CN110064434B - 本征光催化中空纤维的制备方法 - Google Patents

本征光催化中空纤维的制备方法 Download PDF

Info

Publication number
CN110064434B
CN110064434B CN201910219946.XA CN201910219946A CN110064434B CN 110064434 B CN110064434 B CN 110064434B CN 201910219946 A CN201910219946 A CN 201910219946A CN 110064434 B CN110064434 B CN 110064434B
Authority
CN
China
Prior art keywords
fiber
solution
photocatalytic
cds
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910219946.XA
Other languages
English (en)
Other versions
CN110064434A (zh
Inventor
赵健
韩鹏遥
田圣男
何家欢
赵润德
石海婷
胡宏凯
肖长发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201910219946.XA priority Critical patent/CN110064434B/zh
Publication of CN110064434A publication Critical patent/CN110064434A/zh
Application granted granted Critical
Publication of CN110064434B publication Critical patent/CN110064434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • B01J35/39
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明公开了一种以聚合物纤维为模板制备本征光催化中空纤维的方法,包括如下步骤:1)将聚合物纤维摩擦预处理,使之带电。2)将其先后于二价镉离子溶液以及硫离子溶液中连续反复浸渍,使硫化镉逐层沉积到聚合物纤维上,得到硫化镉涂覆聚合物纤维。3)将强氧化性的溶液喷涂到所得纤维上,用气相沉积法将聚吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。4)将所得纤维前驱体置于指定溶剂中,溶解移除中间聚合物纤维模板,经反复洗涤、干燥,即得聚吡咯/硫化镉本征光催化中空纤维。所得产品可见光光催化活性高,以纤维形式存在,克服了纳米光催化粒子在悬浮体系中使用时的流失问题,制备工艺简单,持续使用成本低,具有工业化前景。

Description

本征光催化中空纤维的制备方法
技术领域
本发明涉及差别化纤维及其生产技术领域,特别是涉及一种以聚合物纤维为模板制备硫化镉(CdS)本征光催化中空纤维的方法。
技术背景
随着工业的迅速发展和不可再生化石燃料的持续消耗,人类所面临的环境污染和能源短缺问题日益凸显。光催化技术在环境净化和能量转化方面有着广阔的发展前景。目前,应用最为广泛的光催化剂为纳米二氧化钛(TiO2),其催化活性高、稳定性好、无二次污染,但TiO2只能在紫外光下响应,光响应范围窄,不能充分利用太阳能。硫化镉(CdS)拥有约2.4eV的带隙宽度,与太阳辐射的可见光谱范围相匹配,具有杰出的可见光催化活性,因而成为备受关注的可见光光催化材料。然而,当前的CdS光催化剂存在着一些不足。首先,尽管纳米尺度CdS形态多种多样,包括纳米球,纳米管,纳米线,纳米立方体,纳米带等,然而,在实际应用时多为悬浮体系,纳米尺度的CdS易发生流失,造成严重浪费和次生污染。再者,对于CdS来说,难以克服的光腐蚀现象也是相当棘手的问题,其硫离子很容易被光生空穴氧化,导致其结构遭到破坏,性状不稳定,丧失光催化活性。此外,光腐蚀发生后浸出的Cd2+离子,作为一种重金属离子,Cd2+具有相当的生物毒性,易对水体造成严重污染,对动植物造成威胁。
为了改善CdS的应用性能,科研人员常通过对CdS进行修饰和复合来解决其回收问题和抑制光腐蚀发生。如,Hu等利用溶剂热法合成具有均匀形态的碳涂层CdS瓣状纳米结构杂化光催化剂,碳纳米涂层显著改善了CdS光催化剂的光稳定性,提高了对甲基橙(MO)和罗丹明B(RhB)光催化降解效率。碳纳米涂层不仅显著减少了电子-空穴复合的数量,而且对内部纳米CdS粒子起到了很好的保护作用,减少了光腐蚀现象。这项技术被公开于《德国应用化学》,2013年第52卷第21期第5636-5639页,文章题目:碳涂层CdS花瓣纳米结构具有增强的光稳定性和光催化活性(即,Carbon-coated CdS petalous nanostructures withenhanced photostability and photocatalytic activity[J].Angew Chem Int Ed,2018,52(21):5636-5639.)。然而,该项技术并没有解决纳米光催化颗粒应用时的流失问题。Ke等将CdS纳米粒子嵌入多孔再生纤维素薄膜中,与纳米颗粒悬浮体系相比,所得功能性薄膜具有较高的可见光催化活性、持久的光稳定性和再生性能,并可有效防止CdS纳米颗粒在使用过程中的流失。这项技术被公开于《物理化学杂志C》,2009年第113卷第36期第16021-16026页,文章题目:CdS/再生纤维素纳米复合薄膜在可见光照射下高效光催化H2产生(即,CdS/Regenerated Cellulose Nanocomposite Films for Highly EfficientPhotocatalytic H2Production under Visible Light Irradiation[J].J Phys Chem C,2009,113(36):16021-16026.)。虽然该技术很好地解决了粉末状CdS的再生利用问题,但其负载量不高,影响了其光催化效率。Pant等通过静电纺丝法制备了CdS/TiO2NPs杂化纳米碳纤维膜,该杂化纳米碳纤维膜充分了利用纳米碳纤维比表面积大、吸附能力强的特点,并与掺入的CdS/TiO2体系光催化材料共同作用,最终获得的杂化纳米碳纤维膜具有优秀吸附能力和突出光催化表现。这项技术被公开于《胶体与界面科学》,2014年第434卷第159-166页,文章题目:面向有效吸附和同步分解有机染料的纳米碳纤维负载CdS/TiO2纳米粒子的合成及光催化活性研究(即,Synthesis and photocatalytic activities of CdS/TiO2nanoparticles supported on carbon nanofibers for high efficientadsorption and simultaneous decomposition of organic dyes[J].J Colloid InterfSci,2014,434:159-166.)。Qin等用静电纺丝介导光沉积法成功制备了MoS2/CdS-TiO2复合纳米纤维,通过各组分复合,有效地促进了光生载流子的转移和分离,进而提高了光催化性能,且具有较好的循环再生性能。这项技术被公开于《应用催化B:环境》,2017年第202卷第374-380页,文章题目:基于静电纺丝介导光沉积法制备具有高效光催化制氢能力的MoS2/CdS-TiO2复合纳米纤维(即,Highly efficient photocatalytic H2evolution over MoS2/CdS-TiO2nanofibers prepared by an electrospinning mediated photodepositionmethod[J].Appl Catal B,2017,202:374-380.)然而,考虑到静电纺丝的工艺复杂程度、成本以及产量,大规模工业化应用存在很大难度。
综上,尽管将CdS制成各种纳米特殊形态或通过掺杂等手段可明显提高其光催化活性,但其本身不易回收,易造成使用流失和浪费。而将光催化剂负载到薄膜、纤维或者织物上,获得的复合产品虽具有可回收与易再生利用的性能,但存在着纳米催化剂负载量有限,固着牢度不高等问题,导致其催化效率低下,且使用成本较高,不利于大规模生产、使用。
发明内容
为了解决上述技术问题,本发明提供一种模板法制备光催化中空纤维的方法,其制得产品具有本征的光催化特性、持久稳定的光催化效果,产品以纤维形式存在,使用后易于回收、再生使用,且工艺简单,适于工业化。
为此,本发明的技术方案如下:
1、一种以聚合物纤维为模板制备硫化镉(CdS)本征光催化中空纤维的方法,包括如下步骤:
1)将聚合物纤维清洗干燥后通过摩擦预处理,使聚合物纤维带负电荷;
2)将处理后的聚合物纤维于二价镉离子溶液以及硫离子溶液中连续反复浸渍,即连续离子层吸附反应法,使CdS逐层沉积到聚合物纤维上,得到CdS涂覆聚合物纤维;
3)将具有强氧化性的溶液喷涂到上述获得的CdS涂覆聚合物纤维上,之后采用气相沉积法将聚吡咯(PPy)包裹在其外表面,获得PPy包覆CdS光催化纤维前驱体;
4)将聚吡咯包覆光催化纤维前驱体纤维置于指定溶剂中,溶解移除中间聚合物纤维模板,即得到PPy/CdS本征光催化中空纤维。
进一步,所述步骤2)所述采用连续离子层吸附反应法包括以下步骤:
a)将Cd2+盐溶于水中形成阳离子前驱液,将S2-盐溶于水中形成阴离子前驱液。所述Cd2+盐包括CdCl2、CdAc2、Cd(NO3)2、CdSO4中的一种;所述S2-盐包括(NH4)2S、Na2S、K2S、CH4N2S中的一种;
b)先将聚合物纤维置于阳离子前驱液浸渍5-60s,然后置于阴离子前驱液中浸渍5-60s,重复该步骤10~50次。所述聚合物纤维为聚丙烯腈纤维、聚苯乙烯纤维、粘胶纤维、醋酸纤维素纤维等可溶性纤维中的一种;
进一步,所述步骤a)中阳离子前驱液的浓度为0.05-0.2mol/L,阴离子前驱液浓度为0.05-0.2mol/L。进一步,所述步骤3)中溶液为含有质量分数为5~30%的Fe3+溶液、V5+的溶液或过硫酸铵溶液中的一种,反应时间为5~30min。所述Fe3+的溶液包括FeCl3、Fe(NO3)3等高价铁离子溶液;所述V5+的溶液包括钒酸盐类溶液。进一步,当聚合物纤维为聚丙烯腈纤维或聚苯乙烯纤维时,所述步骤4)中的溶剂为二甲基甲酰胺、二甲基乙酰胺或二甲基亚砜,加热温度为60~90℃,反应时间为1~5h;当聚合物纤维为粘胶纤维或醋酸纤维素纤维时,溶剂为N-甲基吗啉-N-氧化物,加热温度为60~90℃,反应时间为1~3h。
本发明提供的硫化镉(CdS)本征光催化中空纤维的制备采用模板法工艺,以聚合物纤维为模板,采用连续离子层吸附反应法将CdS沉积涂覆到纤维表面。进一步地,为了解决CdS光腐蚀问题,采用导电聚合物PPy包覆CdS,得到PPy包覆CdS光催化纤维前驱体,再通过指定溶剂移除聚合物纤维后获得稳定的本征光催化中空纤维。其中,PPy对光催化过程起双重作用,一方面作为光敏剂和导电介质提高光催化活性,另一方面作为保护层增强CdS的稳定性,有效提高其抗光腐蚀性能。该制备方法工艺简单,成本低,所得PPy/CdS本征光催化中空纤维具有较高的光催化活性和效率,产品以纤维形式存在,易于回收,可重复用于光催化过程,并且能够根据需要加工或复合成其他形态,具有广阔的应用前景。
附图说明
图1为本征光催化中空纤维的扫描电子显微镜照片。
具体实施方式
以下结合实施例对本发明的技术方案进行描述,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
将聚丙烯腈(PAN)纤维清洗干燥后通过玻璃棒的摩擦使其带负电荷,配制0.1mol/L的CdCl2溶液和(NH4)2S溶液,先将PAN纤维置于阳离子前驱液(CdCl2)浸渍20s,然后置于阴离子前驱液((NH4)2S)中浸渍20s,该步骤重复循环30次。将质量分数为20%的FeCl3溶液喷涂到CdS/PAN纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/PAN纤维置于二甲基甲酰胺中,70℃下加热搅拌2小时移除PAN模板,即得到PPy/CdS光催化中空纤维。将所得纤维投入20mL的亚甲基蓝染料废水中,在可见光辐照3h后,对亚甲基蓝染料(其中,亚甲基蓝溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率达64%。
附图1是本实施例制得的光催化中空纤维的扫描电子显微镜照片,由图中可以看出经过模板法工艺处理,样品较好的保留了纤维管状结构,呈中空纤维结构,其内径约为10μm,壁厚约为1.5~2μm。
实施例2
将聚苯乙烯(PS)纤维清洗干燥后通过玻璃棒的摩擦使纤维带负电荷,配制0.2mol/L的CdCl2溶液和(NH4)2S溶液,先将PS纤维在阳离子前驱液(CdCl2)浸渍30s,然后在阴离子前驱液((NH4)2S)中浸渍30s,该步骤重复循环50次。将质量分数为30%的FeCl3溶液喷涂到CdS/PS纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/PS纤维置于二甲基亚砜中,70℃下加热搅拌2小时移除PS模板,即得PPy@CdS光催化中空纤维。将制得的PPy/CdS光催化中空纤维投入20mL的罗丹明B染料废水中,在可见光辐照3h后,罗丹明B(RhB)染料(其中,罗丹明B溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率为79%。
实施例3
将醋酸纤维素(CA)纤维清洗干燥后通过玻璃棒的摩擦使其带负电荷,配制0.1mol/L的Cd(CH3CO2)2溶液和CH4N2S溶液,先将醋酸纤维素纤维置于阳离子前驱液浸渍10s,然后置于阴离子前驱液中浸渍10s,该步骤重复循环10次。将质量分数为5%的Fe(NO3)3溶液喷涂到CdS/醋酸纤维素纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/CA纤维置于N-甲基吗啉-N-氧化物中,80℃下加热搅拌3h移除CA纤维模板,即得到PPy/CdS光催化中空纤维。将所得纤维投入20mL的甲基橙染料废水中,在可见光辐照3h后,甲基橙(MO)染料(其中,甲基橙溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率为55%。
实施例4
将聚丙烯腈(PAN)纤维清洗干燥后通过玻璃棒的摩擦使纤维带负电荷,配制0.2mol/L的CdCl2溶液和(NH4)2S溶液,先将PAN纤维在阳离子前驱液(CdCl2)浸渍30s,然后在阴离子前驱液((NH4)2S)中浸渍30s,该步骤重复循环10次。将质量分数为30%的FeCl3溶液喷涂到CdS/PAN纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/PAN纤维置于二甲基亚砜中,70℃下加热搅拌2小时移除PAN模板,即得PPy/CdS光催化中空纤维。将制得的PPy/CdS光催化中空纤维投入20mL的罗丹明B染料废水中,在可见光辐照3h后,罗丹明B(RhB)染料(其中,罗丹明B溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率为51%。
实施例5
将聚丙烯腈(PAN)纤维清洗干燥后通过玻璃棒的摩擦使纤维带负电荷,配制0.2mol/L的CdCl2溶液和(NH4)2S溶液,先将PAN纤维在阳离子前驱液(CdCl2)浸渍30s,然后在阴离子前驱液((NH4)2S)中浸渍30s,该步骤重复循环30次。将质量分数为30%的Fe(NO3)3溶液喷涂到CdS/PAN纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/PAN纤维置于二甲基亚砜中,70℃下加热搅拌2小时移除PAN模板,即得PPy/CdS光催化中空纤维。将制得的PPy/CdS光催化中空纤维投入10mL的亚甲基蓝染料废水中,在可见光辐照3h后,亚甲基蓝(MB)染料(其中,MB溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率为61%。
实施例6
将聚丙烯腈(PAN)纤维清洗干燥后通过玻璃棒的摩擦使纤维带负电荷,配制0.2mol/L的Cd(NO3)2溶液和Na2S溶液,先将PAN纤维在阳离子前驱液(CdCl2)浸渍30s,然后在阴离子前驱液(Na2S)中浸渍30s,该步骤重复循环50次。将质量分数为10%的Fe(NO3)3溶液喷涂到CdS/PAN纤维上,之后采用气相沉积法将吡咯包裹在其外表面,获得聚吡咯包覆光催化纤维前驱体。随后将PPy/CdS/PAN纤维置于二甲基乙酰胺中,70℃下加热搅拌2小时移除PAN模板,即得PPy/CdS光催化中空纤维。将制得的PPy/CdS光催化中空纤维投入20mL的亚甲基蓝染料废水中,在可见光辐照3h后,亚甲基蓝(MB)染料(其中,MB溶液浓度为6ppm,纤维用量为0.5g/L)的光催化降解效率为81%。

Claims (5)

1.一种以聚合物纤维为模板制备硫化镉(CdS)本征光催化中空纤维的方法,其特征在于包括如下步骤:
1)将聚合物纤维清洗干燥后通过摩擦预处理,使聚合物纤维带电荷;
2)将处理后的聚合物纤维先后于二价镉离子(Cd2+)溶液以及硫离子(S2-)溶液中连续反复浸渍,即连续离子层吸附反应法,使硫化镉逐层沉积到聚合物纤维上,得到CdS涂覆聚合物纤维;
3)将具有强氧化性的溶液喷涂到上述获得的CdS涂覆聚合物纤维上,之后采用气相沉积法将吡咯包裹在其外表面,完成吡咯单体(Py)的聚合反应,获得聚吡咯(PPy)包覆光催化纤维前驱体;
4)将聚吡咯包覆光催化纤维前驱体纤维置于指定溶剂中,溶解移除中间聚合物纤维模板,其后,经去离子水反复洗涤、干燥,即得PPy/CdS本征光催化中空纤维。
2.如权利要求1所述本征光催化中空纤维的制备方法,其特征在于:所述步骤2)所述采用连续离子层吸附反应法包括以下步骤:
a)将Cd2+盐溶于水中形成阳离子前驱液,将S2-盐溶于水中形成阴离子前驱液;所述Cd2+盐包括CdCl2、CdAc2、Cd(NO3)2、CdSO4中的一种;所述S2-盐包括(NH4)2S、Na2S、K2S、CH4N2S中的一种;
b)先将聚合物纤维置于阳离子前驱液浸渍5-60s,然后置于阴离子前驱液中浸渍5-60s,重复该步骤10~50次;所述聚合物纤维为可溶性纤维,选自聚丙烯腈纤维、聚苯乙烯纤维、粘胶纤维、醋酸纤维素纤维中的一种。
3.如权利要求2所述本征光催化中空纤维的制备方法,其特征在于:所述步骤a)中阳离子前驱液的浓度为0.05-0.2mol/L,阴离子前驱液浓度为0.05-0.2mol/L。
4.如权利要求1所述本征光催化中空纤维的制备方法,其特征在于:所述步骤3)中溶液为含有质量分数为5~30%的Fe3+的溶液、V5+的溶液或过硫酸铵溶液中的一种,反应时间为5~30min;所述Fe3+的溶液包括FeCl3、Fe(NO3)3等高价铁离子溶液;所述V5+的溶液包括钒酸盐类溶液。
5.如权利要求1所述本征光催化中空纤维的制备方法,其特征在于:当聚合物纤维为聚丙烯腈纤维或聚苯乙烯纤维时,所述步骤4)中的溶剂为二甲基甲酰胺、二甲基乙酰胺或二甲基亚砜,加热温度为60~90℃,反应时间为1~5h;当聚合物纤维为粘胶纤维或醋酸纤维素纤维时,溶剂为N-甲基吗啉-N-氧化物,加热温度为60~90℃,反应时间为1~3h。
CN201910219946.XA 2019-03-21 2019-03-21 本征光催化中空纤维的制备方法 Active CN110064434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910219946.XA CN110064434B (zh) 2019-03-21 2019-03-21 本征光催化中空纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910219946.XA CN110064434B (zh) 2019-03-21 2019-03-21 本征光催化中空纤维的制备方法

Publications (2)

Publication Number Publication Date
CN110064434A CN110064434A (zh) 2019-07-30
CN110064434B true CN110064434B (zh) 2021-11-16

Family

ID=67366533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910219946.XA Active CN110064434B (zh) 2019-03-21 2019-03-21 本征光催化中空纤维的制备方法

Country Status (1)

Country Link
CN (1) CN110064434B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694604B (zh) * 2019-10-11 2023-09-12 巨鹏(肇庆)信息科技有限公司 一种TiO2-PPy超浸润光催化复合材料及其制备方法
CN113750826B (zh) * 2020-06-03 2022-11-25 天津工业大学 一种光催化复合多孔膜的制备方法
CN113788573A (zh) * 2021-09-07 2021-12-14 广东百林生态科技股份有限公司 一种小型污水异位生态修复系统
CN113797975B (zh) * 2021-10-28 2023-07-18 中原工学院 硫化镉复合镉配位聚合物Cd-CP/PAN催化材料的制备方法和应用
CN115364897B (zh) * 2022-08-10 2023-04-07 中国科学院空间应用工程与技术中心 一种水性聚氨酯-硫化镉纳米复合材料涂层及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040058A1 (it) * 2004-01-19 2004-04-19 Maria Letizia Stefanelli Membrane fotocatalitiche
CN101259402A (zh) * 2004-11-11 2008-09-10 中国科学院化学研究所 用模板法制备双层结构中空球和多层复合结构的中空球的方法
CN101417212A (zh) * 2008-11-21 2009-04-29 天津工业大学 一种中空纤维多孔膜的溶液纺丝制备方法
CN102527410A (zh) * 2012-01-16 2012-07-04 河北科技大学 炭纤维毡负载CdS/TiO2复合光催化材料的制备方法
CN103663364A (zh) * 2013-12-30 2014-03-26 北京化工大学 一种聚吡咯/硫化镉同轴纳米管状材料及其制备方法
CN106501324A (zh) * 2016-11-10 2017-03-15 合肥铭志环境技术有限责任公司 一种负载硫化镉包覆CuO的复合纳米纤维气敏材料及其制备方法
WO2017221136A1 (en) * 2016-06-22 2017-12-28 Sabic Global Technologies B.V. Photocatalytic water splitting using substrate with porous frit
CN108927222A (zh) * 2018-08-07 2018-12-04 晋江瑞碧科技有限公司 CdS-PAN/石墨烯复合纳米纤维的制备方法及其光催化制氢的应用
CN109174194A (zh) * 2018-08-14 2019-01-11 江苏大学 一种选择性降解四环素的磁性光催化纳米反应器的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010011581A (es) * 2008-04-23 2010-12-14 Water Security Corp Lechos mejorados de resina halogenada.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040058A1 (it) * 2004-01-19 2004-04-19 Maria Letizia Stefanelli Membrane fotocatalitiche
CN101259402A (zh) * 2004-11-11 2008-09-10 中国科学院化学研究所 用模板法制备双层结构中空球和多层复合结构的中空球的方法
CN101417212A (zh) * 2008-11-21 2009-04-29 天津工业大学 一种中空纤维多孔膜的溶液纺丝制备方法
CN102527410A (zh) * 2012-01-16 2012-07-04 河北科技大学 炭纤维毡负载CdS/TiO2复合光催化材料的制备方法
CN103663364A (zh) * 2013-12-30 2014-03-26 北京化工大学 一种聚吡咯/硫化镉同轴纳米管状材料及其制备方法
WO2017221136A1 (en) * 2016-06-22 2017-12-28 Sabic Global Technologies B.V. Photocatalytic water splitting using substrate with porous frit
CN106501324A (zh) * 2016-11-10 2017-03-15 合肥铭志环境技术有限责任公司 一种负载硫化镉包覆CuO的复合纳米纤维气敏材料及其制备方法
CN108927222A (zh) * 2018-08-07 2018-12-04 晋江瑞碧科技有限公司 CdS-PAN/石墨烯复合纳米纤维的制备方法及其光催化制氢的应用
CN109174194A (zh) * 2018-08-14 2019-01-11 江苏大学 一种选择性降解四环素的磁性光催化纳米反应器的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Fabrication of conducting polymer modified CdS photoanodes for photoelectrochemical cell";Alka Pareek et al.;《Thin Solid Films》;20180717;第661卷;第84-91页 *
"Polypyrrole/cadmium sulfide hollow fiber with high performance contaminant removal and photocatalytic activity fabricated by layer-by-layer deposition and fiber-sacrifice template approach";Jian Zhao et al.;《Journal of Colloid and Interface Science》;20190828;第557卷;第94-102页 *
"Polypyrrole/CdS 异质微米盒的制备及光催化性能研究";陈芳 等;《浙江师范大学学报( 自然科学版)》;20180831;第41卷(第3期);第294-299页 *

Also Published As

Publication number Publication date
CN110064434A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110064434B (zh) 本征光催化中空纤维的制备方法
You et al. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review
Wang et al. Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective
Ma et al. Fabrication of PANI-TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal and hydrogen production
Liang et al. A review on gC 3 N 4 incorporated with organics for enhanced photocatalytic water splitting
Shao et al. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light
Jia et al. Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications
Liao et al. Construction of BiOI/TiO2 flexible and hierarchical S-scheme heterojunction nanofibers membranes for visible-light-driven photocatalytic pollutants degradation
Wei et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting
Yao et al. Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation
Djellabi et al. Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation
Qu et al. Controllable synthesis of a sponge-like Z-scheme N, S-CQDs/Bi2MoO6@ TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation
Ran et al. Core–shell BiVO 4@ PDA composite photocatalysts on cotton fabrics for highly efficient photodegradation under visible light
CN102698807B (zh) 由有机偶氮染料功能化碳纳米材料制备的贵金属纳米催化剂及其方法
CN111437884A (zh) 一种复合光催化剂及其制备方法
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
Yang et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange
Huang et al. One-pot hydrothermal synthesis of TiO2/RCN heterojunction photocatalyst for production of hydrogen and rhodamine B degradation
Shi et al. Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation
Gao et al. 3D heterogeneous CTF@ TiO 2/Bi 2 WO 6/Au hybrid supported by hollow carbon tubes and its efficient photocatalytic performance in the UV-vis range
Zhang et al. 2D/2D Covalent triazine-based heterostructure membrane for highly enhanced photoactivity and anti-fouling ability
Liu et al. Broad spectral response Z-scheme three-dimensional ordered macroporous carbon quantum dots/TiO2/g-C3N4 composite for boosting photocatalysis
Chen et al. Construction of THPP-sg-PSf/TiO2 membrane as photocatalyst for enhanced photoinduced hydrogen evolution
Song et al. Exploration of the g-C3N4 heterostructure with Ag–In sulfide quantum dots for enhanced photocatalytic activity
Yang et al. Preparation of functionalization graphite carbonitride photocatalytic membrane and its application in degradation of organic pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant