CN115044233A - 一种抗高能激光烧蚀自愈合涂层及其制备方法 - Google Patents

一种抗高能激光烧蚀自愈合涂层及其制备方法 Download PDF

Info

Publication number
CN115044233A
CN115044233A CN202210578973.8A CN202210578973A CN115044233A CN 115044233 A CN115044233 A CN 115044233A CN 202210578973 A CN202210578973 A CN 202210578973A CN 115044233 A CN115044233 A CN 115044233A
Authority
CN
China
Prior art keywords
energy laser
coating
laser ablation
resin
healing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210578973.8A
Other languages
English (en)
Other versions
CN115044233B (zh
Inventor
徐慧芳
付陆彬
钟正祥
刘丽
黄玉东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210578973.8A priority Critical patent/CN115044233B/zh
Publication of CN115044233A publication Critical patent/CN115044233A/zh
Application granted granted Critical
Publication of CN115044233B publication Critical patent/CN115044233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种抗高能激光烧蚀自愈合涂层及其制备方法,所述抗高能激光烧蚀自愈合涂层包括硅酸盐树脂、有机树脂、笼型聚倍半硅氧烷(羟基POSS)等,再通过加入氧化锆纳米纤维、氧化硼粉末、特性填料来提高涂层的抗高能激光与自愈合性能,最后再均匀涂覆在特种陶瓷表面室温固化后即可得抗高能激光烧蚀自愈合涂层。本发明提供的抗高能激光烧蚀自愈合涂层所用硅酸盐树脂、有机树脂、羟基POSS在高温陶瓷化后结构致密稳定,氧化锆纳米纤维的引入提高涂层表面反射率,减少辐射热能,氧化硼粉末在高能激光下熔融提供玻璃相,实现涂层本征型自愈合,特性填料的存在能吸收一些反射不完全的辐射热能,一些填料熔融后会自愈合激光辐照后留下的部分缺陷,还能催化原位生成短纤维,实现涂层自增韧。该抗高能激光自愈合涂层结构致密完整,抗高能激光反射与自愈合性能优异,在抗高能激光防护领域意义重大。

Description

一种抗高能激光烧蚀自愈合涂层及其制备方法
技术领域:本发明涉及复合涂层技术领域,具体涉及一种抗高能激光烧蚀自愈合涂层及其制备方法。
背景技术:
树脂及涂层在航空航天、海洋装备、民用设备等领域都有广泛的应用。树脂及涂层可以实现连接、填充、防护等作用,还可以根据不同使用环境来确定树脂及涂层的性能来满足使用需求。但一些特殊环境使用的树脂及涂层,不仅需要具备树脂及涂层的基本性能,在特殊环境下能稳定使用也尤为重要。近年来,激光技术在军事领域的快速发展,对在特征领域应用的树脂及涂层的性能提出更严苛的要求。自愈合为树脂及涂层的性能提升提供了思路。自愈合通常可分为两种形式:本征型与外援型。外援型自愈合主要通过一些技术手段将修复剂进行封装,加入树脂及涂层中,当树脂或涂层发生损伤产生缺陷时能自主愈合,避免缺陷的进一步扩大。但外援型自愈合不可重复使用。尤其是在航天飞行器使用过程中,在大气摩擦以及太空复杂的环境下,不可重复修复的缺陷可能会降低飞行器的安全性。本征型自愈合一般需要通过加热、辐射等方式来修复树脂及涂层的微裂纹等缺陷。虽然本征型自愈合需要通过外界提供条件来进行,但可利用不同条件可多次修复。
激光光束使辐照目标发生毁伤破坏的机理主要是热效应破坏,当激光光束辐照到材料上时,材料吸收大量的热量,温度瞬间升高,发生激光热烧蚀现象。在本发明中,硅酸盐树脂相较于有机树脂有更好的耐温性,对于激光辐照的稳定性相对较好,有机树脂以及羟基POSS的引入增强了树脂韧性,也提高了树脂在经过辐照后得陶瓷化率,更易形成表面致密结构,氧化锆纳米纤维可反射激光,减少对涂层得损伤,也会避免树脂陶瓷化后对纤维的包埋,氧化硼粉末会受热形成流动玻璃相,在高能激光辐照作用下会修复涂层的损伤,特性填料的加入提高涂层的耐温性与致密性,在高能激光高温条件下,特性填料会催化原位生成短纤维,实现高温下涂层的自增韧。通过此方法制备得抗高能激光自愈合涂层有较好得激光反射作用,耐高温烧蚀性佳,损伤可自愈合,表面致密,在抗高能激光防护领域意义重大。
发明内容:
本发明针对应用技术中存在的不足,充分涂层与激光辐照之间的相互关系,旨在提供一种抗高能激光烧蚀自愈合涂层及其制备方法,实现涂层在激光下的反射与自愈合,为抗高能激光烧蚀自愈合涂层体系提供了一种选择方案。本发明的目的主要是提供一种抗高能激光烧蚀自愈合涂层及其制备方法。本发明的上述目的主要通过以下技术方案来实现:
一种抗高能激光烧蚀自愈合涂层,其特征在于,所述涂层包括以下组分:20-35重量份硅酸盐树脂、15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂、5~8重量份氧化锆纳米纤维、5~10重量份氧化硼以及25~35重量份特性填料。
进一步的,所述硅酸盐树脂为硅酸钾树脂、硅酸钠树脂、硅酸锂树脂、硅酸铝树脂、硅酸铵树脂中的一种或几种,模数为2.8~4.2,波美度40~50。
进一步的,所述有机树脂为丙烯酸酯树脂、有机硅树脂、聚乙烯醇树脂中的一种或几种,质量浓度为40%~50%。
进一步的,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH550)、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)中的一种或几种。
进一步的,所述氧化锆纳米纤维直径为100nm~1μm之间。
进一步的,所述氧化硼粉末粒径在1μm~10μm之间。
进一步的,所述特性填料为二氧化硅、氧化铝、二氧化钛、硅粉中的一种或几种,粒径在1~30μm之间,分散性能良好。
本发明提供的一种抗高能激光烧蚀自愈合涂层及其制备方法,具有以下具体步骤:
步骤一、用硅烷偶联剂与乙醇混合溶液对打磨后的基材表面进行改性处理;步骤二、对以经过表面刻蚀处理的氧化锆纳米纤维再进行硅烷偶联剂与乙醇混合溶液表面改性,同时分别对氧化硼粉末与特性填料也进行硅烷偶联剂与乙醇混合溶液表面改性处理;
步骤三、对硅酸盐树脂通过化学改性引入含有羟基的有机树脂与羟基POSS,制备改性复合树脂;
步骤四、把步骤二得到的改性后的氧化锆纳米纤维、氧化硼粉末与特性填料多次加入步骤三制备的改性复合树脂,混合均匀,得复合涂料;
步骤五、将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
进一步的,所述步骤一基材表面处理具体方法为:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液浸泡40min~60min,取出后在120℃的高温烘箱中干燥80min。
进一步的,所述步骤二改性处理的具体方法为:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后分别对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液中60℃恒温搅拌150min,后降温、过滤、80℃烘干、研磨均匀。
进一步的,所述步骤三改性复合树脂制备的具体方法为:先将15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将20-35重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
进一步的,所述步骤四制备复合涂料的具体方法为:改性后的氧化锆纳米纤维、氧化硼粉末与特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。
进一步的,所述抗高能激光烧蚀自愈合涂层厚度在1.5mm~3mm之间,每次涂覆厚度不超过1mm。
本发明的有益效果在于:
一、本发明的抗高能激光烧蚀自愈合涂层,硅酸盐树脂组分由于含有大量交联的Si-O键,其刚性大,具有良好的耐高温烧蚀性,对于激光辐照的热效应损坏的稳定性较好,有机树脂链段的引入,不仅增强了树脂韧性,还提高了树脂的粘接与成膜效果,羟基POSS的引入会抑制有机树脂在激光辐照高温作用下的分解,提高树脂高温后陶瓷化产率,增加涂层的致密性。
二、本发明的抗高能激光烧蚀自愈合涂层,氧化锆纳米纤维的存在在激光辐照作用下会发生相反转,相反转后会反射掉部分的高能激光,减少激光对涂层的辐照损伤;当有部分有机树脂在被辐照分解的同时,涂层就会出现微型缺陷,出现缺陷的同时,氧化硼粉末在高能激光辐照高温作用下会熔融,形成流动型玻璃相,涂层自愈合辐照带来的缺陷。
三、本发明的抗高能激光烧蚀自愈合涂层,未反射完全的激光会使部分无机填料熔融,熔融的无机填料组分会自动流动到出现的微型缺陷处修复,同样实现微型缺陷的自愈合,特性填料的存在会催化高温下原位形成短纤维,实现涂层在高温下的增韧作用,同时氧化锆纳米纤维的结构不会因为机填料熔融而被包埋,形成持续性反射作用。
四、本发明的抗高能激光烧蚀自愈合涂层,本发明所述的自愈合过程主要是氧化硼粉末与无机填料吸收热量由固态变为熔融态再固化的过程,由于激光辐照不会长时间持续进行,可实现再固化过程,故该自愈合过程可实现多次。多次的自愈合过程以及组分中对激光的部分反射组分的存在,使涂层具有良好的环境稳定性,可有效延长涂层与基材的使用寿命。
附图说明:
图1为激光辐照前后涂层表面的图片。
图2为激光辐照后涂层原位生长短纤维的SEM
具体实施方式:
下面结合实施例对本发明进行进一步说明,但本发明内容不仅限于这些实例。本发明的目的主要是提供一种抗高能激光烧蚀自愈合涂层及其制备方法。本发明的上述目的主要通过以下技术方案来实现:
一种抗高能激光烧蚀自愈合涂层,其特征在于,所述涂层包括以下组分:20-35重量份硅酸盐树脂、15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂、5~8重量份氧化锆纳米纤维、5~10重量份氧化硼以及25~35重量份特性填料。
优选的,所述硅酸盐树脂为硅酸钾树脂、硅酸钠树脂、硅酸锂树脂、硅酸铝树脂、硅酸铵树脂中的一种或几种,模数为2.8~4.2,波美度40~50。
优选的,所述有机树脂为丙烯酸酯树脂、有机硅树脂、聚乙烯醇树脂中的一种或几种,质量浓度为40%~50%。
优选的,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH550)、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)中的一种或几种。
优选的,所述氧化锆纳米纤维直径为100nm~1μm之间。
优选的,所述氧化硼粉末粒径在1μm~10μm之间。
优选的,所述特性填料为二氧化硅、氧化铝、二氧化钛、硅粉中的一种或几种,粒径在1~30μm之间,分散性能良好。
本发明提供的一种抗高能激光烧蚀自愈合涂层及其制备方法,具有以下具体步骤:
步骤一、用硅烷偶联剂与乙醇混合溶液对打磨后的基材表面进行改性处理;步骤二、对以经过表面刻蚀处理的氧化锆纳米纤维再进行硅烷偶联剂与乙醇混合溶液表面改性,同时分别对氧化硼粉末与特性填料也进行硅烷偶联剂与乙醇混合溶液表面改性处理;
步骤三、对硅酸盐树脂通过化学改性引入含有羟基的有机树脂与羟基POSS,制备改性复合树脂;
步骤四、把步骤二得到的改性后的氧化锆纳米纤维、氧化硼粉末与特性填料多次加入步骤三制备的改性复合树脂,混合均匀,得复合涂料;
步骤五、将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
优选的,所述步骤一基材表面处理具体方法为:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液浸泡40min~60min,取出后在120℃的高温烘箱中干燥80min。
优选的,所述步骤二改性处理的具体方法为:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后分别对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液中60℃恒温搅拌150min,后降温、过滤、80℃烘干、研磨均匀。
优选的,所述步骤三改性复合树脂制备的具体方法为:先将15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将20-35重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
优选的,所述步骤四制备复合涂料的具体方法为:改性后的氧化锆纳米纤维、氧化硼粉末与特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。
优选的,所述抗高能激光烧蚀自愈合涂层厚度在1.5mm~3mm之间,每次涂覆厚度不超过1mm。
实施例1:
本发明所述抗高能激光烧蚀自愈合涂层制备过程如下:
步骤一:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为20%的乙醇混合溶液浸泡60min,取出后在120℃的高温烘箱中干燥80min。
步骤二:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为10%的乙醇混合溶液中60℃恒温搅拌150min,后降温、过滤、80℃烘干、研磨均匀。
步骤三:先将20重量份有机树脂、10重量份羟基POSS、4重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将30重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
步骤四:改性后的6重量份氧化锆纳米纤维、8重量份氧化硼粉末与30重量份特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。步骤五:将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
实施例2:
本发明所述抗高能激光烧蚀自愈合涂层制备过程如下:
步骤一:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为15%的乙醇混合溶液浸泡55min,取出后在120℃的高温烘箱中干燥80min。
步骤二:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为13%的乙醇混合溶液中60℃恒温搅拌150min,后降温、过滤、80℃烘干、研磨均匀。
步骤三:先将30重量份有机树脂、5重量份羟基POSS、2重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将35重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
步骤四:改性后的5重量份氧化锆纳米纤维、6重量份氧化硼粉末与25重量份特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。步骤五:将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
实施例3:
本发明所述抗高能激光烧蚀自愈合涂层制备过程如下:
步骤一:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为12%的乙醇混合溶液浸泡50min,取出后在120℃的高温烘箱中干燥60min。
步骤二:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为16%的乙醇混合溶液中60℃恒温搅拌120min,后降温、过滤、80℃烘干、研磨均匀。
步骤三:先将25重量份有机树脂、12重量份羟基POSS、1重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将20重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
步骤四:改性后的7重量份氧化锆纳米纤维、10重量份氧化硼粉末与32重量份特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。步骤五:将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
实施例4:
本发明所述抗高能激光烧蚀自愈合涂层制备过程如下:
步骤一:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为10%的乙醇混合溶液浸泡40min,取出后在120℃的高温烘箱中干燥60min。
步骤二:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为20%的乙醇混合溶液中60℃恒温搅拌120min,后降温、过滤、80℃烘干、研磨均匀。
步骤三:先将15重量份有机树脂、15重量份羟基POSS、5重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将25重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
步骤四:改性后的8重量份氧化锆纳米纤维、5重量份氧化硼粉末与35重量份特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。步骤五:将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
以上所述,仅是本发明的实施方案,本发明的保护范围并不局限于上述实施例。但凡属于建立在本发明思路下的技术方案均属于本发明保护范围,任何熟悉本技术领域技术人员在本发明的技术范围之内,想到的变化及相关替换,都应涵盖在本发明的保护范围之内。

Claims (12)

1.一种抗高能激光烧蚀自愈合涂层,其特征在于,所述涂层包括以下组分:20-35重量份硅酸盐树脂、15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂、5~8重量份氧化锆纳米纤维、5~10重量份氧化硼以及25~35重量份特性填料。
涂层制备方法包括如下步骤:
步骤一、用硅烷偶联剂与乙醇混合溶液对打磨后的基材表面进行改性处理;
步骤二、对以经过表面刻蚀处理的氧化锆纳米纤维再进行硅烷偶联剂与乙醇混合溶液表面改性,同时分别对氧化硼粉末与特性填料也进行硅烷偶联剂与乙醇混合溶液表面改性处理;
步骤三、对硅酸盐树脂通过化学改性引入含有羟基的有机树脂与羟基POSS,制备改性复合树脂;
步骤四、把步骤二得到的改性后的氧化锆纳米纤维、氧化硼粉末与特性填料多次加入步骤三制备的改性复合树脂,混合均匀,得复合涂料;
步骤五、将步骤四所得复合涂料均匀涂覆于步骤一处理后的基材上,室温固化后重复以上步骤,直至得到所需得涂层厚度,即得抗高能激光烧蚀自愈合涂层。
2.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述硅酸盐树脂为硅酸钾树脂、硅酸钠树脂、硅酸锂树脂、硅酸铝树脂、硅酸铵树脂中的一种或几种,模数为2.8~4.2,波美度40~50。
3.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述有机树脂为丙烯酸酯树脂、有机硅树脂、聚乙烯醇树脂中的一种或几种,质量浓度为40%~50%。
4.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷(KH550)、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)中的一种或几种。
5.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述氧化锆纳米纤维直径为100nm~1μm之间。
6.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述氧化硼粉末粒径在1μm~10μm之间。
7.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述特性填料为二氧化硅、氧化铝、二氧化钛、硅粉中的一种或几种,粒径在1μm~30μm之间,分散性能良好。
8.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述抗高能激光烧蚀自愈合涂层厚度在1.5mm~3mm之间,每次涂覆厚度不超过1mm。
9.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述步骤一基材表面处理具体方法为:先对基材表面用240目砂纸打磨,再用硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液浸泡40min~60min,取出后在120℃的高温烘箱中干燥80min。
10.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述步骤二改性处理的具体方法为:氧化锆纳米纤维的表面刻蚀通过等离子体刻蚀方法完成,后分别对氧化锆纳米纤维、氧化硼粉末、特性填料在硅烷偶联剂质量比含量为10%~20%的乙醇混合溶液中60℃恒温搅拌150min,后降温、过滤、80℃烘干、研磨均匀。
11.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述步骤三改性复合树脂制备的具体方法为:先将15~30重量份有机树脂、5~15重量份羟基POSS、1~5重量份硅烷偶联剂入三口烧瓶中60℃搅拌混合反应60min,再将20-35重量份硅酸盐树脂以1d~2d/s的速度滴加入三口烧瓶反应240min,降温的改性复合树脂。
12.根据权利要求1所述的一种抗高能激光烧蚀自愈合涂层,其特征在于,所述步骤四制备复合涂料的具体方法为:改性后的氧化锆纳米纤维、氧化硼粉末与特性填料分多次加入改性复合树脂并高速分散均匀,得到粘稠的复合涂料。
CN202210578973.8A 2022-05-25 2022-05-25 一种抗高能激光烧蚀自愈合涂层及其制备方法 Active CN115044233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210578973.8A CN115044233B (zh) 2022-05-25 2022-05-25 一种抗高能激光烧蚀自愈合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210578973.8A CN115044233B (zh) 2022-05-25 2022-05-25 一种抗高能激光烧蚀自愈合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN115044233A true CN115044233A (zh) 2022-09-13
CN115044233B CN115044233B (zh) 2023-03-31

Family

ID=83158997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210578973.8A Active CN115044233B (zh) 2022-05-25 2022-05-25 一种抗高能激光烧蚀自愈合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN115044233B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851127A (zh) * 2022-11-30 2023-03-28 湖南弘辉科技有限公司 一种弹翼耐高温隔热涂层及其制备方法、弹翼
CN115925438A (zh) * 2022-11-02 2023-04-07 南大恩洁优环境技术(江苏)股份公司 一种rto用耐高温抗腐蚀复合涂层的制备方法
CN117902895A (zh) * 2024-03-15 2024-04-19 中南大学 一种耐烧蚀防隔热一体化硼改性磷酸盐材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878520A2 (de) * 1997-05-12 1998-11-18 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Zusammensetzung für hochtemperaturfeste, pyrolitisch keramisierende Beschichtungen
US20120094036A1 (en) * 2009-06-08 2012-04-19 Ocellus, Inc. Coating Composition for Thermal Protection on Substrates, Processes for Manufacturing, and Methods of Applying Same
CN102643500A (zh) * 2012-04-01 2012-08-22 哈尔滨工业大学 有机-无机纳米复合树脂及其制备方法
CN109852238A (zh) * 2019-01-09 2019-06-07 上海交通大学 一种可喷涂的硅橡胶基轻质耐烧蚀隔热涂料及其应用
CN114133774A (zh) * 2021-12-30 2022-03-04 北京大学 一种无机硅树脂/玄武岩纤维复合耐高温涂料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878520A2 (de) * 1997-05-12 1998-11-18 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Zusammensetzung für hochtemperaturfeste, pyrolitisch keramisierende Beschichtungen
US20120094036A1 (en) * 2009-06-08 2012-04-19 Ocellus, Inc. Coating Composition for Thermal Protection on Substrates, Processes for Manufacturing, and Methods of Applying Same
CN102643500A (zh) * 2012-04-01 2012-08-22 哈尔滨工业大学 有机-无机纳米复合树脂及其制备方法
CN109852238A (zh) * 2019-01-09 2019-06-07 上海交通大学 一种可喷涂的硅橡胶基轻质耐烧蚀隔热涂料及其应用
CN114133774A (zh) * 2021-12-30 2022-03-04 北京大学 一种无机硅树脂/玄武岩纤维复合耐高温涂料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925438A (zh) * 2022-11-02 2023-04-07 南大恩洁优环境技术(江苏)股份公司 一种rto用耐高温抗腐蚀复合涂层的制备方法
CN115925438B (zh) * 2022-11-02 2023-10-13 南大恩洁优环境技术(江苏)股份公司 一种rto用耐高温抗腐蚀复合涂层的制备方法
CN115851127A (zh) * 2022-11-30 2023-03-28 湖南弘辉科技有限公司 一种弹翼耐高温隔热涂层及其制备方法、弹翼
CN115851127B (zh) * 2022-11-30 2023-08-25 湖南弘辉科技有限公司 一种弹翼耐高温隔热涂层及其制备方法、弹翼
CN117902895A (zh) * 2024-03-15 2024-04-19 中南大学 一种耐烧蚀防隔热一体化硼改性磷酸盐材料及其制备方法
CN117902895B (zh) * 2024-03-15 2024-06-11 中南大学 一种耐烧蚀防隔热一体化硼改性磷酸盐材料及其制备方法

Also Published As

Publication number Publication date
CN115044233B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN115044233B (zh) 一种抗高能激光烧蚀自愈合涂层及其制备方法
CN110819228B (zh) 隔热耐烧蚀可维护修补剂及涂层两用浆料、制备方法及应用
CN110479564A (zh) 一种原位陶瓷化耐高温隔热涂层的制备及工艺
CN111534131A (zh) 一种保温涂料及其制备方法
CN103755352B (zh) 一种多孔BN/Si3N4复合陶瓷封孔层的制备方法
CN110218102A (zh) 疏水型SiO2f/SiO2透波材料及其制备方法
Tang et al. Preparation of carbon fiber-reinforced SiC ceramics by stereolithography and secondary silicon infiltration
CN102746032B (zh) 一种碳纤维增韧碳化硅基复合材料中温1000~1400℃涂层的修补方法
CN110241616B (zh) 一种增强氧化铝柔性纤维性能的方法
CN109665866B (zh) 一种c/c飞机刹车材料中低温450~1100℃涂层的外场修复方法
CN113026369B (zh) 一种可瓷化涂层包覆纤维及其制备方法和应用
JP2007308544A (ja) 低誘電率低屈折率ナノコンポジット材料
CN113968738A (zh) 一种用于增材制造的陶瓷先驱体浆料和增材制造工艺
CN111217620B (zh) 纳米多孔隔热材料基体表面耐高温涂层、制备方法及基体
Chang et al. Mechanical properties and thermal oxygen corrosion behavior of Al2O3f-CF hybrid fiber reinforced ceramicizable phenolic resin matrix composites
CN114479602B (zh) 一种气凝胶表面缺陷的修补涂料及其制备方法与应用
CN116144239A (zh) 一种酚醛树脂基热防护涂层及其制备方法
CN114231061A (zh) 一种改性硅溶胶无机涂料及制备方法、使用方法
KR102544790B1 (ko) 자동차 전장 부품용 전자파 차폐 코팅제 조성물 및 이의 제조방법
CN112341000B (zh) 基于激光熔覆方法的炭/炭复合材料SiC涂层修复用改性玻璃材料及制备和使用方法
CN113943173A (zh) 一种修补涂料以及复合材料表面修补方法
CN113831145A (zh) 一种抗氧化的纤维增强硅硼氮复合材料及其制备方法和应用
CN109486186B (zh) 环氧改性氰酸酯预聚料
CN111662579A (zh) 一种陶瓷基底用发热涂层材料及其制备方法
CN114736634B (zh) 一种用于wdm封装的粘结剂及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant