CN110624520A - W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用 - Google Patents

W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用 Download PDF

Info

Publication number
CN110624520A
CN110624520A CN201911004034.7A CN201911004034A CN110624520A CN 110624520 A CN110624520 A CN 110624520A CN 201911004034 A CN201911004034 A CN 201911004034A CN 110624520 A CN110624520 A CN 110624520A
Authority
CN
China
Prior art keywords
nanofiber membrane
composite nanofiber
polymer composite
modified polymer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911004034.7A
Other languages
English (en)
Inventor
王策
马棫滢
刘佳迪
何大勇
邱菊
金昌显
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201911004034.7A priority Critical patent/CN110624520A/zh
Publication of CN110624520A publication Critical patent/CN110624520A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Abstract

W18O49修饰的聚合物复合纳米纤维膜、制备方法及其在降解水中有机污染物方面的应用,属于纳米功能材料技术领域。本发明首先通过静电纺丝技术制备柔性聚合物纤维膜,然后以柔性聚合物纤维膜作为前驱体模板,通过简单溶剂热反应过程制备而成。反应原理是由静电纺丝纳米纤维作为异相成核位点,溶剂热合成前驱体中的钨源溶质与醇溶剂发生水解反应,反应生成W18O49的钨氧化物。制备的复合纳米纤维膜对有机污染物具有吸附效果,其降解过程可以归结于吸附和光催化共同作用的结果,而且可以避免在使用过程中纳米粒子的团聚问题、并且使用过后可以较易分离回收。

Description

W18O49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有 机污染物方面的应用
技术领域
本发明属于纳米功能材料技术领域,具体涉及一种W18O49修饰的聚合物复合纳米纤维膜、制备方法及其在吸附/光催化共同作用下降解水中有机污染物方面的应用。
背景技术
随着印染工业及制药企业的不断发展,废水中有机污染物的排放及处理问题已经引起了世界各国研究者的广泛关注。近年来,光催化技术由于其利用太阳光作为能量来源,将有机污染物完全降解为无害的无机物质,不会浪费资源也不会造成额外的环境污染,因此被认为是极有前景的污水处理技术。
自从1972年Fujishu和Honda报道了TiO2在紫外光照射下有较好的光催化效应以来,由于TiO2稳定、无毒、价格低廉、容易再生和回收利用等优点,在光催化方面得到广泛的研究。但是,锐钛矿TiO2带隙较宽(3.23eV),只能被波长小于387nm的紫外光所激发产生光催化活性。而紫外光的能量仅仅占太阳光的总能量的4%,这样使得太阳光的利用率很低,因此TiO2的应用受到严重的限制和发展。在过去的十年中,人们一直在努力开发新型金属氧化物作为光催化材料,以寻找TiO2的可能替代品。目前已经研究了SrTiO3、WO3等常规金属氧化物半导体,其中W18O49作为一种具有氧空位的氧化钨,具有相对WO3(2.7eV)更窄的禁带宽度(2.26eV),可吸收可见光波段的太阳光,对太阳光的利用率达到15%,具有更广泛的应用前景;并且由于表面氧缺陷的存在,W18O49表面存在“陷阱”效应,可以捕获有机污染物分子,对污染物具有一定的吸附作用,因此其对有机污染物的降解过程可被理解为吸附和光催化共同作用的结果。然而,通过溶剂热方法合成的W18O49纳米粒子容易团聚,因此其比表面积限制了其光催化降解有机污染物效率。此外,W18O49纳米粒子很容易悬浮在水中,与大量的水分离具有一定难度,限制了操作性和实际应用性。
静电纺丝技术是一种制备结构可调的连续纳米纤维膜的有效方法。所制得的纳米纤维膜具有比表面积高、孔隙率高、纤维间孔尺寸小等优点,可为吸附及光催化过程提供更多的反应位点。并且制备的复合电纺纳米纤维具有较好的柔韧性和机械强度,使得复合电纺纳米纤维膜可以很容易地从溶液中分离出来。复合纳米纤维膜材料解决了上述的纳米材料存在的问题,可以推进纳米材料的进一步应用。
发明内容
本发明的目的是提供W18O49修饰的聚合物复合纳米纤维膜、制备方法及其在吸附/光催化共同作用下降解水中有机污染物方面的应用。首先通过静电纺丝技术制备柔性聚合物纤维膜,然后以柔性聚合物纤维膜作为前驱体模板,通过简单溶剂热反应过程制备而成。反应原理是由静电纺丝纳米纤维作为异相成核位点,溶剂热合成前驱体中的钨源溶质与醇溶剂发生水解反应,反应生成W18O49的钨氧化物。制备的复合纳米纤维膜对有机污染物具有吸附效果,其降解过程可以归结于吸附和光催化共同作用的结果,而且可以避免在使用过程中纳米粒子的团聚问题、并且使用过后可以较易分离回收。
本发明所述的一种W18O49修饰的聚合物复合纳米纤维膜,其是以柔性聚合物纳米纤维膜为前驱体模板,通过简单的溶剂热反应过程将W18O49纳米晶体生长在聚合物纳米纤维表面,得到W18O49修饰的聚合物复合纳米纤维膜。
本发明所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其步骤如下:
(1)将聚合物粉末在溶剂中于50~80℃条件下搅拌1~10h至完全溶解,配置质量分数8~20wt%的聚合物溶液,得到静电纺丝前驱体溶液;
(2)将静电纺丝前驱体溶液放入纺丝设备的喷丝注射器中,注射器针头内径为0.5~2mm,纺丝设备的工作电压为15~30kV,以铝箔为阴极接收板,调整注射器针头与接收板的距离为10~30cm,进行静电纺丝从而在接收板上得到有机高分子纳米纤维膜,膜厚30~90μm;再将该有机高分子纳米纤维膜在50~60℃下真空干燥,以除去溶剂;
(3)将0.02~0.1g步骤(2)得到的柔性有机高分子纳米纤维膜置于15~40mmol/L钨盐的醇溶液中至纤维膜完全浸泡后,再置于密闭溶剂热反应釜中,在70~200℃下溶剂热反应4~8h,将得到的产物冷却至室温后在水中超声洗涤1~10min,再在乙醇中超声洗涤1~10min,然后用去离子水洗涤多次,最后在50~60℃下真空干燥,从而得到W18O49修饰的聚合物复合纳米纤维膜。
进一步,步骤(1)中的聚合物为聚甲基丙烯酸甲酯、聚丙烯腈、聚苯乙烯或聚丙烯酰胺中的一种;
步骤(1)中的溶剂为丙酮、二氯甲烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙醇和水中的一种或者几种的混合;
步骤(3)中的钨盐为三氯化钨、五氯化钨或六氯化钨中的一种;
步骤(3)中的醇溶液为乙醇、正丙醇、异丙醇、乙二醇中的一种;
步骤(3)中得到的W18O49修饰的聚合物复合纳米纤维膜,纤维平均直径为100~600nm,呈现纳米线微观结构。
步骤(3)中得到的W18O49修饰的聚合物复合纳米纤维膜具有柔性以及良好的机械性能,可以承受1000次以上折叠且不会断裂。
所述步骤(3)中W18O49修饰的聚合物复合纳米纤维膜可以有效去除废水中的亚甲基蓝、罗丹明B、孔雀石绿、甲基橙等有机染料以及四环素、金霉素等抗生素,且纤维膜可重复利用,有机污染物去除效率可达95~100%。
本发明所得的W18O49修饰的聚合物复合纳米纤维膜吸附/光催化共同降解水中污染物的吸附性能的测试方法为:首先将复合纳米纤维膜在黑暗条件下静置30min以达到吸脱附平衡,记为横坐标零点,然后利用500W氙灯作为模拟太阳光的光源,将照射功率调至1000W/m2进行照射,将复合纤维膜浸入10mg/L有机污染物水溶液中照射120min,每隔30min取样一次,同时设置一个没有光照的对照组,利用紫外可见分光光度计进行吸光度的测量,从而测定水中污染物的浓度。
本发明优点:
(1)本发明采用静电纺丝技术,制备的W18O49修饰的聚合物复合纳米纤维膜其纤维长而连续、具有良好的机械强度(拉伸强度为1.6±0.3MPa),使用过后较易分离回收,最大限度提高光催化剂W18O49的操作性和实际应用性;
(2)本发明制备方法具有普适性,以柔性的电纺聚合物纳米纤维膜为前驱体模板,通过简单的溶剂热反应制备而成。反应原理是由钨源溶质与醇溶剂发生水解反应,在聚合物纤维表面异相成核形成W18O49纳米线,形成W18O49修饰的聚合物复合纳米纤维膜;
(3)本发明所得的W18O49修饰的聚合物复合纳米纤维膜表面均匀的生长了一层纳米片状单斜向晶体W18O49,增大了材料的比表面积(氮气吸附脱吸附测得比表面积为65±10m2·g-1,大于文献中报道的W18O49纳米粒子比表面积27.17m2·g-1),大大提高了纤维的吸附效果及光催化能力;
(4)本发明所得的W18O49修饰的聚合物复合纳米纤维膜其原料易得,操作简单,环境友好,成本低廉,易实现工业化生产。
附图说明
图1:实施例4中得到的W18O49修饰的聚合物复合纳米纤维膜经折叠、卷曲和复原的光学照片图例(从左到右:展开,折叠,展开复原,绕玻璃棒卷曲,再次展开复原,多次重复,纤维膜未出现破损);
图2:实施例4中得到W18O49修饰的聚合物复合纳米纤维膜膜扫描电子显微镜照片,纤维平均直径为187nm;
图3:实施例4中得到W18O49修饰的聚合物复合纳米纤维的氮气吸附脱吸附测试,测得比表面积为64.78m2·g-1,大于文献中报道的W18O49纳米粒子比表面积27.17m2·g-1,比表面积的增大,有利于光催化和吸附效果的提高;
图4:实施例4中得到的W18O49修饰的聚合物复合纳米纤维膜对水中罗丹明B的等温吸附拟合曲线,横坐标为吸附底物浓度,纵坐标吸附容量,具体实施方法为:将5mg复合纤维膜加入到初始浓度为10~300mg/L的罗丹明B溶液中,饱和吸附后求得吸附剂对各浓度溶液的吸附量,以测试W18O49修饰的聚合物复合纳米纤维膜对水中污染物的吸附能力,通过Langmuir等温吸附模型求得其最大吸附容量为67.2mg/g;
图5:实施例4中得到的W18O49修饰的聚合物复合纳米纤维膜对水中罗丹明B的光催化降解实验曲线,横坐标为反应时间,纵坐标为取样时罗丹明B浓度与初始浓度比值,具体测试方法:在黑暗条件下静置30分钟以达到吸脱附平衡,记为横坐标零点;2h后黑暗条件下对照组的污染物去除率为48.6%,用500W氙灯模拟太阳光照射2h后对初始浓度为10mg/L的罗丹明B的降解率可达98.6%,重复实验循环4次后无明显效率下降。
图1~图5说明W18O49修饰的聚合物复合纳米纤维膜通过吸附作用辅助光催化过程可以高效率去除水中的有机污染物,且纤维膜具有良好的机械性能与柔性,具有实际应用性和可操作性。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例,不能理解为对发明保护范围的限制。
实施例1:
(1)将聚甲基丙烯酸甲酯(PMMA)溶解在N,N-二甲基甲酰胺中,于70℃下加热搅拌至完全溶解,配制质量分数为20wt%的聚甲基丙烯酸甲酯溶液,;
(2)将静电纺丝前驱体悬浊液放入静电纺丝设备的注射器中,其注射器的不锈钢针头直径为1mm,电纺丝设备工作电压为20kV,以不锈钢针头为阳极,以平面铝箔为阴极接收板,注射器推进速度为0.5mL/h,两极间距为17cm;进行静电纺丝5h从而在接收板上获得聚甲基丙烯酸甲酯纳米纤维膜;再将该纳米纤维膜在55℃真空下干燥,以除去溶剂;
(3)将0.1g步骤(2)得到的纳米纤维膜浸入60mL、30mmol/L六氯化钨的乙醇溶液中,将整个体系转移至具有聚四氟乙烯内胆的不锈钢反应釜中,在180℃下反应7h,所得产物分别在水和乙醇中超声两分钟,然后用去离子水洗涤3次,最后在55℃下真空干燥,从而得到W18O49修饰的聚合物复合纳米纤维膜,膜的厚度为60μm;
(4)将本实施例制备的5mg复合纤维膜加入到初始浓度为10~300mg/L的金霉素溶液中,饱和吸附后求得吸附剂对各浓度溶液的吸附量,以测试W18O49修饰的聚合物复合纳米纤维膜对水中污染物的吸附能力,通过Langmuir等温吸附模型求得其最大吸附容量为69.1mg/g。
(5)使用本实施例制备的复合纤维膜在黑暗条件下静置30分钟以达到吸脱附平衡,记为横坐标零点;2h后黑暗条件下对初始浓度为10mg/L的金霉素的对照组的污染物去除率为49.2%,用500W氙灯模拟太阳光照射2h后对初始浓度为10mg/L的金霉素的降解率可达100%,且重复实验循环4次后无明显效率下降。
实施例2:
(1)将聚丙烯腈(PAN)溶解在N,N-二甲基甲酰胺中,于65℃下加热搅拌至完全溶解,配制质量分数为12wt%的聚合物溶液;
(2)将静电纺丝前驱体悬浊液放入静电纺丝设备的注射器中,其不锈钢针头直径为1mm,电纺丝设备工作电压为20kV,以不锈钢针头为阳极,以平面铝箔为阴极接收,推进速度为0.5mL/h,两极间距为17cm;进行静电纺丝5h从而获得聚丙烯腈纳米纤维膜;再将该纳米纤维膜在55℃真空下干燥,以除去溶剂;
(3)将0.1g纳米纤维膜浸入60mL的25mmol/L六氯化钨的乙醇溶液中,将整个体系转移至将整个体系转移至具有聚四氟乙烯内胆的不锈钢反应釜中,在180℃下反应6h,所得产物分别在水和乙醇中超声两分钟,然后用去离子水洗涤3次,最后在55℃下真空干燥,得到W18O49修饰的聚合物复合纳米纤维膜,膜的厚度为60μm;
(4)将本实施例制备的5mg复合纤维膜加入到初始浓度为10~300mg/L的亚甲基蓝溶液中,饱和吸附后求得吸附剂对各浓度溶液的吸附量,以测试W18O49修饰的聚合物复合纳米纤维膜对水中污染物的吸附能力,通过Langmuir等温吸附模型求得其最大吸附容量为70.9mg/g。
(5)使用本实施例制备的复合纤维膜在黑暗条件下静置30分钟以达到吸脱附平衡,记为横坐标零点;2h后黑暗条件下对照组的污染物去除率为47.2%,用500W氙灯模拟太阳光照射2h后对初始浓度为10mg/L的亚甲基蓝的降解率可达98.4%。重复实验循环4次后无明显效率下降。
实施例3:
(1)将聚丙烯腈(PAN)溶解在N,N-二甲基甲酰胺中,于50℃下加热搅拌至完全溶解,配制质量分数为9wt%的聚丙烯腈溶液;
(2)将静电纺丝前驱体悬浊液放入静电纺丝设备的注射器中,其不锈钢针头直径为1mm,电纺丝设备工作电压为15kV,以不锈钢针头为阳极,以平面铝箔为接收极,推进速度为0.5mL/h,两极间距为17cm;进行静电纺丝5h从而获得PAN纳米纤维膜;再将该纳米纤维膜在55℃真空下干燥,以除去溶剂;
(3)将0.1g纳米纤维膜浸入60mL的15mmol/L六氯化钨的乙醇溶液中,将整个体系转移至具有聚四氟乙烯内胆的不锈钢反应釜中,在180℃下反应4h,所得产物分别在水和乙醇中超声两分钟,然后用去离子水洗涤3次,最后在55℃下真空干燥,得到W18O49修饰的聚合物复合纳米纤维膜,膜的厚度为60μm;
(4)将本实施例制备的5mg复合纤维膜加入到初始浓度为10~300mg/L的罗丹明B溶液中,饱和吸附后求得吸附剂对各浓度溶液的吸附量,以测试W18O49修饰的聚合物复合纳米纤维膜对水中污染物的吸附能力,通过Langmuir等温吸附模型求得其最大吸附容量为69.1mg/g。
(5)使用本实施例制备的复合纤维膜在黑暗条件下静置30分钟以达到吸脱附平衡,记为横坐标零点;2h后黑暗条件下对照组的污染物去除率为48.3%,用500W氙灯模拟太阳光照射2h后对初始浓度为10mg/L的罗丹明B的降解率可达98.2%,重复实验循环4次后无明显效率下降。
实施例4:
(1)将聚丙烯腈溶解在N,N-二甲基甲酰胺中,于60℃下加热搅拌至完全溶解,配制质量分数为10wt%的聚合物溶液;
(2)将静电纺丝前驱体悬浊液放入静电纺丝设备的注射器中,其不锈钢针头直径为1mm,电纺丝设备工作电压为17kV,以不锈钢针头为阳极,以平面铝箔为阴极接收,推进速度为0.5mL/h,两极间距为17cm;进行静电纺丝5h从而获得聚丙烯腈纳米纤维膜;再将该纳米纤维膜在55℃真空下干燥,以除去溶剂;
(3)将0.1g聚丙烯腈纳米纤维膜浸入60mL的15mmol/L六氯化钨的乙醇溶液中,将整个体系转移至具有聚四氟乙烯内胆的不锈钢反应釜中,在180℃下反应6h,所得产物分别在水和乙醇中超声两分钟,然后用去离子水洗涤3次,最后在55℃下真空干燥,得到W18O49修饰的聚合物复合纳米纤维膜,膜的厚度为60μm;
(4)将本实施例制备的5mg复合纤维膜加入到初始浓度为10~300mg/L的罗丹明B溶液中,饱和吸附后求得吸附剂对各浓度溶液的吸附量,以测试W18O49修饰的聚合物复合纳米纤维膜对水中污染物的吸附能力,通过Langmuir等温吸附模型求得其最大吸附容量为67.2mg/g。
(5)使用本实施例制备的复合纤维膜在黑暗条件下静置30分钟以达到吸脱附平衡,记为横坐标零点;2h后黑暗条件下对照组的污染物去除率为48.6%,用500W氙灯模拟太阳光照射2h后对初始浓度为10mg/L的罗丹明B的降解率可达98.6%,重复实验循环4次后无明显效率下降。

Claims (8)

1.一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其步骤如下:
(1)将聚合物粉末在溶剂中于50~80℃条件下搅拌1~10h至完全溶解,配置质量分数8~20wt%的聚合物溶液,得到静电纺丝前驱体溶液;
(2)将静电纺丝前驱体溶液放入纺丝设备的喷丝注射器中,注射器针头内径为0.5~2mm,纺丝设备的工作电压为15~30kV,以铝箔为阴极接收板,调整注射器针头与接收板的距离为10~30cm,进行静电纺丝从而在接收板上得到有机高分子纳米纤维膜,膜厚30~90μm;再将该有机高分子纳米纤维膜在50~60℃下真空干燥,以除去溶剂;
(3)将0.02~0.1g步骤(2)得到的有机高分子纳米纤维膜置于15~40mmol/L钨盐的醇溶液中至纤维膜完全浸泡后,再置于密闭溶剂热反应釜中,在70~200℃下溶剂热反应4~8h,将得到的产物冷却至室温后在水中超声洗涤1~10min,再在乙醇中超声洗涤1~10min,然后用去离子水洗涤多次,最后在50~60℃下真空干燥,从而得到W18O49修饰的聚合物复合纳米纤维膜。
2.如权利要求1所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其特征在于:步骤(1)中的聚合物为聚甲基丙烯酸甲酯、聚丙烯腈、聚苯乙烯或聚丙烯酰胺中的一种。
3.如权利要求1所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其特征在于:步骤(1)中的溶剂为丙酮、二氯甲烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙醇和水中的一种或者几种的混合。
4.如权利要求1所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其特征在于:步骤(3)中的钨盐为三氯化钨、五氯化钨或六氯化钨中的一种。
5.如权利要求1所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其特征在于:步骤(3)中的醇溶液为乙醇、正丙醇、异丙醇、乙二醇中的一种。
6.如权利要求1所述的一种W18O49修饰的聚合物复合纳米纤维膜的制备方法,其特征在于:步骤(3)中得到的W18O49修饰的聚合物复合纳米纤维膜,纤维平均直径为100~600nm,呈现纳米线微观结构。
7.一种W18O49修饰的聚合物复合纳米纤维膜,其特征在于:是由权利要求1~6任何一项所述的方法制备得到。
8.权利要求7所述的一种W18O49修饰的聚合物复合纳米纤维膜在吸附/光催化共同作用下降解水中有机污染物方面的应用。
CN201911004034.7A 2019-10-22 2019-10-22 W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用 Pending CN110624520A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911004034.7A CN110624520A (zh) 2019-10-22 2019-10-22 W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911004034.7A CN110624520A (zh) 2019-10-22 2019-10-22 W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用

Publications (1)

Publication Number Publication Date
CN110624520A true CN110624520A (zh) 2019-12-31

Family

ID=68976927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911004034.7A Pending CN110624520A (zh) 2019-10-22 2019-10-22 W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用

Country Status (1)

Country Link
CN (1) CN110624520A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779973A (zh) * 2022-11-28 2023-03-14 松山湖材料实验室 一种PAN\BiOBr\W18O49异质结纳米纤维光催化剂及其制备方法和应用
CN115928425A (zh) * 2022-11-28 2023-04-07 吉林大学 一种用于γ射线屏蔽的Bi-WO3-Ag三元纳米粒子/纳米纤维复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096573A (zh) * 2017-04-28 2017-08-29 青岛大学 一种在电纺纤维表面负载半导体光催化剂的方法及产品
CN107159187A (zh) * 2017-04-05 2017-09-15 大连民族大学 非计量比氧化钨/二氧化钛分级纳米异质结构光催化剂及制备方法
CN109107395A (zh) * 2017-06-26 2019-01-01 中国科学院苏州纳米技术与纳米仿生研究所 防霾防有害气体空气滤膜、其制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159187A (zh) * 2017-04-05 2017-09-15 大连民族大学 非计量比氧化钨/二氧化钛分级纳米异质结构光催化剂及制备方法
CN107096573A (zh) * 2017-04-28 2017-08-29 青岛大学 一种在电纺纤维表面负载半导体光催化剂的方法及产品
CN109107395A (zh) * 2017-06-26 2019-01-01 中国科学院苏州纳米技术与纳米仿生研究所 防霾防有害气体空气滤膜、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
海国娟: "W18O49纳米晶的结构可控制备及光催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779973A (zh) * 2022-11-28 2023-03-14 松山湖材料实验室 一种PAN\BiOBr\W18O49异质结纳米纤维光催化剂及其制备方法和应用
CN115928425A (zh) * 2022-11-28 2023-04-07 吉林大学 一种用于γ射线屏蔽的Bi-WO3-Ag三元纳米粒子/纳米纤维复合材料及其制备方法
CN115779973B (zh) * 2022-11-28 2024-02-02 松山湖材料实验室 一种PAN\BiOBr\W18O49异质结纳米纤维光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Hu et al. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance
Lu et al. Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity
US10046980B2 (en) Bismuth-titanium oxide nanowire material used for photocatalysis, and preparation method
Yan et al. Photocatalytic nanocomposite membranes for high-efficiency degradation of tetracycline under visible light: An imitated core-shell Au-TiO2-based design
Yao et al. Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation
CN100434163C (zh) 一种可作为光催化剂使用的氧化锌纳米纤维膜的制备方法
US20180346343A1 (en) Inverse opal material for visible-light-driven photocatalytic degradation of organic pollutants, and preparation method thereof
Wang et al. Construction of β-FeOOH@ tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties
US11413608B2 (en) Method for preparing bi-component, multi-network nanofibrous aerogel-supported heterojunction photocatalyst and application thereof
Zhang et al. Multilevel polarization-fields enhanced capture and photocatalytic conversion of particulate matter over flexible schottky-junction nanofiber membranes
CN106311206A (zh) 二氧化钛/石墨烯复合纳米光催化剂及其制备方法与应用
CN109985644B (zh) 一种高效降解水中有机染料的光催化剂及其制备方法
Pu et al. Self-assembly of a gC 3 N 4-based 3D aerogel induced by N-modified carbon dots for enhanced photocatalytic hydrogen production
CN110064434B (zh) 本征光催化中空纤维的制备方法
CN107376888B (zh) 一种柔性氧化钛/氧化硅/碳复合纳米纤维膜及其制备方法
CN105664922B (zh) 碳修饰TiO2/WO3复合纳米纤维光催化剂、制备方法及应用
CN113731395B (zh) 一种富含氧空位的锡酸锌光催化剂、制备方法及应用
CN106268908A (zh) 一种去除有机污染物的石墨相C3N4掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN110624520A (zh) W18o49修饰的聚合物复合纳米纤维膜、制备方法及其在降解有机污染物方面的应用
Li et al. Fabrication of porous TiO2 nanosheets assembly for improved photoreactivity towards X3B dye degradation and NO oxidation
Zhao et al. Polypyrrole/cadmium sulfide hollow fiber with high performance contaminant removal and photocatalytic activity fabricated by layer-by-layer deposition and fiber-sacrifice template approach
CN105728058A (zh) 一种麻负载纳米二氧化钛光催化剂的制备方法
Wang et al. Degradable ultrathin high-performance photocatalytic hydrogen generator from porous electrospun composite fiber membrane with enhanced light absorption ability
Zhou et al. The preparation of continuous CeO 2/CuO/Al 2 O 3 ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity
CN114797985A (zh) 一种柔性可回收的c3n4/zif-8复合纳米纤维光催化膜及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191231