CN115073160B - 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法 - Google Patents

一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法 Download PDF

Info

Publication number
CN115073160B
CN115073160B CN202210912506.4A CN202210912506A CN115073160B CN 115073160 B CN115073160 B CN 115073160B CN 202210912506 A CN202210912506 A CN 202210912506A CN 115073160 B CN115073160 B CN 115073160B
Authority
CN
China
Prior art keywords
ceramic
equal
temperature
pressure
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210912506.4A
Other languages
English (en)
Other versions
CN115073160A (zh
Inventor
杨心怡
杨华斌
陈巧红
王雪婷
关士博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210912506.4A priority Critical patent/CN115073160B/zh
Publication of CN115073160A publication Critical patent/CN115073160A/zh
Application granted granted Critical
Publication of CN115073160B publication Critical patent/CN115073160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种具有微纳米电畴结构的铁酸铋‑钛酸钡陶瓷的热压烧结制备方法,其组成通式为:(1‑u)BiFe1‑x Ga x O3uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/2Zn1/2)O3+mLi2CO3+yBi(Zn2/3Nb1/3)O3,其中uxnp、my表示摩尔分数,Li2CO3和CuO为低温烧结助剂,且0.20≤u≤0.45,0≤x≤0.05,0≤n≤0.01,0<p≤0.20,0<m≤0.01,0≤y≤0.02。本发明利用烧结助剂和热压反复“捶打”工艺,降低了烧结温度,减少了Bi元素的挥发和降低了晶格缺陷浓度,提高了陶瓷的致密度,大幅降低了该体系的介电损耗。利用驰豫铁电材料Bi(Zn2/ 3Nb1/3)O3减小了陶瓷的电畴尺寸,提高了陶瓷的压电性能;利用Bi(Ti0.5Zn0.5)O3提高了陶瓷的居里温度,提高了陶瓷在高温下的温度稳定性,最高使用温度可达到350℃以上。

Description

一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结 制备方法
技术领域
本发明涉及无铅压电陶瓷的电畴结构调控及热压烧结制备技术领域,具体是一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法。
背景技术
压电陶瓷在航天航空、核电、石油化工、地质勘探、冶金、汽车燃油监控、3D打印、高温超声波应用等高技术领域具有广泛应用。目前在该领域内的应用主要以锆钛酸铅(PZT)体系及其改性的压电陶瓷为主,在中高温领域则以PZT+BiScO3改性陶瓷以及PbNbO3(PN)体系为主,然而Sc元素价格昂贵,同时仍然含有毒元素Pb。而偏铌酸铅一方面压电性能偏低,另一方面也含有毒元素Pb,且使用温度范围受限(<260℃)。从目前所有的压电陶瓷体系中,我们发现压电性能和陶瓷的居里温度成一种矛盾的对立关系,即压电性能越高,则其居里温度越低,使其使用温度范围受限;另一方面,若陶瓷的居里温度越高则压电性能越低,见附图1所示。因此如何突破这一限制,获得既具有高居里温度又具有高压电性能的无铅压电陶瓷,具有重要的研究意义。
BiFeO3-BaTiO3陶瓷具有居里温度高、烧结温度低、无毒、钙钛矿结构的优异特性。然而在烧结过程中,由于BiFeO3与BaTiO3的烧结成瓷温度差太大(分别为830℃和1400℃),若烧结温度过低则成瓷不充分,无法极化,烧结温度过高则Bi元素挥发严重导致大量的氧空位、晶格缺陷以及孔洞的产生,使得该体系的介电损耗过高而无法极化。添加Mn元素掺杂改性后,有效的提高了该体系电阻率,降低了介电损耗,但介电损耗仍然偏高(≥5%)。因此降低BiFeO3-BaTiO3陶瓷的介电损耗可以从降低烧结温度和提高陶瓷致密度方面来开展工作。
公开号为CN102584195A的专利公开了一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法,这种BiFeO3-BaTiO3基压电陶瓷低温烧结技术,通过添加低温烧结助剂的固相合成烧结方法,成功将烧结温度降至900℃左右,但是铋元素的挥发和介电损耗偏高的问题仍然未得到充分解决,且压电性能仍然偏低。
发明内容
本发明的目的是针对上述现有BF-BT陶瓷存在的问题,提供一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法,采用本发明技术制备的压电陶瓷具有致密度高、介电损耗低、压电性能高、使用温度范围宽的优点,可以满足样品在350℃范围内的高温下使用。
实现本发明的技术方案如下:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其组成通式为:
(1-u)BiFe1-xGaxO3-uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/2Zn1/2)O3+mLi2CO3+
yBi(Zn2/3Nb1/3)O3,其中u、x、n、p、m和y表示摩尔分数,Li2CO3和CuO为低温烧结助剂,且0.20≤u≤0.45,0≤x≤0.05,0≤n≤0.01,0<p≤0.20,0<m≤0.01,0≤y≤0.02。
所述陶瓷的热压烧结制备方法包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、Ga2O3、MnCO3、Li2CO3、TiO2、ZnO、Nb2O5、纳米BaTiO3粉末和CuO为原料,按照(1-u)BiFe1-xGaxO3-uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/2Zn1/2)O3+mLi2CO3+yBi(Zn2/3Nb1/3)O3进行配料,其中0.20≤u≤0.45,0≤x≤0.05,0≤n≤0.01,0<p≤0.20,0<m≤0.01,0≤y≤0.02,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200-250目筛网过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至760℃-800℃保温6h合成备用;
2)将步骤1)合成的(1-u)BiFe1-xGaxO3-uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/ 2Zn1/2)O3+mLi2CO3+yBi(Zn2/3Nb1/3)O3粉末进行二次球磨24h后取出烘干、200-250目筛过筛备用;
3)将步骤2)合成的粉末放入热压烧结机中,在空气或纯氧气氛条件下,以10℃/min的速率升温至150℃,保温10min排除粉末中的水蒸气,再以20℃/min的升温速率快速升温至870℃-950℃的烧结温度后保持温度不变,同时逐渐加压至20MPa,保压5min后减压至5MPa,然后保压5min再次加压至20MPa,保压5min后再次减压至5MPa,保压5min,再次升压至40MPa,保压30min后断电、保持压强不变,并开水冷快速冷却至室温;
4)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度0.50-1.0mm的薄片,披银电极;
5)将所烧制的压电陶瓷片在硅油中极化,极化电场5000V/mm,温度120℃,保持温度和电场不变,时间30min,保持电场并冷却至室温。
压电陶瓷的压电活性与陶瓷电畴结构有关,随着电畴尺寸的减小,即畴壁密度增加,压电性能增强。为了获得电畴结构均匀的纳米畴结构陶瓷,本发明在配方中引入驰豫铁电材料Bi(Zn2/3Nb1/3)O3打断陶瓷的长程有序结构,实现获得具有纳米畴结构的BF-BT(BiFeO3-BaTiO3)陶瓷。同时在前期的研究中,发明人发现BF-BT陶瓷固溶体的高温稳定性与该体系陶瓷引入的锌钛酸铋有关,锌钛酸铋含量越高,其高温稳定性越好,为了进一步提高该体系的温度稳定性,本发明通过引入具有高居里温度的Bi(Ti0.5Zn0.5)O3,以达到提高该体系温度稳定性的目的。
本发明通过添加烧结助剂后的热压烧结工艺,降低BiFeO3-BaTiO3陶瓷烧结温度的同时,可以有效地提高陶瓷的致密度和减少晶格缺陷,降低了陶瓷的介电损耗,热压烧结过程中通过反复“捶打”工艺,减少晶格缺陷增加陶瓷的均匀性;并通过引入Bi(Zn2/3Nb1/3)O3打断陶瓷的长程有序结构,实现对电畴结构的控制;通过引入四方相结构的Bi(Ti0.5Zn0.5)O3,获得四方性更高的BF-BT陶瓷,达到提高该体系温度稳定性的目的,获得了具有高压电性能及高温稳定性的无铅压电陶瓷,居里温度高达500℃-600℃,其压电性能最高可以达到500pC/N以上,工作温度范围可达到350℃以上,如图2所示,实施例1制备的样品压电陶瓷的原位动态退极化“温度-压电性能”曲线图,因此该制备方法在无铅压电陶瓷领域取得了突破性的进展,具有重要的里程碑意义。
本发明产生的积极效果是:
(1)通过添加Bi(Zn2/3Nb1/3)O3驰豫铁电成分,实现打断BF-BT陶瓷长程有序的晶体结构,获得纳米畴结构的BFBT陶瓷晶体,增加了陶瓷的电畴密度,提高了该体系的压电活性;
(2)充分利用热压烧结技术的优势,通过在烧结温度下的“加压-保压-减压-保压-加压”的反复“捶打”工艺,提高了BiFeO3-BaTiO3陶瓷的致密度,重新排列了陶瓷的组织结构,有利于减少陶瓷的晶格缺陷及孔洞、同时快速降温减少了中间相、抑制了氧空位的产生和Fe3+变价,降低了该体系的介电损耗,提高了该体系的压电性能;
(3)通过添加Bi(Ti0.5Zn0.5)O3进一步提高了该体系的居里温度,以实现提高该体系温度稳定性的目的,同时Bi(Ti0.5Zn0.5)O3的局域无序度较高,也有利于获得纳米畴结构的BiFeO3-BaTiO3陶瓷,提高该体系的压电性能。
附图说明
图1为压电陶瓷的晶体结构与居里温度之间的关系图;
图2为本发明实施例1所制备的压电陶瓷的原位动态退极化“温度-压电性能”曲线图。
具体实施方式
下面通过实施例对本发明内容作进一步的阐述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.68BiFe0.97Ga0.03O3-0.32BaTiO3+0.35mol%MnCO3+0.4mol%CuO+0.25mol%Li2CO3+
5.0mol%Bi(Ti0.5Zn0.5)O3+0.25mol%Bi(Zn2/3Nb1/3)O3
所述陶瓷的热压烧结制备方法包括如下步骤:
(1)以分析纯Bi2O3、Fe2O3、Ga2O3、MnCO3、CuO、Li2CO3、TiO2、ZnO、Nb2O5和纳米BaTiO3粉末为原料,按照0.68BiFe0.97Ga0.03O3-0.32BaTiO3+0.35mol%MnCO3+0.4mol%CuO+0.25mol%Li2CO3+5.0mol%Bi(Ti0.5Zn0.5)O3+0.25mol%Bi(Zn2/3Nb1/3)O3进行配料,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、250目筛网过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至760℃保温6h合成备用;
(2)将步骤(1)合成的0.68BiFe0.97Ga0.03O3-0.32BaTiO3+0.35mol%MnCO3+0.25mol%Li2CO3+0.4mol%CuO+5.0mol%Bi(Ti0.5Zn0.5)O3+0.25mol%Bi(Zn2/3Nb1/3)O3粉末进行二次球磨24h后取出烘干、250目筛网过筛备用;
(3)将步骤(2)合成的粉末放入热压烧结机中,在空气或纯氧气氛条件下,以10℃/min的速率升温至150℃,保温10min排除粉末中的水蒸气,再以20℃/min的升温速率快速升温至930℃的烧结温度后保持温度不变,同时逐渐加压至20MPa,保压5min后减压至5MPa,保压5min再次加压至20MPa,保压5min后再次减压至5MPa,保压5min后再次升压至40MPa,保压30min后断电、保持压强不变,并开水冷快速冷却至室温;
(4)将烧结后的样品根据需求切割成大小不同、呈硬币形状或长方体形的陶瓷片,并打磨加工成两面光滑、厚度1.0mm的薄片,披银电极;
(5)将所烧制的压电陶瓷片在硅油中极化,极化电场5000V/mm,温度120℃,保持温度和电场不变,时间30min,保持电场并冷却至室温。
性能测量结果如下:
d33(pC/N)/350℃ Qm kp εr Tanδ(%) Tc(℃) Td(℃)
500.8 64 0.34 599 1.20 520 495
如图2所示,实施例1制备的样品,其压电性能最高可以达到500pC/N以上,工作温度范围可达到350℃以上。
实施例2:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.70BiFe0.99Ga0.01O3-0.30BaTiO3+0.35mol%MnCO3+0.5mol%CuO+0.4mol%Li2CO3+5.0mol%Bi(Ti0.5Zn0.5)O3+0.50mol%Bi(Zn2/3Nb1/3)O3
所述陶瓷的热压烧结制备方法同实施例1,不同的是步骤(3)中烧结温度为900℃。
性能测量结果如下:
d33(pC/N)/350℃ Qm kp εr tanδ(%) Tc(℃) Td(℃)
468.6 58 0.32 573 1.42 590 565
实施例3:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.68BiFeO3-0.32BaTiO3+0.35mol%MnCO3+0.30mol%CuO+0.40mol%Li2CO3+5.0mol%Bi(Ti0.5Zn0.5)O3+0.25mol%Bi(Zn2/3Nb1/3)O3
所述陶瓷的热压烧结制备方法同实施例1,不同的是步骤(3)中烧结温度为950℃。
性能测量结果如下:
d33(pC/N)/350℃ Qm kp εr tanδ(%) Tc(℃) Td(℃)
450 79 0.36 684 1.76 542 515
实施例4:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.72BiFe0.97Ga0.03O3-0.28BaTiO3+0.35mol%MnCO3+0.4mol%CuO+0.5mol%Li2CO3+2.5mol%Bi(Ti0.5Zn0.5)O3+0.75mol%Bi(Zn2/3Nb1/3)O3
所述陶瓷的热压烧结制备方法同实施例1,不同的是步骤(3)中烧结温度为880℃。
性能测量结果如下:
d33(pC/N)/350℃ Qm kp εr tanδ(%) Tc(℃) Td(℃)
437 55 0.29 552 1.36 608 575
实施例5:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.76BiFe0.97Ga0.03O3-0.24BaTiO3+0.35mol%MnCO3+0.15mol%CuO+0.15mol%Li2CO3+5.0mol%Bi(Ti0.5Zn0.5)O3+0.25mol%Bi(Zn2/3Nb1/3)O3
所述陶瓷的热压烧结制备方法同实施例1,不同的是步骤(3)中烧结温度为900℃。
d33(pC/N)/350℃ Qm kp εr tanδ(%) Tc(℃) Td(℃)
386 67 0.25 431 1.16 628 610
实施例6:
一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷,其化学式为:
0.60BiFe0.97Ga0.03O3-0.40BaTiO3+0.35mol%MnCO3+0.6mol%CuO+0.15mol%Li2CO3+3.0mol%Bi(Ti0.5Zn0.5)O3
所述陶瓷的热压烧结制备方法同实施例1,不同的是步骤(3)中烧结温度为950℃。
d33(pC/N)/350℃ Qm kp εr tanδ(%) Tc(℃) Td(℃)
338 56 0.27 681 3.44 458 425
本发明所列举的成分的上下限、区间取值以及工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施。
本发明通过成分调整实现对陶瓷微观组织结构的调控,进而提高陶瓷的压电性能,并通过引入具有高居里温度的Bi(Ti0.5Zn0.5)O3,以提高体系陶瓷的居里温度。结合热压烧结的反复“捶打”技术,减少陶瓷的晶格缺陷,增加陶瓷的均匀性和致密度,并通过热压烧结的密闭环境,减少烧结过程中Bi元素的挥发,同时通过在含氧条件下热压烧结的快速升降温也有助于减少中间相的形成,减少氧空位的产生和Fe3+离子的变价,最终实现降低介电损耗的目的。采用本发明技术制备的压电陶瓷具有致密度高、介电损耗低、压电性能高、使用温度范围宽的优点,可以满足样品在350℃范围内的高温下使用,且最大的突破是样品在超过350℃时,其最高压电性能可达500pC/N,从目前所有公开的压电陶瓷体系开看,具有如此优异高温压电性能的压电陶瓷仍为首次获得,因此本发明具重大的突破性和创造性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。

Claims (1)

1.一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法,包括如下步骤:
1)以分析纯Fe2O3、Bi2O3、Ga2O3、MnCO3、Li2CO3、TiO2、ZnO、Nb2O5、纳米BaTiO3粉末和CuO为原料,按照(1-u)BiFe1-xGaxO3-uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/2Zn1/2)O3+mLi2CO3+yBi(Zn2/3Nb1/3)O3进行配料,其中0.20≤u≤0.45,0<x≤0.05,0<n≤0.005,0<p≤0.05,0<m≤0.005,0<y≤0.0075,其中u、x、n、p、m和y表示摩尔分数,Li2CO3和CuO为低温烧结助剂,以无水乙醇为介质球磨24h,取出后在100℃烘干12h、200-250目筛网过筛,放入高铝坩埚中压紧、加盖,以250℃/h的升温速率升温至760℃-800℃保温6h合成备用;
2)将步骤1)合成的(1-u)BiFe1-xGaxO3-uBaTiO3+0.35mol%MnCO3+nCuO+pBi(Ti1/2Zn1/2)O3+mLi2CO3+yBi(Zn2/3Nb1/3)O3粉末进行二次球磨24h后取出烘干、200-250目筛过筛备用;
3)将步骤2)合成的粉末放入热压烧结机中,在空气或纯氧气氛条件下,以10℃/min的速率升温至150℃,保温10min排除粉末中的水蒸气,再以20℃/min的升温速率快速升温至870℃-950℃的烧结温度后保持温度不变,同时逐渐加压至20MPa,保压5min后减压至5MPa,然后保压5min再次加压至20MPa,保压5min后再次减压至5MPa,保压5min,再次升压至40MPa,保压30min后断电、保持压强不变,并开水冷快速冷却至室温;
4)将烧结后的样品根据需求切割成大小不同的陶瓷片,并打磨加工成两面光滑、厚度0.50-1.0mm的薄片,披银电极;
5)将所烧制的压电陶瓷片在硅油中极化,极化电场5000V/mm,温度120℃,保持温度和电场不变,时间30min,保持电场并冷却至室温。
CN202210912506.4A 2022-07-30 2022-07-30 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法 Active CN115073160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210912506.4A CN115073160B (zh) 2022-07-30 2022-07-30 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210912506.4A CN115073160B (zh) 2022-07-30 2022-07-30 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法

Publications (2)

Publication Number Publication Date
CN115073160A CN115073160A (zh) 2022-09-20
CN115073160B true CN115073160B (zh) 2023-09-19

Family

ID=83242188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210912506.4A Active CN115073160B (zh) 2022-07-30 2022-07-30 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法

Country Status (1)

Country Link
CN (1) CN115073160B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140354738A1 (en) * 2012-03-14 2014-12-04 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
CN110128128A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法
CN110128126A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN110272270A (zh) * 2019-07-01 2019-09-24 桂林电子科技大学 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140354738A1 (en) * 2012-03-14 2014-12-04 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
CN110128128A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法
CN110128126A (zh) * 2019-07-01 2019-08-16 桂林电子科技大学 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN110272270A (zh) * 2019-07-01 2019-09-24 桂林电子科技大学 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115073160A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN110272270B (zh) 一种具有低介电损耗及高温稳定性的铁酸铋-钛酸钡基高温无铅压电陶瓷及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN105541413A (zh) 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法
CN107840655B (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN102167585A (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN111072065B (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
CN112209711A (zh) 一种锆钛锡铌酸铅厚膜陶瓷及其制备方法和应用
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
Junjie et al. Preparation of textured bismuth titanate ceramics using spark plasma sintering
CN115073160B (zh) 一种具有微纳米电畴结构的铁酸铋-钛酸钡陶瓷的热压烧结制备方法
CN114315345B (zh) 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN113402273B (zh) 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN115385675A (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN115073159B (zh) 一种具有高居里温度及高压电性能的铁酸铋-钛酸钡陶瓷及其低温含氧热压烧结制备方法
CN115093212B (zh) 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法
CN116082033B (zh) 基于钛酸钡基制冷陶瓷的制备方法及电卡材料
CN116102345B (zh) 铋层状压电陶瓷材料及其制备方法
CN116102351A (zh) 一种铌酸钾钠基压电陶瓷制备及烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant