CN113731395B - 一种富含氧空位的锡酸锌光催化剂、制备方法及应用 - Google Patents

一种富含氧空位的锡酸锌光催化剂、制备方法及应用 Download PDF

Info

Publication number
CN113731395B
CN113731395B CN202111141218.5A CN202111141218A CN113731395B CN 113731395 B CN113731395 B CN 113731395B CN 202111141218 A CN202111141218 A CN 202111141218A CN 113731395 B CN113731395 B CN 113731395B
Authority
CN
China
Prior art keywords
zinc stannate
photocatalyst
rich
sno
oxygen vacancies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111141218.5A
Other languages
English (en)
Other versions
CN113731395A (zh
Inventor
黄宝成
俞琳倩
赵依恒
余烨颖
金仁村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN202111141218.5A priority Critical patent/CN113731395B/zh
Publication of CN113731395A publication Critical patent/CN113731395A/zh
Application granted granted Critical
Publication of CN113731395B publication Critical patent/CN113731395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种富含氧空位的锡酸锌光催化剂的制备方法,包括以下步骤:(1)将二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠溶于乙醇溶液中,进行水热反应得到锡酸锌;(2)将步骤(1)的锡酸锌浸泡在过硫酸盐溶液中,取出洗涤干燥得到富含氧空位的锡酸锌光催化剂。本发明采用一锅法水热反应制备得到锡酸锌,利用过硫酸盐对锡酸锌的刻蚀作用,产生了氧空位缺陷,拓宽了所述的富含氧空位的锡酸锌光催化剂对可见光的响应范围。该富含氧空位的锡酸锌光催化剂可见光响应良好、在60min内对双酚A的降解率可达到100%,在可见光条件下,对双酚A的矿化效率可达到60%。

Description

一种富含氧空位的锡酸锌光催化剂、制备方法及应用
技术领域
本发明属于光催化材料的合成技术领域,尤其涉及一种富含氧空位的锡酸锌光催化剂、制备方法及应用。
背景技术
随着医药、化工、印染等行业的迅猛发展,难降解污染物广泛存在于各种水体中,严重威胁着人类的生存环境。与吸附法、絮凝法、膜分离法等相比,高级氧化技术对这些难降解污染物具有矿化效率高的优点,化学用量少,环境友好,光催化氧化是近几十年来研究的热点。然而,可见光下光催化系统的低效性极大地限制了其工程应用。
锡酸锌作为一种复合金属材料,具有类钙钛矿结构,电导率高,电子传递效率快,但其可见光响应能力较差。锡酸锌有多种合成方法,例如:热蒸发、共沉淀法和水热合成等。大量研究表明,不同的合成方法不仅影响锡酸锌的颗粒大小、形状及其晶型等形态结构特征,还会影响其光学性质及其催化活性。
公开号为CN109675547A的中国专利文献中公开了一种中空立方体型锡酸锌光催化剂的制备方法,包括以下步骤:以ZnCl2、柠檬酸钠、SnCl4·5H2O为原料,在乙醇-水的混合溶剂体系中混合均匀,再逐滴加入NaOH溶液,得到沉淀物,烘干、研磨后得到前驱体物质,煅烧后得到中空立方体型锡酸锌光催化剂。该发明采用共沉淀法制备锡酸锌光催化剂。
公开号为CN108940326B的中国专利文献中公开了一种可见光响应锡酸锌/碳/溴化银纳米复合光催化剂的制备方法,包括以下步骤:以NaOH、四氯化锡、锌盐为原料进行水热反应制备得到Zn2SnO4纳米粉,再采用碳改性制备Zn2SnO4/C纳米粉,再以AgNO3溶液、KBr溶液、Zn2SnO4/C纳米粉为原料通过原位沉淀法制备Zn2SnO4/C/AgBr纳米复合光催化剂。该专利制备得到的锡酸锌/碳/溴化银纳米复合光催化剂的光催化性能好,但制备步骤繁杂,原料种类繁多,成本较高。
公开号为CN108079984B的中国专利文献中公开了一种圆角立方体型羟基锡酸锌太阳光催化剂的制备方法,包括以下步骤:将0.8mmol ZnCl2加入到16mL去离子水中并搅拌至完全溶解,在搅拌的过程中加入1mL浓氨水溶液得到乳白色溶液,2min后滴加16mL摩尔浓度为0.05mol/L的Na2SnO3溶液,在搅拌条件下继续反应15min,将沉淀物离心、水洗后置于干燥箱中烘干,再置于研钵中研磨得到圆角立方体型羟基锡酸锌太阳光催化剂。该发明在制备过程中引入浓氨水,易导致空气污染和水污染。
发明内容
本发明提供了一种富含氧空位的锡酸锌光催化剂的制备方法,步骤简单、设备要求低、反应条件温和、制备过程环保无污染,制备得到的富含氧空位的锡酸锌光催化剂可见光响应良好、对双酚A的降解率和矿化效率高。
具体采用的技术方案如下:
一种富含氧空位的锡酸锌光催化剂的制备方法,包括以下步骤:
(1)将二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠溶于体积分数为30%~70%的乙醇溶液中,进行水热反应,过滤,洗涤,烘干后制备得到锡酸锌Zn2SnO4
(2)将步骤(1)的锡酸锌Zn2SnO4浸泡在过硫酸盐溶液中,取出洗涤干燥后得到所述的富含氧空位的锡酸锌光催化剂OVs-Zn2SnO4
本发明以二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠为原料,一锅法水热反应制备得到Zn2SnO4沉淀物,该Zn2SnO4沉淀物为细粉末,比表面积较大,有利于后续与过硫酸盐反应并在表面产生氧空位。
由于过氧化物键能较低,且过一硫酸盐或过二硫酸盐等过硫酸盐比H2O2更容易被激活或分解,这意味着其反应性较高,除了能接受来自金属中心的电子以产生自由基外,过硫酸盐还能够直接从石墨化纳米金刚石或单壁碳纳米管表面的有机物中提取电子。
本发明方法利用过硫酸盐的高反应性,使过硫酸盐从Zn2SnO4半导体表面提取电子,产生刻蚀作用,以使Zn2SnO4表面产生氧空位(OVs)缺陷,增加锡酸锌光催化剂的可见光响应活性。
优选的,所述的二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠的质量比为1:0.2~4:0.2~2:0.005~0.04。
优选的,步骤(1)中,所述的水热反应条件为160~220℃,8~24h。
进一步优选的,为了使反应体系中混合溶液分散性良好,反应充分进行以及保证Zn2SnO4产量,所述的二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠的质量比为1:0.5~2:0.5~1.5:0.008~0.02;所述的乙醇溶液的体积分数为40%~60%;所述的水热反应条件为180~200℃,12~20h。
优选的,步骤(1)中,依次用乙醇和去离子水洗涤过滤后的反应产物,洗涤次数为3~5次,去除Zn2SnO4沉淀物表面的无机盐。
优选的,步骤(1)中,所述的烘干条件为:50~80℃,3~7h。
使用过硫酸盐溶液浸渍法使锡酸锌表面产生氧空位,氧空位的引入可以拓宽材料对可见光的响应范围,提高光催化活性。
优选的,步骤(2)中,所述的过硫酸盐为过一硫酸盐或过二硫酸盐。
优选的,所述的过硫酸盐溶液浓度为5~20g/L,浸泡时间为30~90min。
进一步优选的,为了增加氧空位的生成,所述的过硫酸盐为过一硫酸钾;所述的过硫酸盐溶液浓度为7.5~15g/L,浸泡时间为50~70min。
优选的,步骤(2)中,所述的干燥条件为:50~80℃,3~7h。
本发明还提供了所述的富含氧空位的锡酸锌光催化剂的制备方法制备得到的富含氧空位的锡酸锌光催化剂。
本发明还提供了所述的富含氧空位的锡酸锌光催化剂在降解水中双酚A污染物的应用。
所述的富含氧空位的锡酸锌光催化剂可见光响应良好、对双酚A的降解率可达到100%,在可见光条件下,对双酚A的矿化效率可达到60%。
与现有技术相比,本发明的有益效果在于:
(1)本发明制备方法简单、原料成本低、制备过程环保无污染、设备要求低、反应条件温和、适合工业化大规模生产。
(2)本发明通过一锅法水热反应制备得到纳米级锡酸锌,比表面积较大,再通过过硫酸盐溶液浸渍使锡酸锌表面产生氧空位,氧空位可以作为光生电荷的捕获中心,这也能促进光生载流子的分离与迁移,氧空位的引入拓宽了对可见光的响应范围,从而提高了光催化活性。
(3)本发明的富含氧空位的锡酸锌光催化剂可见光响应良好、在60min内对双酚A的降解率可达到100%,在可见光条件下,对双酚A的矿化效率可达到60%。
附图说明
图1为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的扫描电镜图片,其中,a为Zn2SnO4,b为OVs-Zn2SnO4-1。
图2为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的XRD图。
图3为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的氧元素的XPS图;其中,a为Zn2SnO4,b为OVs-Zn2SnO4-1。
图4为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的电子顺磁共振图,其中,g表示波谱分裂因子。
图5为实施例1中Zn2SnO4、OVs-Zn2SnO4-1和实施例2中OVs-Zn2SnO4-2在可见光条件下对双酚A的降解曲线图。
图6为实施例1中OVs-Zn2SnO4-1在可见光条件下对双酚A的总有机碳矿化率图。
具体实施方式
下面结合实施例,进一步阐明本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例1
(1)将0.18g的SnCl2·2H2O、0.109g的ZnCl2、0.20g的NaOH和0.0032g的十二烷基苯磺酸钠(SDBS)溶于80mL的50%乙醇溶液中得到混合液。将混合液转移至100mL聚四氟乙烯密封高压釜中,在190℃下水热反应20h得到反应产物,过滤后依次用乙醇和去离子水洗涤3次,70℃下烘干5h,制备得到锡酸锌Zn2SnO4粉末;
(2)将步骤(1)的Zn2SnO4粉末浸泡在10g/L的过一硫酸钾溶液中60min,取出后用去离子水洗涤3次,60℃下干燥6h,得到富含氧空位的锡酸锌光催化剂OVs-Zn2SnO4-1。
实施例2
(1)将0.20g的SnCl2·2H2O、0.110g的ZnCl2、0.12g的NaOH和0.0040g的SDBS溶于80mL的60%乙醇溶液中得到混合液。将混合液转移至100mL聚四氟乙烯密封高压釜中,在180℃下水热反应18h得到反应产物,过滤后依次用乙醇和去离子水洗涤3次,60℃下烘干7h,制备得到锡酸锌Zn2SnO4粉末;
(2)将步骤(1)的Zn2SnO4粉末浸泡在7.5g/L的过二硫酸钾溶液中60min,取出后用去离子水洗涤3次,70℃下干燥5h,得到富含氧空位的锡酸锌光催化剂OVs-Zn2SnO4-2。
样品分析
图1为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的扫描电镜图片,其中,a为Zn2SnO4,b为OVs-Zn2SnO4-1,锡酸锌Zn2SnO4粉末和富含氧空位的锡酸锌光催化剂OVs-Zn2SnO4-1均为纳米级粉末、表面形态差异不大。
图2为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的XRD图,由图可知,Zn2SnO4和OVs-Zn2SnO4-1都有明显的锡酸锌(Zn2SnO4)特征峰的存在,还有氧化亚锡(SnO)特征峰,但OVs-Zn2SnO4-1的锡酸锌特征峰相对于Zn2SnO4较弱,证明锡酸锌晶体中产生了氧空位。
图3为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的氧元素的XPS图;其中,a为Zn2SnO4,b为OVs-Zn2SnO4-1。从图3中的a可以看出,Zn2SnO4中氧原子的XPS图可以拟合成两个个峰,分别位于530.3eV,531.1eV,对应晶格氧阴离子(O2 -)、吸附在催化剂上的结合水,从图3中的b可以看出,OVs-Zn2SnO4-1中氧原子的XPS图可以拟合成两个个峰,分别位于530.6eV,531.5eV,对应锌氧键(Zn=O)、氧空位,OVs-Zn2SnO4-1中存在代表氧空位的峰强,而Zn2SnO4中不存在,证明过硫酸盐溶液浸渍使催化剂产生了氧空位。
图4为实施例1中Zn2SnO4和OVs-Zn2SnO4-1的电子顺磁共振图,在OVs-Zn2SnO4-1图谱存在g=2.003的峰,这是材料中有氧空位的标志,而Zn2SnO4图谱中没有这个峰,证明OVs-Zn2SnO4-1中产生了氧空位,空白表示电子顺磁共振波谱背景。
光催化降解双酚A的实验中,可见光光源采用北京普瑞赛司仪器有限公司的300W氙灯,并加装420nm滤光片滤去紫外光,双酚A浓度采用岛津高效液相色谱仪测定,污染物降解实验采用本领域技术人员熟知的方法进行,称取0.0050g催化剂,加入到50mL 5mg/L的双酚A溶液中,在可见光照射的条件下,每隔10min取0.5mL溶液加入到含有0.1mL甲醇的离心管中,离心后取上清液进行液相色谱测定。锡酸锌Zn2SnO4粉末和富含氧空位的锡酸锌光催化剂的浓度均为0.1g/L。
图5为实施例1中Zn2SnO4、OVs-Zn2SnO4-1和实施例2中OVs-Zn2SnO4-2在可见光条件下对双酚A的降解曲线图,可见光条件下,分别采用0.1g/L的实施例1中Zn2SnO4、OVs-Zn2SnO4-1和实施例2中OVs-Zn2SnO4-2降解5mg/L双酚A,其中,和Zn2SnO4相比,OVs-Zn2SnO4-1和OVs-Zn2SnO4-2对双酚A的降解效果更好、可见光响应良好,Zn2SnO4组中的双酚A几乎不降解,特别是OVs-Zn2SnO4-1,60min后对双酚A的降解率约为100%。
图6为实施例1中OVs-Zn2SnO4-1在可见光条件下对双酚A的总有机碳矿化率图。由图可知,在180min后,溶液中的总有机碳下降约60%,证明了OVs-Zn2SnO4-1在可见光条件下对有机物的矿化效率较高。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述的仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠溶于体积分数为30%~70%的乙醇溶液中,进行水热反应,过滤,洗涤,烘干后制备得到锡酸锌;
(2)将步骤(1)的锡酸锌浸泡在过硫酸盐溶液中,取出洗涤干燥后得到所述的富含氧空位的锡酸锌光催化剂。
2.根据权利要求1所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,所述的二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠的质量比为1:0.2~4:0.2~2:0.005~0.04。
3.根据权利要求1所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,步骤(1)中,所述的水热反应条件为160~220℃,8~24h。
4.根据权利要求1所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,所述的二水氯化亚锡、氯化锌、氢氧化钠、十二烷基苯磺酸钠的质量比为1:0.5~2:0.5~1.5:0.008~0.02;所述的乙醇溶液的体积分数为40%~60%;所述的水热反应条件为180~200℃,12~20h。
5.根据权利要求1所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,步骤(2)中,所述的过硫酸盐为过一硫酸盐或过二硫酸盐。
6.根据权利要求1所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,所述的过硫酸盐溶液浓度为5~20g/L,浸泡时间为30~90min。
7.根据权利要求5所述的富含氧空位的锡酸锌光催化剂的制备方法,其特征在于,所述的过硫酸盐为过一硫酸钾;所述的过硫酸盐溶液浓度为7.5~15g/L,浸泡时间为50~70min。
8.根据权利要求1~7任一所述的富含氧空位的锡酸锌光催化剂的制备方法制备得到的富含氧空位的锡酸锌光催化剂。
9.根据权利要求8所述的富含氧空位的锡酸锌光催化剂在降解水中双酚A污染物的应用。
CN202111141218.5A 2021-09-28 2021-09-28 一种富含氧空位的锡酸锌光催化剂、制备方法及应用 Active CN113731395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111141218.5A CN113731395B (zh) 2021-09-28 2021-09-28 一种富含氧空位的锡酸锌光催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111141218.5A CN113731395B (zh) 2021-09-28 2021-09-28 一种富含氧空位的锡酸锌光催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113731395A CN113731395A (zh) 2021-12-03
CN113731395B true CN113731395B (zh) 2022-06-28

Family

ID=78741545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111141218.5A Active CN113731395B (zh) 2021-09-28 2021-09-28 一种富含氧空位的锡酸锌光催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113731395B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373470B (zh) * 2021-05-31 2022-09-27 深圳先进技术研究院 钒酸铋光阳极及其制备方法、光电化学器件
CN114653382B (zh) * 2022-03-25 2023-07-04 桂林电子科技大学 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
CN116393119B (zh) * 2023-04-07 2024-06-21 重庆工商大学 一种复合光催化剂及其制备方法和应用
CN117696045B (zh) * 2024-02-05 2024-04-12 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2283583C (en) * 1997-03-14 2005-08-09 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
CN102303901B (zh) * 2011-05-24 2013-08-21 南京大学 一种微/纳分级结构插片八面体Zn2SnO4的制备方法、产品及其应用
CN105366712A (zh) * 2015-12-07 2016-03-02 西安建筑科技大学 一种以锡酸钠为原料合成锡酸锌的方法
CN106512978B (zh) * 2016-11-29 2018-12-25 洛阳理工学院 利用纳米Zn2SnO4制备可见光响应光催化剂的方法
CN107445195A (zh) * 2017-09-04 2017-12-08 江苏大学 一种锡酸锌纳米立方体或纳米片材料的制备方法
CN108097233B (zh) * 2017-12-11 2019-10-25 河南师范大学 一种响应太阳光的立方体结构锡酸锌光催化剂的制备方法
CN110038551A (zh) * 2019-05-28 2019-07-23 河南师范大学 具有中空多面体结构的锡酸锌光催化剂及其制备方法

Also Published As

Publication number Publication date
CN113731395A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113731395B (zh) 一种富含氧空位的锡酸锌光催化剂、制备方法及应用
Kumari et al. S-, N-and C-doped ZnO as semiconductor photocatalysts: A review
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
CN101791565B (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
US10730759B2 (en) Inverse opal material for visible-light driven photocatalytic degradation of organic pollutants, and preparation method thereof
Khan et al. Synthesis of SnO2/yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2, 4-dichlorophenol degradation
Yu et al. Hierarchical hybrid nanostructures of Sn 3 O 4 on N doped TiO 2 nanotubes with enhanced photocatalytic performance
Qi et al. Constructing CeO 2/nitrogen-doped carbon quantum dot/gC 3 N 4 heterojunction photocatalysts for highly efficient visible light photocatalysis
CN106807361B (zh) 一种铋-无定型钨酸铋-三氧化二铋三元有机复合光催化剂及制备方法
CN109876827B (zh) 双Z型单异质结CuO/WO3/CdS光催化剂及其制备方法和应用
Liu et al. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity
CN105771948A (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂及其制备方法
CN102744087B (zh) 一种片状纳米氯氧化铋薄膜光催化剂的电化学制备方法
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
CN108654642B (zh) 可见光响应的高效复合光催化剂Ag2O/α-FeOOH的制备方法
CN108262041B (zh) 一种室温一锅制备高活性金/氧化锌复合纳米簇的方法
CN105536843A (zh) 高可见光电子转移g-C3N4/Au/TiO2类Z型光催化剂的制备方法
CN101805015B (zh) 多孔PbS纳米片的制备方法
Li et al. Reduced graphene oxide/potassium niobate composite nanoscrolls with enhanced photocatalytic activity for dye degradation
CN110713202B (zh) 一种制备Cu2O实心纳米球的方法
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
CN111686770A (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN102631909A (zh) 表面氢化的二氧化钛纳米线微球光催化材料及其制备方法
Li et al. In situ synthesis of AgI/SnS2 heterojunction photocatalysts with superior photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant