CN115044041B - 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法 - Google Patents

一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法 Download PDF

Info

Publication number
CN115044041B
CN115044041B CN202210817603.5A CN202210817603A CN115044041B CN 115044041 B CN115044041 B CN 115044041B CN 202210817603 A CN202210817603 A CN 202210817603A CN 115044041 B CN115044041 B CN 115044041B
Authority
CN
China
Prior art keywords
bnns
pda
boron nitride
composite material
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210817603.5A
Other languages
English (en)
Other versions
CN115044041A (zh
Inventor
夏茹
兰慧雅
伍斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210817603.5A priority Critical patent/CN115044041B/zh
Publication of CN115044041A publication Critical patent/CN115044041A/zh
Application granted granted Critical
Publication of CN115044041B publication Critical patent/CN115044041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法,其是:首先通过超声剥离氮化硼法得到氮化硼纳米片BNNS;然后将多巴胺与BNNS通过原位聚合反应,得到聚多巴胺非共价改性氮化硼纳米片导热填料PDA@BNNS;最后通过原位聚合法与化学亚胺法,制备以聚酰亚胺为基体、以PDA@BNNS为填料的聚多巴胺@氮化硼/聚酰亚胺导热复合材料PDA@BNNS/PI。本发明的方法可以将羧基封端的聚酰胺酸与功能化氮化硼纳米片之间通过C‑N‑C键相连,通过增强氮化硼纳米片与PI基体的相容性,从而在刮膜过程中实现更好的取向,进而提高复合材料的热导率。

Description

一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法
技术领域
本发明涉及导热高分子复合材料技术领域,具体涉及一种聚酰亚胺基改性氮化硼纳米片导热复合材料。
背景技术
随着现代电子学的快速发展,电子元件逐渐向功能化、小型化、高频化方向发展,由此带来的热积累问题成为目前影响效率、可靠性甚至造成部件损坏的严重问题的主要因素之一。因此通过新材料来应对紧迫的热管理挑战的需求比以往任何时候都要大。聚合物基复合材料由于其低成本、重量轻、可回收性、良好的工艺性能和优异的稳定性能等优点,成为具有增强导热性能的主流材料。它不仅具有良好的散热能力,还保持了理想的电绝缘和良好的电介质和机械性能。氮化硼是一种隔电、导热的陶瓷填料,是制备介电、导热复合膜的理想候选材料。因氮化硼本身层数较多,且与聚合物基体之间界面亲和力较差。导热填料改性是调控基体与填料之间的相容性的有效手段,因此需要对氮化硼进行剥离与改性。
基体与填料之间可以通过以下两种方式链接:共价键与非共价作用。相比于非共价作用力,共价键可以使填料与基体结合的作用力更强,显著降低填料与基体之间声子散射效应,从而提高复合材料的导热性能。
发明内容
基于上述现有技术所存在的问题,本发明提供一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法,旨在提高复合材料的导热性能。
本发明为实现目的,采用如下技术方案:
本发明公开了一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法,其特点在于:首先通过超声剥离氮化硼法得到氮化硼纳米片,记为BNNS;然后将多巴胺(DA)与BNNS通过原位聚合反应,得到聚多巴胺(PDA)改性氮化硼纳米片导热填料,记为PDA@BNNS;最后通过原位聚合法与化学亚胺法,制备以聚酰亚胺为基体、以PDA@BNNS为填料的聚多巴胺@氮化硼/聚酰亚胺导热复合材料,记为PDA@BNNS/PI。具体包括如下步骤:
步骤1、BNNS的制备
将1.2~1.6g h-BN、400mL去离子水和1.2~1.6g氧化锆磨球(直径:0.15/0.30mm=0.6~0.8/0.6~0.8g)放入溶剂瓶中进行超声,离心,所得产物经去离子水洗涤、60℃下干燥,得到BNNS;
步骤2、PDA@BNNS的合成
将0.2~0.25g BNNS放入20~25mL pH=8.5的Tris-HCl缓冲液中,搅拌均匀后,加入30~35mg多巴胺,然后搅拌14~16h,所得产物用乙醇离心洗涤以消除残留的多巴胺(DA)与聚多巴胺,最后在60℃下干燥,得到PDA@BNNS粉末;
步骤3、PDA@BNNS/PAA/PI的合成
在氮气气氛下,向三颈烧瓶中加入0.5940~0.5950g 4,4-二氨基二苯甲烷和8.5~9.5mLN,N二甲基甲酰胺并溶解,加入PDA@BNNS并搅拌1~2h,在冰水浴下搅拌5~10min,然后加入0.9000~0.9010g 3,3’-4,4’-联苯四甲酸二酐和0.4~0.5g分子筛,在冰水浴中搅拌15~20min,得到PDA@BNNS/PAA溶液;随后加入0.15~0.2mL三乙胺和0.08~0.1mL吡啶的混合溶液,得到PDA@BNNS/PAA/PI溶液;
步骤4、PDA@BNNS/PI的合成
将步骤3所得PDA@BNNS/PAA/PI溶液浇注在干净的玻璃基板上,用刮刀进行涂层,并在60~70℃下干燥45~60min;最后通过梯度热亚胺化,即制得PDA@BNNS/PI导热复合材料。
进一步地,步骤2中,所述Tris-HCl缓冲液的配置方法为:在室温(25℃)下,将50mL摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液与14.7mL摩尔浓度为0.1mol/L的盐酸标准溶液混匀并稀释至100mL,得到pH=8.5的Tris-HCl缓冲液。
进一步地,步骤3中,PDA@BNNS的加入量占4,4-二氨基二苯甲烷、3,3’-4,4’-联苯四甲酸二酐与PDA@BNNS总质量的5~15wt%。
进一步地,步骤4中,所述梯度热亚胺化的程序为:首先在120℃加热1h,然后在200℃加热1h,最后在250℃加热1h。
本发明还公开了按照上述制备方法所获得的PDA@BNNS/PI导热复合材料。
本发明的有益效果体现在:
1、本发明在复合材料内部通过共价键构建出氮化硼纳米片与聚酰亚胺热传递路径,得益于功能化物质聚多巴胺与聚酰亚胺之间形成的C-N-C键的作用,大大增强了氮化硼纳米片与基体的热传递性能。同时,聚多巴胺与氮化硼纳米片之间形成的π-π非共价作用力也有效提升了填料的分散性,完善复合材料整体导热性能。
2、本发明的方法可以将羧基封端的PAA(聚酰胺酸)与功能化氮化硼纳米片之间通过C-N-C键相连,通过增强氮化硼纳米片与PI基体的相容性,从而在刮膜过程中实现更好的取向,进而提高复合材料的热导率。
附图说明
图1为本发明功能化氮化硼纳米片与聚酰胺酸的反应机理图,其中(a)为多巴胺聚合为聚多巴胺的过程,(b)为多巴胺改性氮化硼纳米片后与聚酰胺酸的反应机理图,(c)为聚酰胺酸部分亚胺化为聚酰亚胺的过程。
图2为本发明实施例1所用BN原料和所得BNNS的SEM图,其中(a)为BN、(b)为BNNS。
图3为本发明对比例3和实施例3所得复合材料的SEM图,其中(a)为对比例3所得BNNS/PI、(b)为实施例3所得PDA@BNNS/PI。
图4为本发明各实施例和对比例所得复合材料的导热系数图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
本实施例按如下步骤制备5wt%PDA@BNNS/PI复合材料:
步骤1、BNNS的制备
将1.2gh-BN、400mL去离子水和1.2g氧化锆磨球(直径0.15mm和直径0.30mm各0.6g)放入500mL溶剂瓶中进行超声48h,离心,所得产物经去离子水洗涤、60℃下干燥,得到BNNS。
步骤2、Tris-HCl(pH=8.5)缓冲液的制备
在室温(25℃)下,将50mL摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液与14.7mL摩尔浓度为0.1mol/L的盐酸标准溶液混匀并稀释至100mL,得到pH=8.5的Tris-HCl缓冲液。
步骤3、PDA@BNNS的合成
将0.2gBNNS放入20mL的Tris-HCl(PH=8.5)缓冲液中,搅拌均匀后,加入30mg多巴胺,然后搅拌14h,所得产物用乙醇离心洗涤3次以消除残留的多巴胺与聚多巴胺,最后在60℃下干燥,得到浅灰色PDA@BNNS粉末。
步骤4、PDA@BNNS/PAA/PI的合成
在氮气气氛下,向三颈烧瓶中加入0.5948g4,4-二氨基二苯甲烷和9mLN,N二甲基甲酰胺并溶解,按照5wt%的质量分数(占4,4-二氨基二苯甲烷、3,3’-4,4’-联苯四甲酸二酐与PDA@BNNS总质量的5wt%)加入PDA@BNNS并搅拌1.5h,在冰水浴下搅拌5min,然后加入0.9003g 3,3’-4,4’-联苯四甲酸二酐和0.42g分子筛,在冰水浴中搅拌15min,得到具有一定粘度的PDA@BNNS/PAA溶液;随后加入0.2mL三乙胺和0.1mL吡啶,得到具有一定粘度的PDA@BNNS/PAA/PI溶液。
步骤5、PDA@BNNS/PI的合成
将得到的PDA@BNNS/PAA/PI溶液浇注在干净的玻璃基板上,用刮刀进行涂层,并在60℃下干燥50min;最后通过梯度热亚胺化(首先在120℃加热1h,然后在200℃加热1h,最后在250℃加热1h),即制得PDA@BNNS/PI导热复合薄膜。
实施例2
本实施例按实施例1相同的方法制备10wt%PDA@BNNS/PI复合材料,区别仅在于步骤4中按照10wt%的质量分数加入PDA@BNNS。
实施例3
本实施例按实施例1相同的方法制备15wt%PDA@BNNS/PI复合材料,区别仅在于步骤4中按照15wt%的质量分数加入PDA@BNNS。
对比例1
本对比例按如下步骤制备5wt%BNNS/PI复合材料:
步骤1、BNNS的制备
将1.2gh-BN、400mL去离子水和1.2g氧化锆磨球(直径0.15mm和直径0.30mm各0.6g)放入500mL溶剂瓶中进行超声48h,离心,所得产物经去离子水洗涤、60℃下干燥,得到BNNS。
步骤2、BNNS/PAA/PI复合材料的制备
在氮气气氛下,向三颈烧瓶中加入0.5948g4,4-二氨基二苯甲烷和9mLN,N二甲基甲酰胺并溶解,按照5wt%的质量分数(占4,4-二氨基二苯甲烷、3,3’-4,4’-联苯四甲酸二酐与BNNS总质量的5wt%)加入BNNS并搅拌1.5h,在冰水浴下搅拌5min,然后加入0.9003g3,3’-4,4’-联苯四甲酸二酐和0.42g分子筛,在冰水浴中搅拌15min,得到具有一定粘度的BNNS/PAA溶液;随后加入0.2mL三乙胺和0.1mL吡啶,得到具有一定粘度的BNNS/PAA/PI溶液。
步骤3、BNNS/PI的合成
将得到的BNNS/PAA/PI溶液浇注在干净的玻璃基板上,用刮刀进行涂层,并在60℃下干燥50min;最后通过梯度热亚胺化(首先在120℃加热1h,然后在200℃加热1h,最后在250℃加热1h),即制得BNNS/PI导热复合薄膜。
对比例2
本对比例按对比例1相同的方法制备10wt%BNNS/PI复合材料,区别仅在于步骤2中按照10wt%的质量分数加入GNS。
对比例3
本对比例按对比例1相同的方法制备15wt%BNNS/PI复合材料,区别仅在于步骤2中按照15wt%的质量分数加入BNNS。
图1为聚多巴胺改性BNNS与聚酰胺酸的反应机理图,从(a)图上可以看出多巴胺聚合为聚多巴胺的过程并与BNNS之间通过π-π非共价作用(b)链接。图(c)描述了PDA@BNNS与聚酰胺酸通过化学亚胺法反应的过程。PDA@BNNS的功能化物质聚多巴胺中的N-H基团可以通过化学亚胺法与羧基封端的聚酰胺酸(PAA)反应,并使得聚多巴胺与聚酰胺酸(PAA)端部的羧基之间通过C-N-C键进行桥接。
图2(a)、(b)分别为BN超声剥离为BNNS前后的SEM图,从图上可以看到:剥离前的氮化硼是氮化硼纳米片层层堆叠在一起,剥离后可以观察到层数较少的氮化硼纳米片,这说明通过超声剥离可以将层数较多的氮化硼剥离为层数较少的氮化硼纳米片。
图3(a)、(b)分别为对比例3所得BNNS/PI与实施例3所得PDA@BNNS/PI的断面SEM图。从图中可以看出PDA@BNNS与PI之间有着更好的相容性,在刮膜过程中形成了比较好的取向。
图4为各实施例与对比例热导率测试结果,从图中可以看到:随着填料含量增加,复合材料热导率呈递增趋势,这是因为填料含量越高导热路径越密集,并且在相同填料下,PDA@BNNS/PI复合材料导热系数均高于BNNS/PI复合材料,这说明功能化物质聚多巴胺与聚酰亚胺之间形成的C-N-C键的作用,大大增强了氮化硼纳米片与基体的热传递性能。同时,聚多巴胺与氮化硼纳米片之间形成的共价键也有效提升了填料的分散性,完善了复合材料的整体导热性能。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法,其特征在于:首先通过超声剥离氮化硼法得到氮化硼纳米片,记为BNNS;然后将多巴胺与BNNS通过原位聚合反应,得到聚多巴胺改性氮化硼纳米片导热填料,记为PDA@BNNS;最后通过原位聚合法与化学亚胺法,制备以聚酰亚胺为基体、以PDA@BNNS为填料的聚多巴胺@氮化硼/聚酰亚胺导热复合材料,记为PDA@BNNS/PI;具体包括如下步骤:
步骤1、BNNS的制备
将1.2~1.6g h-BN、400mL去离子水和1.2~1.6g氧化锆磨球放入溶剂瓶中进行超声,离心,所得产物经去离子水洗涤、60oC下干燥,得到BNNS;
步骤2、PDA@BNNS的合成
将0.2~0.25g BNNS放入20~25mL pH=8.5的Tris-HCl缓冲液中,搅拌均匀后,加入30~35mg多巴胺,然后搅拌14~16h,所得产物用乙醇离心洗涤以消除残留的多巴胺与聚多巴胺,最后在60oC下干燥,得到PDA@BNNS粉末;
所述Tris-HCl缓冲液的配置方法为:在室温下,将50mL摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液与14.7mL摩尔浓度为0.1mol/L的盐酸标准溶液混匀并稀释至100mL,得到pH=8.5的Tris-HCl缓冲液;
步骤3、PDA@BNNS/PAA/PI的合成
在氮气气氛下,向三颈烧瓶中加入0.5940~0.5950g 4,4-二氨基二苯甲烷和8.5~9.5mLN,N二甲基甲酰胺并溶解,加入PDA@BNNS并搅拌1~2h,在冰水浴下搅拌5~10min,然后加入0.9000~0.9010g 3,3’-4,4’-联苯四甲酸二酐和0.4~0.5g分子筛,在冰水浴中搅拌15~20min,得到PDA@BNNS/PAA溶液;随后加入0.15~0.2mL三乙胺和0.08~0.1mL吡啶的混合溶液,得到PDA@BNNS/PAA/PI溶液;其中,PDA@BNNS的加入量占4,4-二氨基二苯甲烷、3,3’-4,4’-联苯四甲酸二酐与PDA@BNNS总质量的5~15wt%;
步骤4、PDA@BNNS/PI的合成
将步骤3所得PDA@BNNS/PAA/PI溶液浇注在干净的玻璃基板上,用刮刀进行涂层,并在60~70°C下干燥45~60min;最后通过梯度热亚胺化,即制得PDA@BNNS/PI导热复合材料;所述梯度热亚胺化的程序为:首先在120°C加热1h,然后在200°C加热1h,最后在250°C加热1h。
2.一种权利要求1所述制备方法所获得的聚酰亚胺基改性氮化硼纳米片导热复合材料。
CN202210817603.5A 2022-07-12 2022-07-12 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法 Active CN115044041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210817603.5A CN115044041B (zh) 2022-07-12 2022-07-12 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210817603.5A CN115044041B (zh) 2022-07-12 2022-07-12 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN115044041A CN115044041A (zh) 2022-09-13
CN115044041B true CN115044041B (zh) 2024-01-26

Family

ID=83164891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210817603.5A Active CN115044041B (zh) 2022-07-12 2022-07-12 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115044041B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080209A (zh) * 2022-09-21 2023-05-09 江苏耀鸿电子有限公司 一种氮化硼微粉增强的高韧bt树脂基覆铜板及其制备方法
CN115637045A (zh) * 2022-11-01 2023-01-24 合肥工业大学 一种导热电绝缘聚酰亚胺薄膜
CN116176075A (zh) * 2023-02-06 2023-05-30 北京化工大学 一种具有三明治结构的聚合物基导热复合材料制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713716A (zh) * 2019-11-23 2020-01-21 西北工业大学 一种高导热聚多巴胺修饰氮化硼/聚酰亚胺复合材料及其制备方法
CN112812341A (zh) * 2021-02-09 2021-05-18 桂林电子科技大学 一种高导热四针状结构复合微粒/聚酰亚胺薄膜及其制备方法
CN112876741A (zh) * 2021-01-19 2021-06-01 湖南柯盛新材料有限公司 一种氮化硼异质填料及其制备方法、纤维增强环氧树脂导热复合材料及其制备方法和应用
CN113698736A (zh) * 2021-10-09 2021-11-26 深圳市鑫奕龙达电子有限公司 一种无卤阻燃导热电线绝缘层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713716A (zh) * 2019-11-23 2020-01-21 西北工业大学 一种高导热聚多巴胺修饰氮化硼/聚酰亚胺复合材料及其制备方法
CN112876741A (zh) * 2021-01-19 2021-06-01 湖南柯盛新材料有限公司 一种氮化硼异质填料及其制备方法、纤维增强环氧树脂导热复合材料及其制备方法和应用
CN112812341A (zh) * 2021-02-09 2021-05-18 桂林电子科技大学 一种高导热四针状结构复合微粒/聚酰亚胺薄膜及其制备方法
CN113698736A (zh) * 2021-10-09 2021-11-26 深圳市鑫奕龙达电子有限公司 一种无卤阻燃导热电线绝缘层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Covalently linked polydopamine-modified boron nitride nanosheets/ polyimide composite fibers with enhanced heat diffusion and mechanical behaviors;Yuting Fang;Composites Part B;1-11 *
Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure;Dongliang Ding;Ceramics International;1-10 *

Also Published As

Publication number Publication date
CN115044041A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN115044041B (zh) 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法
CN103524767B (zh) 一种低线胀系数的新型电子级聚酰亚胺薄膜及其制造方法
CN101955631B (zh) 聚苯胺改性多壁碳纳米管/环氧树脂复合材料的制备方法
CN101812183B (zh) 含无机纳米粉体的聚酰亚胺多层复合膜的制备方法
CN109942851B (zh) 一种低介电常数聚酰亚胺杂化薄膜及应用
CN110218321B (zh) 一种聚酰胺酸及其制备方法、聚酰亚胺导热薄膜及其制备方法
CN112876680B (zh) 一种聚酰胺酸浆料及其制备方法以及聚酰亚胺薄膜
JP4748292B2 (ja) フィルム状電子部品用接着剤及び電子部品
CN109438735B (zh) 一种高导热聚酰亚胺基复合薄膜及其制备方法
TW201006868A (en) Linear precursor of polyimide, linear polyimide and thermal cured material thereof, and processes for producing them
CN109251334B (zh) 一种高透光和低介电氟化石墨烯/聚酰亚胺复合薄膜的制备方法
CN108384235A (zh) 一种高导热聚酰亚胺薄膜及其制备方法
CN105601923A (zh) 含氟软-硬嵌段聚酰亚胺薄膜及制备方法、用途
Zhang et al. Surface modified and gradation-mixed Al 2 O 3 as an effective filler for the polyphenylene oxide (PPO) insulative layer in copper clad laminates
Xu et al. Preparation and properties of glass cloth-reinforced meltable thermoplastic polyimide composites for microelectronic packaging substrates
CN111925540B (zh) 高介电常数的纳米钙钛矿CsPbX3/聚酰亚胺复合膜及其制备方法
CN115044204B (zh) 一种低介电全有机交联聚酰亚胺薄膜的制备方法
CN116162407A (zh) 一种耐高压、耐电晕聚酰亚胺绝缘漆材料及其制备方法
CN109627472A (zh) 一种高导热高拉伸弹性模量聚酰亚胺薄膜及其制备方法
WO2019127389A1 (zh) 环氧树脂组合物、预浸料、层压板和印刷电路板
CN116766712B (zh) 一种基于环氧树脂的ic封装基板及其加工工艺
CN113061338A (zh) 聚酰胺酸组合物、聚酰亚胺组合物、聚酰亚胺薄膜及聚酰亚胺覆铜板
CN103050616B (zh) 复合式导热铜箔基板
CN114605658A (zh) 一种聚酰亚胺基改性石墨烯导热复合材料的制备方法
Zhou et al. In-situ polymerisation of carbon nanotubes/blended polyimide composites for flexible thermal conductive special-shaped structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant