加入含有5 mg PVP和5 mg BPEI的10 mL乙醇中,再将得到的混合液在常温下常规搅拌24 h,最后用乙醇洗涤产物三次,在60 oC下干燥,得到修饰后的钛酸钡(XBTO)。
实施例二TAPB-DMTP-COF的制备,具体步骤如下:
将1,3,5-三(4-氨苯基)苯 (10.5 mg, 0.03 mmol)、2,5-二甲氧基苯-1,4-二甲醛(8.7 mg, 0.045 mmol)、1,4 -二氧六环(2 mL)和正丁醇(2 mL)的混合物常规超声60分钟,然后加入0.1mL乙酸,在室温下反应2 h,随后添加0.4 mL 10 M 的乙酸,然后在70°C下反应4 h;反应结束后冷却到室温,将混合物过滤后用250 mL四氢呋喃索氏提取24 h,然后在60oC下干燥,得到TAPB-DMTP-COF(TD-COF)。附图1为上述单纯TAPB-DMTP-COF的扫描电镜图。从图中可以看到单纯的TAPB-DMTP-COF具有规整的纳米球形貌。
实施例三 钛酸钡纳米颗粒复合共价有机骨架异质结的制备,具体步骤如下:
将1,3,5-三(4-氨苯基)苯(10.5 mg, 0.03 mmol)、2,5-二甲氧基苯-1,4-二甲醛(8.7 mg, 0.045 mmol)、1,4 -二氧六环(2 mL)、正丁醇(2 mL)和5.86 mg的修饰后钛酸钡的混合物常规超声60分钟,然后加入0.1mL乙酸,在室温下反应2 h,随后添加0.4 mL 10 M的乙酸,然后在70°C下反应4 h;反应结束后冷却到室温,将混合物过滤后用250 mL四氢呋喃索氏提取24 h,然后在60 oC下干燥,得到最终产物钛酸钡纳米颗粒复合共价有机骨架异质结(BTO-3@TD-COF)。附图2为上述钛酸钡纳米颗粒复合共价有机骨架异质结的扫描电镜图,从图中可以看到钛酸钡纳米颗粒复合共价有机骨架异质结仍然保持规整的纳米球形貌,且明显能看出TAPB-DMTP-COF将钛酸钡完全包裹。
实施例四 不同质量比的钛酸钡纳米颗粒复合共价有机骨架异质结的制备,具体步骤如下:
将1,3,5-三(4-氨苯基)苯(10.5 mg, 0.03 mmol)、2,5-二甲氧基苯-1,4-二甲醛(8.7 mg, 0.045 mmol)、1,4 -二氧六环(2 mL)、正丁醇(2 mL)和1.95 mg的修饰后钛酸钡的混合物常规超声60分钟,然后加入0.1mL乙酸,在室温下反应2 h,随后添加0.4 mL 10 M的乙酸,然后在70°C下反应4 h;反应结束后冷却到室温,将混合物过滤后用250 mL四氢呋喃索氏提取24 h,然后在60 oC下干燥,得到最终产物钛酸钡纳米颗粒复合共价有机骨架异质结(BTO-1@TD-COF)。
实施例五 不同质量比的钛酸钡纳米颗粒复合共价有机骨架异质结的制备,具体步骤如下:
将1,3,5-三(4-氨苯基)苯(10.5 mg, 0.03 mmol)、2,5-二甲氧基苯-1,4-二甲醛(8.7 mg, 0.045 mmol)、1,4 -二氧六环(2 mL)、正丁醇(2 mL)和9.75 mg的修饰后钛酸钡的混合物常规超声60分钟,然后加入0.1mL乙酸,在室温下反应2 h,随后添加0.4 mL 10 M的乙酸,然后在70°C下反应4 h;反应结束后冷却到室温,将混合物过滤后用250 mL四氢呋喃索氏提取24 h,然后在60 oC下干燥,得到最终产物钛酸钡纳米颗粒复合共价有机骨架异质结(BTO-5@TD-COF)。
对比例一
将1,3,5-三(4-氨苯基)苯(10.5 mg, 0.03 mmol)、2,5-二甲氧基苯-1,4-二甲醛(8.7 mg, 0.045 mmol)、1,4 -二氧六环(2 mL)、正丁醇(2 mL)和5.86 mg的钛酸钡纳米球(D90粒径50 nm,购自阿拉丁(上海)试剂有限公司)的混合物常规超声60分钟,然后加入0.1mL乙酸,在室温下反应2 h,随后添加0.4 mL 10 M 的乙酸,然后在70°C下反应4 h;反应结束后冷却到室温,将混合物过滤后用250 mL四氢呋喃索氏提取24 h,然后在60 oC下干燥,得到最终产物(WBTO@TD-COF)。
实施例六
不同催化剂对双酚A的压电-光催化降解实验:取5 mg 催化剂置于50 mL浓度为20mg/L的双酚A水溶液小烧杯中,避光吸附2小时,期间每60 min取样1 mL,经滤头(0.22 μm)过滤后注入高效液相样品瓶中。吸附平衡之后,将样品转移至玻璃试管中,将试管置于超声清洁器中,打开超声(180 W,45 Hz)的同时打开氙灯光源(可见光,300 W),每5 min取样1mL,经滤头(0.22 μm)过滤除去催化剂后注入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇= 30:70 的流动相中测试样品在290 nm 紫外波长下的吸收曲线,记录在6min 左右的双酚A 出峰面积,并把初始双酚A 的浓度记为100 %,得到双酚A 的压电催化降解曲线。
催化剂分别为现有钛酸钡纳米球、TAPB-DMTP-COF、BTO/TD-COF(BTO-3@TD-COF),对双酚A的降解结果见图3,本发明BTO/TD-COF在吸附平衡之后30分钟时实现双酚A的完全降解。
实施例七
采用其他催化剂,按照实施例六的方法进行双酚A降解,吸附平衡之后30分钟时,双酚A残留率如表1;采用BTO-3@TD-COF为催化剂,在实施例六的方法基础上,省略超声或者光照,吸附平衡之后30分钟时,双酚A残留率如表1。
Figure DEST_PATH_IMAGE001
XBTO+TD-COF是指修饰后的钛酸钡与TAPB-DMTP-COF常规研磨混合30分钟。
实施例八
将实施例一的钛酸钡纳米球更换为钛酸钡立方体(D90粒径10 nm,购自阿拉丁(上海)试剂有限公司),其余不变,得到修饰后的钛酸钡;再根据实施例三的方法,得到钛酸钡纳米颗粒复合共价有机骨架异质结,图4为其透射电镜图;按照实施例六的方法进行双酚A降解,吸附平衡之后30分钟时,双酚A残留率40%。
实施例九
BTO-3@TD-COF对水中双酚A的循环降解实验。实施例六中经超声光照30 min 后回收的复合材料依次用去离子水和 95%乙醇洗涤,置于真空烘箱中烘干,再重新加入到新取的50 mL浓度为20 mg/L的双酚A溶液中,在黑暗条件下搅拌2 h以达到吸附平衡。平衡后,将溶液转移至超声清洗器中,打开超声的同时打开氙灯光源(可见光),每5 min取1 mL,用0.22 μm的滤头过滤后放入高效液相样品瓶中,使用高效液相色谱仪在去离子水:甲醇=3:7(体积比)的流动相中测试样品在290 nm紫外波长下的吸收曲线,记录6 min左右的双酚A出峰面积,把初始双酚A的浓度记为100%,得到双酚A的压电降解曲线。依照上述步骤重复 5次,分别测试并记录数据,其结果如附图5所示。从图中可以看出,在5次重复过程中,本发明的压电催化剂始终保持优良的压电催化性能,水溶液中双酚A的最终去除率均大于90%。因此,该催化剂可以重复使用,具有良好的稳定性。
本发明公开了一种能在超声和光照同时激发下有效吸附并降解水溶性有机污染物的钛酸钡纳米颗粒/共价有机骨架异质结复合材料。通过简单的封装方法将1,3,5-三(4-氨苯基)苯(TAPB)和2,5-二甲氧基苯-1,4-二甲醛(DMTP)缩聚并包裹在钛酸钡纳米颗粒(BTO)表面形成共价有机骨架壳层(TD-COF),构建了钛酸钡纳米颗粒/共价有机骨架核壳异质结(BTO@TD-COF);在压电与光照下,催化性能提升明显。

Claims (10)

1.一种钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,包括以下步骤:
(1)将钛酸钡纳米颗粒与含有聚乙烯吡咯烷酮与支化聚乙烯亚胺的溶液混合,得到修饰后的钛酸钡纳米颗粒;
(2)将修饰后的钛酸钡纳米颗粒、1,3,5-三(4-氨苯基)苯和2,5-二甲氧基苯-1,4-二甲醛混合,通过封装反应得到钛酸钡纳米颗粒复合共价有机骨架异质结。
2.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,钛酸钡纳米颗粒为钛酸钡纳米球;钛酸钡纳米颗粒、聚乙烯吡咯烷酮、支化聚乙烯亚胺的质量比为(30~50)∶(0.8~1.2)∶1。
3.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,步骤(1)中,混合的时间为18~30 h。
4.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,2,5-二甲氧基苯-1,4-二甲醛、1,3,5-三(4-氨苯基)苯的摩尔比为(0.5~2)∶1;1,3,5-三(4-氨苯基)苯、修饰后的钛酸钡纳米颗粒的质量比为10.5∶1.95~9.75。
5.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,封装反应在乙酸存在下、有机溶剂中进行。
6.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法,其特征在于,将修饰后的钛酸钡纳米颗粒、1,3,5-三(4-氨苯基)苯和2,5-二甲氧基苯-1,4-二甲醛混合,加入乙酸常温反应,然后再加入乙酸在60℃~80℃下继续反应,得到钛酸钡纳米颗粒复合共价有机骨架异质结。
7.根据权利要求1所述钛酸钡纳米颗粒复合共价有机骨架异质结的制备方法制备的钛酸钡纳米颗粒复合共价有机骨架异质结。
8.一种去除水体中污染物的方法,其特征在于,包括以下步骤:将权利要求7所述钛酸钡纳米颗粒复合共价有机骨架异质结置入含有污染物的水体中,超声和/或光照,完成水体中污染物的去除。
9.根据权利要求8所述去除水体中污染物的方法,其特征在于,将钛酸钡纳米颗粒复合共价有机骨架异质结置入含有污染物的水中,避光搅拌后用超声结合光照,实现水中污染物的去除。
10.权利要求7所述钛酸钡纳米颗粒复合共价有机骨架异质结在降解水中污染物中的应用。
CN202210798290.3A 2022-07-06 2022-07-06 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法 Active CN115121289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210798290.3A CN115121289B (zh) 2022-07-06 2022-07-06 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210798290.3A CN115121289B (zh) 2022-07-06 2022-07-06 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法

Publications (2)

Publication Number Publication Date
CN115121289A true CN115121289A (zh) 2022-09-30
CN115121289B CN115121289B (zh) 2023-07-04

Family

ID=83380990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210798290.3A Active CN115121289B (zh) 2022-07-06 2022-07-06 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法

Country Status (1)

Country Link
CN (1) CN115121289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870010A (zh) * 2022-10-09 2023-03-31 苏州大学 一种含铋空位的钛酸铋纳米片/UiO-66-NH2异质结及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330943A (ja) * 1991-04-30 1992-11-18 Tanaka Kikinzoku Kogyo Kk 光触媒とその製造方法
CN107442097A (zh) * 2017-08-25 2017-12-08 盐城师范学院 一种用于有机合成的光催化剂及其制备方法
CN107649130A (zh) * 2017-11-06 2018-02-02 陈少华 一种光催化复合材料及其制备方法
CN111293256A (zh) * 2020-02-17 2020-06-16 珠海冠宇电池有限公司 一种陶瓷颗粒、包括该陶瓷颗粒的隔膜及电池
CN111939938A (zh) * 2020-08-26 2020-11-17 杭州电子科技大学 一种具有高压电/光催化活性的钛酸钡/硫化铟复合纳米颗粒及制备方法
CN111996618A (zh) * 2020-08-13 2020-11-27 苏州大学 钒掺杂钛酸锶纳米纤维及其制备方法与应用
CN114210316A (zh) * 2021-11-05 2022-03-22 中南大学 一种二氧化钛包覆钛酸钡的核壳结构纳米线陶瓷的制备方法及其应用
CN114272917A (zh) * 2021-12-17 2022-04-05 南京航空航天大学 一种压电光催化剂及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330943A (ja) * 1991-04-30 1992-11-18 Tanaka Kikinzoku Kogyo Kk 光触媒とその製造方法
CN107442097A (zh) * 2017-08-25 2017-12-08 盐城师范学院 一种用于有机合成的光催化剂及其制备方法
CN107649130A (zh) * 2017-11-06 2018-02-02 陈少华 一种光催化复合材料及其制备方法
CN111293256A (zh) * 2020-02-17 2020-06-16 珠海冠宇电池有限公司 一种陶瓷颗粒、包括该陶瓷颗粒的隔膜及电池
CN111996618A (zh) * 2020-08-13 2020-11-27 苏州大学 钒掺杂钛酸锶纳米纤维及其制备方法与应用
CN111939938A (zh) * 2020-08-26 2020-11-17 杭州电子科技大学 一种具有高压电/光催化活性的钛酸钡/硫化铟复合纳米颗粒及制备方法
CN114210316A (zh) * 2021-11-05 2022-03-22 中南大学 一种二氧化钛包覆钛酸钡的核壳结构纳米线陶瓷的制备方法及其应用
CN114272917A (zh) * 2021-12-17 2022-04-05 南京航空航天大学 一种压电光催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHUANG WANG ET AL.: "Heterostructured ferroelectric BaTiO3@MOF-Fe/ Co electrocatalysts for efficient oxygen evolution reaction" *
张鹏等: "钛酸钡基纳米材料的压电催化性能研究进展" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870010A (zh) * 2022-10-09 2023-03-31 苏州大学 一种含铋空位的钛酸铋纳米片/UiO-66-NH2异质结及其制备方法与应用

Also Published As

Publication number Publication date
CN115121289B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Bao et al. A heterostructure BiOCl nanosheets/TiO2 hollow-tubes composite for visible light-driven efficient photodegradation antibiotic
Yao et al. Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation
Pant et al. One-pot synthesis of CdS sensitized TiO2 decorated reduced graphene oxide nanosheets for the hydrolysis of ammonia-borane and the effective removal of organic pollutant from water
CN112521618A (zh) 一种铋基金属有机框架材料及其制备方法和应用
CN112121821A (zh) 硫化镉/氧化锌复合材料及其制备方法与在压电-光催化去除有机污染物中的应用
Huang et al. Organic-inorganic TCPP/BiOCl hybrids with accelerated interfacial charge separation for boosted photocatalytic performance
Altin CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A
Yu et al. A new fabrication of AgX (X= Br, I)–TiO 2 nanoparticles immobilized on polyacrylonitrile (PAN) nanofibers with high photocatalytic activity and renewable property
Hao et al. Integration of CdS particles into sodium alginate aerogel with enhanced photocatalytic performance
CN115121289B (zh) 钛酸钡纳米颗粒复合共价有机骨架异质结及其制备方法
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity
Cui et al. Simultaneously promoting adsorption and charge separation in Z-scheme ZnO/Cu2O heterojunctions for efficient removal of tetracycline
CN110523398B (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
CN112973753A (zh) 一种z型异质结气凝胶型光催化材料的制备方法及其应用
Jiang et al. Self-assembled synthesis of porous sulfur-doped g-C3N4 nanotubes with efficient photocatalytic degradation activity for tetracycline
Duan et al. Preparation of Cu2O-Fe3O4@ carbon nanocomposites derived from natural polymer hydrogel template for organic pollutants degradation
CN115121257A (zh) 一种铜掺杂氧化锌纳米棒、制备方法及其在压电-光催化去除有机污染物中的应用
Hao et al. Integration of g-C3N4 into cellulose/graphene oxide foams for efficient photocatalytic Cr (VI) reduction
CN112973744B (zh) 一种光电催化剂及其制备方法
CN107096537B (zh) 一种Fe2O3掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
Ren et al. Controlled vertical growing of Bi2O3 nano sheets on diatomite disks and its high visible-light photocatalytic performance
CN109939697B (zh) 一种Pd/CdS/TOC光催化剂及其制备方法和应用
CN110624520A (zh) W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用
Wellia et al. Mesoporous Materials for Degradation of Textile Dyes
CN110975906B (zh) 一种钒酸银/碳酸银p-n异质结复合光催化剂其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant