CN115093212B - 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法 - Google Patents

一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法 Download PDF

Info

Publication number
CN115093212B
CN115093212B CN202210912503.0A CN202210912503A CN115093212B CN 115093212 B CN115093212 B CN 115093212B CN 202210912503 A CN202210912503 A CN 202210912503A CN 115093212 B CN115093212 B CN 115093212B
Authority
CN
China
Prior art keywords
temperature
tio
ceramic
equal
bifeo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210912503.0A
Other languages
English (en)
Other versions
CN115093212A (zh
Inventor
程帅
王鑫
杨华斌
关士博
王雪婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210912503.0A priority Critical patent/CN115093212B/zh
Publication of CN115093212A publication Critical patent/CN115093212A/zh
Application granted granted Critical
Publication of CN115093212B publication Critical patent/CN115093212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种使用温度超过300℃的高性能铁酸铋‑钛酸钡陶瓷及其低温液相烧结制备方法,其组成通式为:(1‑u)BiFeO3‑uBaTiO3+1.0mol%MnCO3+x[Bi0.5(NatLi0.5‑t)]TiO3+yB2O3,其中u、x、y和t表示摩尔分数,[Bi0.5(NatLi0.5‑t)]TiO3及B2O3为烧结助剂,且0.25≤u≤0.40,0<x≤0.01,0<y≤0.05,0≤t≤0.5。本发明利用具有低容忍因子的[Bi0.5(NatLi1‑t)]TiO3,在降低(1‑u)BiFeO3‑uBaTiO3陶瓷烧结温度的同时,又提高了该陶瓷的高温压电性能和高温稳定性,获得了在高温下具有优异压电性能的无铅压电陶瓷,使用温度超过300℃,在T>300℃时,其压电性能可达400pC/N以上,最高原位退极化温度点达到360℃,相比于现有压电陶瓷,高温压电性能得到了大幅提升。

Description

一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低 温液相烧结制备方法
技术领域
本发明涉及无铅压电陶瓷及其低温液相烧结技术,尤其是一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法。
背景技术
压电陶瓷在航空航天、核电、石油化工、地质勘探、冶金、汽车燃油监控、3D打印、高温超声波应用等高技术领域具有广泛应用。目前在该领域内的应用主要以锆钛酸铅(PZT)及其改性的压电陶瓷体系为主,为了节约能源和降低生产成本,通过采用各种烧结助剂来降低陶瓷的烧结温度,同时多层压电陶瓷为了降低内电极成本,也希望获得更低的烧结温度。目前锆钛酸铅体系的烧结温度已经降到了950℃左右,但是在此温度下烧结制备多层压电陶瓷仍存在铅挥发问题,严重污染环境。
文献[Serhiy O,J Am Ceram Soc,2009,92(12):2957-2961]报导了具有高居里温度与良好压电性能的BiFeO3–BaTiO3基无铅压电陶瓷,烧结温度在950-975℃,该体系具有很好的高温稳定性,居里温度高达400-600℃,而退极化温度也高达400℃以上;公开号为CN102584195A的专利公开了一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法,采用低温烧结助剂加固相合成烧结的方法,成功将烧结温度降至900℃左右。
压电陶瓷的发展趋势是无铅化、多层片式化、微型化等,而多层压电陶瓷制备的关键在于实现低温内电极材料的共烧,但是目前多层压电陶瓷在与低温电极材料共烧时仍然成本较高,其主要原因是烧结温度较高(≥950℃),为了提高内电极材料的稳定性,需要在电极材料中添加一定比例的贵金属如钯、铂等。由于钯、铂等价格昂贵,因此内电极材料的成本占到了整个多层压电陶瓷生产成本的80%以上,导致成本高昂无法下降。因此,研究与发展更低温度下烧结的压电陶瓷材料对于降低企业生产成本,具有重大意义。
发明内容
本发明的目的是针对上述现有技术,提供一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法,可以在高于300℃以上温度使用,并且具有优异的高温压电性能,同时[Bi0.5(NatLi0.5-t)]TiO3还可以降低陶瓷的烧结温度,减少Bi元素的挥发和氧空位的产生,降低陶瓷的介电损耗。
实现本发明目的的技术方案是:
一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其组成通式为:
(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+x[Bi0.5(NatLi0.5-t)]TiO3+yB2O3,其中u、x、y和t表示摩尔分数,[Bi0.5(NatLi0.5-t)]TiO3及B2O3为烧结助剂,且0.25≤u≤0.40,0<x≤0.01,0<y ≤0.05,0≤t≤0.5。
所述使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷的低温液相烧结制备方法,包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、BaCO3、TiO2、Li2CO3、Na2CO3和B2O3为原料,按照 (1-u)BiFeO3-uBaTiO3+x[Bi0.5(NatLi0.5-t)]TiO3+yB2O3进行配料,其中0.25≤u≤0.40,0<x≤0.01, 0<y≤0.05、0≤t≤0.5,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、过筛,过筛目数为200-250目,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h 合成备用;
2)将步骤1)预烧合成的(1-u)BiFeO3-uBaTiO3+x[Bi0.5(NatLi1-t)]TiO3+yB2O3粉末与MnCO3按照(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+x[Bi0.5(NatLi0.5-t)]TiO3+yB2O3配料,并以无水乙醇为介质,球磨24h后取出烘干、过筛,过筛目数为200-250目;
3)将过筛后的粉末加入5%PVA溶液造粒,在钢模中于100MPa下压制成呈硬币形状、直径1.0cm的素片;
4)成型的素片以5℃/h的升温速率缓慢升温至600℃,保温6h排胶,再以20℃/min的升温速率到830℃-950℃的烧结温度后保温4-8h,随炉冷却到室温,烧结后的样品加工成两面光滑、厚度1.0mm的薄片,披银电极;
5)将所制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度100℃,时间30min,保持电场并冷却至室温。
本发明通过在BiFeO3-BaTiO3固溶体陶瓷中添加钙钛矿结构的[Bi0.5(NatLi1-t)]TiO3及氧化物B2O3,在降低烧结温度的同时,又可以提高BiFeO3-BaTiO3陶瓷的压电性能和居里温度,进而使BiFeO3-BaTiO3陶瓷介电损耗大幅下降。
本发明的积极效果是:
(1)充分利用了[Bi0.5(NatLi0.5-t)]TiO3的钙钛矿结构,能与(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3形成固溶体,避免了以Li2CO3添加时Li1+以间隙原子或占位原子的形式存在,减少了陶瓷的晶格常数畸变、避免引起化合价的不平衡进而导致氧空位的产生,降低了陶瓷的介电损耗;
(2)[Bi0.5(NatLi0.5-t)]TiO3具有很低的容忍因子(取t=0时):
其中RLi为Li离子的半径,RBi为Bi离子的半径,RTi为Ti离子的半径,Ro为O离子的半径,因此,根据容忍因子与居里温度的关系,其应该具有较高的居里温度,通过将 [Bi0.5(NatLi1-t)]TiO3与(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3形成固溶体,可以有效地提高该体系的居里温度和温度稳定性;
(3)本发明所制备的陶瓷,具有优异的高温压电性能d33>400pC/N和超过300℃的使用温度,且不含有毒元素Pb及贵金属Sc等;
(4)本发明采用钙钛矿结构的[Bi0.5(NatLi0.5-t)]TiO3及氧化物B2O3复合烧结助剂大幅降低BiFeO3-BaTiO3陶瓷烧结温度,成功地将(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3陶瓷的烧结温度从960℃降低到了830℃,有效地减少了Bi元素的挥发和氧空位的产生,降低了陶瓷的介电损耗,因此从技术上看,具有重大突破和技术上的创新。
附图说明
图1为本发明陶瓷的介电温谱曲线图;
图2为本发明实施例1所制备陶瓷样品的原位动态退极化曲线图。
具体实施方式
下面通过实施例对本发明内容作进一步的阐述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其化学式为:
0.67BiFeO3-0.33BaTiO3+1.0mol%MnCO3+0.24mol%[Bi0.5(Na0.25Li0.25)]TiO3+2.5mol%B2O3,其低温液相烧结制备方法包括如下步骤:
(1)以分析纯Fe2O3、Bi2O3、BaCO3、TiO2、Na2CO3、Li2CO3和B2O3为原料,按照0.67BiFeO3-0.33BaTiO3+0.24mol%[Bi0.5(Na0.25Li0.25)]TiO3+2.5mol%B2O3进行配料,以无水乙醇为介质球磨24h,在100℃烘干12h、过筛,过筛目数为200目,放入高铝坩埚中压紧、加盖,并以250℃/h的升温速率升温至750℃,保温6h合成备用;
(2)将步骤(1)预烧合成的0.67BiFeO3-0.33BaTiO3+2.5mol%B2O3+ 0.24mol%[Bi0.5(Na0.25Li0.25)]TiO3粉末与MnCO3按照0.67BiFeO3-0.33BaTiO3+1.0mol%MnCO3+2.5mol%B2O3+0.24mol%[Bi0.5(Na0.25Li0.25)]TiO3配料,并以无水乙醇为介质,球磨24h后取出烘干、过筛,过筛目数为200目;
(3)将过筛后的粉末加入5%PVA溶液造粒,在钢模中于100MPa下压制成呈硬币形状、直径1.0cm的素片;
(4)成型的素片以5℃/h的升温速率升温在至600℃,保温6h排胶,再以20℃/min的速率快速升温到920℃的烧结温度后保温6h,断电后随炉冷却到室温,烧结后的样品加工成两面光滑、厚度1.0mm的薄片,披银电极,650℃烧银,保温30min;
(5)将所制备的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度100℃,时间30min,保持电场并冷却至室温。
性能测量结果如下:
d33(pC/N) Qm kp εr Tanδ(%) Tc(℃) Td(℃)
403 36 0.28 587 2.1 470 430
实施例2:
一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其化学式为:
0.75BiFeO3-0.25BaTiO3+1.0mol%MnCO3+0.48mol%[Bi0.5(Na0.25Li0.25)]TiO3+5.0mol%B2O3,制备方法同实施例1,不同的是,步骤(4)中烧结温度为830℃,保温时间为6h。
性能测量结果如下:
d33(pC/N) Qm kp εr tanδ(%) Tc(℃) Td(℃)
337 43 0.26 483 1.80 510 480
实施例3:
一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其化学式为:0.65BiFeO3-0.35BaTiO3+1.0mol%MnCO3+0.96mol%[Bi0.5(Na0.1Li0.4)]TiO3+2.5mol%B2O3,制备方法同实施例1,不同的是,步骤(4)中烧结温度840℃,保温时间为6h。
性能测量结果如下:
d33(pC/N) Qm kp εr tanδ(%) Tc(℃) Td(℃)
364 45 0.276 543 2.46 450 405
实施例4:
一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其化学式为:0.70BiFeO3-0.30BaTiO3+1.0mol%MnCO3+0.36mol%(Bi0.5Li0.5)TiO3+2.50mol%B2O3,制备方法同实施例1。
性能测量结果如下:
d33(pC/N) Qm kp εr tanδ(%) Tc(℃) Td(℃)
369 39 0.31 543 2.25 489 460
本发明所列举的成分的上下限、区间取值以及工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施。
高温压电陶瓷用于汽车燃油监控、核电、军工、石油勘探以及航天航空等领域,通常压电性能和使用温度之间为一对立关系,也就是说使用温度越高,则压电性能越底,对于在300℃以上温度范围使用的压电陶瓷,其压电性能常低于100pC/N,本发明制备的陶瓷其居里温度在450-510℃之间,见图1,由于在室温至居里温度之间没有其他相变,原位动态退极化测试曲线表明本发明所制备陶瓷的实际使用温度可达到300℃以上,见图2,实施例1制备的样品在实际使用过程中的最高使用温度和性能随温度变化情况,相比于现有技术,本发明陶瓷在性能上具有重大突破。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。

Claims (2)

1.一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷,其特征在于,其组成通式为:
(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+x[Bi0.5(Na t Li0.5-t )]TiO3+yB2O3,其中u、xyt表示摩尔分数,[Bi0.5(Na t Li0.5-t )]TiO3及B2O3为烧结助剂,且0.25≤u≤0.40,0<x≤0.01,0<y≤0.05,0<t<0.5。
2.权利要求1所述的使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷的低温液相烧结制备方法,其特征在于,包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、BaCO3、TiO2、Li2CO3、Na2CO3和B2O3为原料,按照(1-u)BiFeO3-uBaTiO3+x[Bi0.5(Na t Li0.5-t )]TiO3+yB2O3进行配料,其中0.25≤u≤0.40,0<x≤0.01,0<y≤0.05、0<t<0.5,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、过筛,过筛目数为200-250目,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至750℃保温6h合成备用;
2)将步骤1)预烧合成的(1-u)BiFeO3-uBaTiO3+x[Bi0.5(Na t Li0.5-t )]TiO3+yB2O3粉末与MnCO3按照(1-u)BiFeO3-uBaTiO3+1.0mol%MnCO3+x[Bi0.5(Na t Li0.5-t )]TiO3+yB2O3配料,并以无水乙醇为介质,球磨24h后取出烘干、过筛,过筛目数为200-250目;
3)将过筛后的粉末加入5%PVA溶液造粒,在钢模中于100MPa下压制成呈硬币形状、直径1.0cm的素片;
4)成型的素片以5℃/h的升温速率缓慢升温至600℃,保温6h排胶,再以20℃/min的升温速率到830℃-950℃的烧结温度后保温4-8h,随炉冷却到室温,烧结后的样品加工成两面光滑、厚度1.0mm的薄片,披银电极;
5)将所制的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度100℃,时间30min,保持电场并冷却至室温。
CN202210912503.0A 2022-07-30 2022-07-30 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法 Active CN115093212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210912503.0A CN115093212B (zh) 2022-07-30 2022-07-30 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210912503.0A CN115093212B (zh) 2022-07-30 2022-07-30 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法

Publications (2)

Publication Number Publication Date
CN115093212A CN115093212A (zh) 2022-09-23
CN115093212B true CN115093212B (zh) 2023-09-22

Family

ID=83301478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210912503.0A Active CN115093212B (zh) 2022-07-30 2022-07-30 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法

Country Status (1)

Country Link
CN (1) CN115093212B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234195A (zh) * 2010-04-23 2011-11-09 四川师范大学 铌酸钠钾钛酸铋钠锂系无铅压电陶瓷组合物
CN110128127A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343650B2 (en) * 2013-03-29 2016-05-17 Fuji Chemical Co., Ltd. Piezoelectric material, piezoelectric element, multilayered piezoelectric element, liquid ejection head, liquid ejection apparatus, ultrasonic motor, optical equipment, vibration apparatus, dust removing apparatus, imaging apparatus, and electronic equipment
JP5761540B2 (ja) * 2013-06-28 2015-08-12 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234195A (zh) * 2010-04-23 2011-11-09 四川师范大学 铌酸钠钾钛酸铋钠锂系无铅压电陶瓷组合物
CN110128127A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Enhancement in multiferroic and piezoelectric properties of BiFeO3–BaTiO3–Bi0.5Na0.5TiO3 lead-free ceramics with MnO2 addition by optimizing sintering temperature and dwell time";Ying Li 等;《Materials Research Bulletin》;第92-99页 *

Also Published As

Publication number Publication date
CN115093212A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Yang et al. A novel lead-free ceramic with layered structure for high energy storage applications
CN110272270B (zh) 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法
CN113213930B (zh) 一种多元素掺杂铌酸钾钠基压电陶瓷及其制备方法
CN102531638B (zh) 一种添加物及其降低压电陶瓷烧结温度的用途
CN109734447B (zh) 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN102249659A (zh) 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
CN110128126B (zh) 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN101795994B (zh) 陶瓷材料、其制造方法以及包括这种陶瓷材料的电子陶瓷构件
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN1298672C (zh) 钛酸铋钠-钛酸铋钾-锆钛酸钡无铅压电陶瓷
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
JP5816371B2 (ja) 圧電デバイスおよび圧電デバイスの製造方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
KR20130086093A (ko) 무연 압전 세라믹스 조성물
Pang et al. Ultralow sintering temperature and piezoelectric properties of Bi (Zn1/2Ti1/2) O3− BiScO3− PbTiO3 for low‐temperature co‐firing applications
CN115093212B (zh) 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN111606707B (zh) 一种容温稳定性压电陶瓷材料以及制备方法
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法
CN103435344B (zh) 一种高频陶瓷滤波器用压电陶瓷材料
CN115073159B (zh) 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220923

Assignee: Guilin Xianjingkuangbao Technology Development Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980046674

Denomination of invention: A high-performance bismuth ferrite barium titanate ceramic with a usage temperature exceeding 300 degC and its low-temperature liquid phase sintering preparation method

Granted publication date: 20230922

License type: Common License

Record date: 20231109

Application publication date: 20220923

Assignee: Guilin Sensing Material Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2023980046110

Denomination of invention: A high-performance bismuth ferrite barium titanate ceramic with a usage temperature exceeding 300 degC and its low-temperature liquid phase sintering preparation method

Granted publication date: 20230922

License type: Common License

Record date: 20231107