CN115000209B - 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用 - Google Patents

一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用 Download PDF

Info

Publication number
CN115000209B
CN115000209B CN202210540492.8A CN202210540492A CN115000209B CN 115000209 B CN115000209 B CN 115000209B CN 202210540492 A CN202210540492 A CN 202210540492A CN 115000209 B CN115000209 B CN 115000209B
Authority
CN
China
Prior art keywords
inorganic perovskite
layer
fluorinated
sno
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210540492.8A
Other languages
English (en)
Other versions
CN115000209A (zh
Inventor
台启东
张祥
张丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202210540492.8A priority Critical patent/CN115000209B/zh
Publication of CN115000209A publication Critical patent/CN115000209A/zh
Application granted granted Critical
Publication of CN115000209B publication Critical patent/CN115000209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及新型太阳能电池的技术领域,具体涉及一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用,所述电池结构从下到上依次为透明导电衬底、电子传输层、氟化界面层、无机钙钛矿吸光层和碳电极;所述氟化界面层为三氟乙酸钾。本发明使用三氟乙酸钾作为低温碳基无机钙钛矿太阳能电池中电子传输层与无机钙钛矿吸光层之间的氟化界面层,优化了电子传输层和无机钙钛矿吸光层的薄膜质量,降低了两者之间的界面能级差,抑制了电荷非辐射复合,促进了电子的传输和提取,对于提高低温碳基无机钙钛矿太阳能电池的光电转换效率和稳定性具有重要意义。

Description

一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其 制备方法及应用
技术领域
本发明涉及新型太阳能电池的技术领域,具体涉及一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用。
背景技术
2009年发展至今,有机-无机杂化钙钛矿太阳能电池的光电转换效率(PCE)从最初的3.8%提高到认证的25.7%。然而,由于有机阳离子的分解和挥发,杂化钙钛矿在高温、潮湿等恶劣环境下不稳定。CsPbX3(X=I、Br或混合卤化物)无机钙钛矿可以解决上述问题并取得了一些进展。不幸的是,高效的无机钙钛矿太阳能电池普遍使用有机空穴传输层(HTL)和贵金属电极(Au或Ag)。除了价格昂贵,HTL中的吸湿性添加剂加速了器件退化。金属电极因离子迁移也会受到腐蚀。为了克服上述不稳定性因素,无HTL的碳基无机钙钛矿太阳能电池脱颖而出。除了成本低、工艺简单和功函数合适外,疏水碳电极还可以防止无机钙钛矿被水分侵蚀。因此,碳基无机钙钛矿太阳能电池表现出巨大的发展潜力。
由于具有合适的带隙和相结构,CsPbI2Br无机钙钛矿可以在PCE和稳定性之间取得平衡,遗憾地是,其通常需要高温(>250℃)制备,这不仅增加了能源消耗和生产成本,而且不适用柔性基底。更重要的是碳基CsPbI2Br无机钙钛矿太阳能电池的PCE远低于基于金属电极/HTL的器件,这主要归因于较差的薄膜质量和较大的界面能级差。
界面修饰是提高薄膜质量和优化界面能级排列的有效策略之一。目前,大部分研究只关注CsPbI2Br和碳电极之间的界面,却忽视了电子传输层与CsPbI2Br之间的界面。电子传输层表面富含氧空位等缺陷,其造成的非辐射复合损失远高于顶部界面。另外,钙钛矿薄膜的成核和结晶很大程度上受底部界面性质的影响,比如粗糙度,润湿性等。
基于以上考虑,特提出此发明。
发明内容
本发明的目的之一在于提供一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,使用三氟乙酸钾(KTFA)作为电子传输层与无机钙钛矿吸光层之间的氟化界面层,优化了电子传输层和无机钙钛矿吸光层的薄膜质量,降低了两者之间的界面能级差,抑制了电荷非辐射复合,促进了电子的传输和提取。
本发明的目的之二在于提供一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,制备工艺简便,易于调节。
本发明的目的之三在于提供一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的应用。
本发明实现目的之一所采用的方案是:一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,所述电池结构从下到上依次为透明导电衬底、电子传输层、氟化界面层、无机钙钛矿吸光层和碳电极;所述氟化界面层为三氟乙酸钾。
优选地,所述透明导电衬底为ITO导电玻璃或FTO导电玻璃。
优选地,所述电子传输层为SnO2层;所述无机钙钛矿吸光层为CsPbI2Br。
本发明实现目的之二所采用的方案是:一种所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,包括以下步骤:
S1:配制SnO2前驱体分散液,在清洁后的透明导电衬底表面旋涂SnO2前驱体分散液,退火得到SnO2电子传输层;
S2:配制三氟乙酸钾前驱体溶液,在步骤S1得到的SnO2电子传输层表面旋涂三氟乙酸钾前驱体溶液,退火得到三氟乙酸钾氟化界面层;
S3:配制CsPbI2Br前驱体溶液,在步骤S2得到的三氟乙酸钾氟化界面层表面旋涂CsPbI2Br前驱体溶液,退火得到CsPbI2Br无机钙钛矿吸光层;
S4:在步骤S3得到的CsPbI2Br无机钙钛矿吸光层表面涂布碳电极,退火得到氟化界面层修饰的低温碳基无机钙钛矿太阳能电池。
优选地,所述步骤S1在空气环境中完成;所述步骤S2、S3和S4在惰性气氛中完成。
优选地,所述步骤S1中,具体操作方法如下:将SnO2纳米颗粒或胶体分散在水中,搅拌均匀,得到浓度为2wt%-10wt%的SnO2前驱体分散液,在透明导电衬底表面旋涂SnO2前驱体分散液,300-500rpm旋转3-5s,2000-4000rpm旋转20-40s,40-150℃退火30-60min得到SnO2电子传输层。
优选地,所述步骤S2中,具体操作方法如下:将三氟乙酸钾添加到乙酸乙酯溶剂中,浓度为0.1-1.0mg/ml,搅拌至完全溶解,在SnO2电子传输层表面旋涂三氟乙酸钾前驱体溶液,300-500rpm旋转3-5s,2000-4000rpm旋转20-40s,40-120℃退火5-15min得到三氟乙酸钾氟化界面层。
优选地,所述步骤S2中,旋涂三氟乙酸钾前驱体溶液前,先采用紫外臭氧预处理SnO2电子传输层5-15min。
优选地,所述步骤S3中,具体操作如下:将CsI,PbI2(DMSO)络合物,PbBr2(DMSO)络合物和Pb(Ac)2添加剂按照摩尔比1:0.5:0.5:0.02混合添加到体积比1:3-4的二甲基亚砜和二甲基甲酰胺混合溶剂中,摩尔浓度为0.9-1.1M,搅拌至完全溶解,得到CsPbI2Br前驱体溶液;在三氟乙酸钾氟化界面层表面旋涂CsPbI2Br前驱体溶液,1000-1500rpm旋转10-15s,3000-4000rpm旋转30-40s,在旋涂结束前的15-20s,滴加绿色反溶剂乙酸乙酯,110-130℃退火10-15min得到CsPbI2Br无机钙钛矿吸光层。
优选地,所述步骤S4中,90-120℃退火10-30min得到碳电极。
本发明实现目的之三所采用的方案是:一种所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池在太阳能电池领域的应用。
本发明具有以下优点和有益效果:
本发明使用三氟乙酸钾(KTFA)作为低温碳基无机钙钛矿太阳能电池中电子传输层与无机钙钛矿吸光层之间的氟化界面层,优化了电子传输层和无机钙钛矿吸光层的薄膜质量,降低了两者之间的界面能级差,抑制了电荷非辐射复合,促进了电子的传输和提取,对于提高低温碳基无机钙钛矿太阳能电池的PCE和稳定性具有重要意义。
本发明的制备方法,采用三氟乙酸钾氟化界面层修饰电子传输层与无机钙钛矿吸光层之间的界面,使得氟化界面层修饰的低温碳基无机钙钛矿太阳能电池获得了12.68%的光电转换效率(PCE)。同时,器件湿度稳定性也有所提升。本制备工艺简便,易于调节,适用于工业化生产。
本发明氟化界面层修饰的低温碳基无机钙钛矿太阳能电池在太阳能电池领域的应用。
附图说明
图1为本发明实施例1-5获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构示意图;
图2为本发明对比例和实施例1中SnO2电子传输层的X射线光电子能谱(XPS)(O1s)光谱图;
图3为本发明对比例和实施例1中SnO2电子传输层的原子力显微镜(AFM)和钙钛矿前驱体溶液接触角图;
图4为本发明对比例和实施例1中SnO2电子传输层的紫外光电子能谱(UPS)光谱和能级结构示意图;
图5为本发明对比例和实施例1中CsPbI2Br无机钙钛矿吸光层的表面和截面扫描电子显微镜(SEM)图;
图6为本发明对比例和实施例1中CsPbI2Br无机钙钛矿吸光层的时间分辨光致发光(TRPL)图;
图7为本发明对比例和实施例1中低温碳基无机钙钛矿太阳能电池的电流密度-电压(J-V)特性曲线;
图8为本发明对比例和实施例1中低温碳基无机钙钛矿太阳能电池的湿度稳定性图。
具体实施方式
为更好地理解本发明,以下实施例和对比例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例和对比例。本领域技术人员在没有做出创造性劳动的前提下所作的改变、替换、修饰等都属于本发明的保护范围。
在下文描述中,出现诸如术语“左”、“右”、“内”、“外”、“上”、“下”等指示方位或者位置关系仅是为了方便描述实施例和对比例和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
本实施例制备了一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,电池结构从下到上依次为透明导电衬底、电子传输层、氟化界面层、无机钙钛矿吸光层和碳电极。制备方法具体包括如下步骤:
S1:清洗透明导电衬底;
本实施例透明导电衬底为ITO导电玻璃;
将ITO导电玻璃依次用洗涤剂、去离子水、丙酮、异丙醇和无水乙醇各超声清洗20min,氮气枪干燥处理后留存备用。
S2:制备电子传输层;
本实施例电子传输层为SnO2
S2.1:配制SnO2前驱体分散液:将SnO2胶体(产品规格:15%,厂家:Alfa Aesar(阿法埃莎))和去离子水混合,在搅拌台上常温搅拌30min得到浓度为2.67wt%SnO2前驱体分散液;
S2.2:制备SnO2电子传输层:将SnO2前驱体分散液旋涂在经过紫外臭氧预处理6min的ITO导电玻璃上,500rpm旋转3s,4000rpm旋转30s,150℃退火30min得到SnO2电子传输层。
S3:制备氟化界面层;
本实施例氟化界面层为KTFA;
S3.1:配制KTFA前驱体溶液:将0.6mg KTFA添加到1ml乙酸乙酯溶剂中,在搅拌台上常温搅拌至完全溶解后用0.22μm PTFE过滤器过滤;
S3.2:制备KTFA氟化界面层:将KTFA前驱体溶液旋涂在经过紫外臭氧预处理15min的SnO2电子传输层上,500rpm旋转3s,3000rpm旋转30s,90℃退火10min得到KTFA氟化界面层。
S4:制备无机钙钛矿吸光层;
本实施例无机钙钛矿吸光层为CsPbI2Br;
S4.1:合成PbI2(DMSO)络合物:将1g PbI2添加到3ml DMSO(二甲基亚砜)中,在搅拌台上70℃搅拌至完全溶解后,用0.22μm PTFE过滤器过滤,随后用玻璃棒对其进行连续搅拌,同时逐滴滴加总体积为20ml的萃取溶剂异丙醇,滴加过程中产生的白色沉淀析出完全后,对其进行抽滤。抽滤完成后,白色沉淀在室温下放置1h,之后将其放入真空干燥箱,65℃真空干燥36h得到PbI2(DMSO)络合物;
S4.2:合成PbBr2(DMSO)络合物:按照实施例1的步骤S4.1合成PbBr2(DMSO)络合物,区别仅在于将PbI2调整为PbBr2;其他步骤不变;
S4.3:配制CsPbI2Br前驱体溶液:将CsI,PbI2(DMSO)络合物,PbBr2(DMSO)络合物和Pb(Ac)2添加剂按照摩尔比1:0.5:0.5:0.02混合添加到体积比1:4的DMSO和DMF混合溶剂中,摩尔浓度为0.9M,在搅拌台上70℃搅拌至完全溶解后,用0.22μm PTFE过滤器过滤;
S4.4:制备CsPbI2Br无机钙钛矿吸光层:将CsPbI2Br前驱体溶液旋涂在KTFA氟化界面层上,1000rpm旋转10s,4000rpm旋转40s,在结束前的20s,滴加150μl的绿色反溶剂乙酸乙酯,120℃退火10min得到CsPbI2Br无机钙钛矿吸光层。
S5:制备碳电极:采用刮刀涂布法在CsPbI2Br无机钙钛矿吸光层上刮涂商业化碳浆(厂家:Jujo Printing Supplies&Technology(Pinghu)Co.,Ltd.),120℃退火20min得到碳电极。
实施例1所述步骤S1和S2在空气环境(温度25℃,20%-30%相对湿度(RH))中完成;所述步骤S3,S4和S5在充满氮气的手套箱中完成。
实施例1获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/KTFA/CsPbI2Br/碳电极。
实施例2
本实施例按照实施例1的步骤制备氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,区别仅在于在步骤S3.2制备KTFA氟化界面层的过程中,将紫外臭氧预处理15min的SnO2电子传输层,调整为紫外臭氧预处理5min的SnO2电子传输层;其他步骤不变。
实施例2获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/KTFA/CsPbI2Br/碳电极。
实施例3
本实施例按照实施例1的步骤制备氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,区别仅在于在步骤S3.2制备KTFA氟化界面层的过程中,将3000rpm旋转30s,调整为4000rpm旋转30s;其他步骤不变。
实施例3获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/KTFA/CsPbI2Br/碳电极。
实施例4
本实施例按照实施例1的步骤制备氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,区别仅在于在步骤S3.2制备KTFA氟化界面层的过程中,将90℃退火10min,调整为40℃退火10min;其他步骤不变。
实施例4获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/KTFA/CsPbI2Br/碳电极。
实施例5
本实施例按照实施例1的步骤制备氟化界面层修饰的低温碳基无机钙钛矿太阳能电池,区别仅在于在步骤S3.2制备KTFA氟化界面层的过程中,将90℃退火10min,调整为90℃退火5min;其他步骤不变。
实施例5获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/KTFA/CsPbI2Br/碳电极。
上述5个实施例中,实施例1为优选实施例,标记为:With KTFA。
对比例
本对比例按照实施例1的步骤制备低温碳基无机钙钛矿太阳能电池,区别仅在于没有制备KTFA氟化界面层;其他步骤不变。
对比例获得的低温碳基无机钙钛矿太阳能电池的结构为:ITO/SnO2/CsPbI2Br/碳电极;
对比例标记为:Reference。
下面对上述实施例和对比例进行测试和分析:
图1为本发明实施例1-5获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的结构示意图,从下到上依次为透明导电衬底(ITO导电玻璃)、电子传输层(SnO2)、氟化界面层(KTFA)、无机钙钛矿吸光层(CsPbI2Br)和碳电极。
图2为本发明对比例和实施例1中SnO2电子传输层的XPS(O 1s)光谱图。
图2测试样品的结构为:ITO/SnO2(对比例)和ITO/SnO2/KTFA(实施例1)。
对比图2两种样品可以看出,经过KTFA界面修饰,SnO2电子传输层中晶格氧(OL)的比例增多,氧缺陷(OV+OOH)的比例降低。该结果表明KTFA界面修饰可以钝化SnO2表面氧缺陷,进而提高SnO2电子传输层的薄膜质量。
图3为本发明对比例和实施例1中SnO2电子传输层的AFM(图3a-b)和钙钛矿前驱体溶液接触角图(图3c-d)。
图3测试样品的结构为:ITO/SnO2(对比例)和ITO/SnO2/KTFA(实施例1)。
对比图3两种样品可以看出,经过KTFA界面修饰,SnO2电子传输层的粗糙度和接触角均有所降低,该结果有助于CsPbI2Br无机钙钛矿吸光层的成核和结晶。
为了表征KTFA对SnO2功函数(WF)的影响,测试了对比例和实施例1中SnO2电子传输层的UPS光谱,结果如图4a所示。
图4a测试样品的结构为:ITO/SnO2(对比例)和ITO/SnO2/KTFA(实施例1)。
图4b为本发明对比例和实施例1中SnO2电子传输层的能级结构示意图。
从图4中可以看出,经过KTFA界面修饰,SnO2电子传输层的WF降低。降低的界面能级差有助于抑制电荷非辐射复合,进而促进电子的传输和提取。
图5a-b为本发明对比例和实施例1中CsPbI2Br无机钙钛矿吸光层的表面SEM图。
图5a-b测试样品的结构为:ITO/SnO2/CsPbI2Br(对比例)和ITO/SnO2/KTFA/CsPbI2Br(实施例1)。
对比图5a-b两种样品可以看出,经过KTFA界面修饰,CsPbI2Br薄膜表面的针孔和裂纹明显减少,说明KTFA界面修饰有助于提高无机钙钛矿吸光层的薄膜质量。
图5c-d为本发明对比例和实施例1中CsPbI2Br无机钙钛矿吸光层的截面SEM图。
图5c-d测试样品的结构为:ITO/SnO2/CsPbI2Br(对比例)和ITO/SnO2/KTFA/CsPbI2Br(实施例1)。
对比图5c-d两种样品可以看出,经过KTFA界面修饰,CsPbI2Br薄膜与SnO2电子传输层的接触面更加紧密且无缝隙,这有助于电子的传输和提取。
图6为本发明对比例和实施例1中CsPbI2Br无机钙钛矿吸光层的TRPL图。TRPL的激发波长为:322nm。
图6测试样品的结构为:ITO/SnO2/CsPbI2Br(对比例)和ITO/SnO2/KTFA/CsPbI2Br(实施例1)。
对比图6两种样品可以看出,经过KTFA界面修饰,CsPbI2Br无机钙钛矿吸光层的载流子寿命衰减较快,这说明KTFA界面修饰促进了电子的传输和提取。
图7为本发明对比例和实施例1中低温碳基无机钙钛矿太阳能电池的J-V特性曲线。
图7测试条件为标准模拟太阳光AM 1.5(100mW/cm2),温度25℃,20-30%RH。
图7测试样品的结构为:ITO/SnO2/CsPbI2Br/碳电极(对比例)和ITO/SnO2/KTFA/CsPbI2Br/碳电极(实施例1)。
图7低温碳基无机钙钛矿太阳能电池的有效活性面积为:0.09cm2
图7内部表格为J-V特性曲线对应的各项光电性能参数,包括:开路电压(Voc)、短路电流密度(Jsc)、填充因子(FF)和PCE。
从图7可以看出,KTFA界面修饰的低温碳基无机钙钛矿太阳能电池的PCE为12.68%,高于对比例中Reference样品的10.21%。
提高的PCE主要归结于Voc、Jsc和FF的同时提高。
图8为本发明对比例和实施例1中低温碳基无机钙钛矿太阳能电池的湿度稳定性图。
图8测试条件为空气环境(温度25℃,20-30%RH),所有器件均未封装。
图8测试样品的结构为:ITO/SnO2/CsPbI2Br/碳电极(对比例)和ITO/SnO2/KTFA/CsPbI2Br/碳电极(实施例1)。
对比图8两种样品可以看出,老化50天后,KTFA界面修饰的低温碳基无机钙钛矿太阳能电池的湿度稳定性有所增加。
提升的湿度稳定性可以归因于SnO2和CsPbI2Br薄膜质量的提高。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (8)

1.一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于,所述电池的结构从下到上依次为透明导电衬底、电子传输层、氟化界面层、无机钙钛矿吸光层和碳电极;所述氟化界面层为三氟乙酸钾;
所述制备方法包括以下步骤:
S1:配制SnO2前驱体分散液,在清洁后的透明导电衬底表面旋涂SnO2前驱体分散液,退火得到SnO2电子传输层;
S2:配制三氟乙酸钾前驱体溶液,在步骤S1得到的SnO2电子传输层表面旋涂三氟乙酸钾前驱体溶液,退火得到三氟乙酸钾氟化界面层;
S3:配制CsPbI2Br前驱体溶液,在步骤S2得到的三氟乙酸钾氟化界面层表面旋涂CsPbI2Br前驱体溶液,退火得到CsPbI2Br无机钙钛矿吸光层;
S4:在步骤S3得到的CsPbI2Br无机钙钛矿吸光层表面涂布碳电极,退火得到氟化界面层修饰的低温碳基无机钙钛矿太阳能电池;
所述步骤S1中,40-150oC退火30-60min得到SnO2电子传输层;
所述步骤S2中,40-120oC退火5-15 min得到三氟乙酸钾氟化界面层;
所述步骤S3中,110-130oC退火10-15 min得到CsPbI2Br无机钙钛矿吸光层;
所述氟化界面层的加入降低了SnO2电子传输层表面的功函数,减少了CsPbI2Br薄膜表面的针孔和裂纹。
2.根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S1在空气环境中完成;所述步骤S2、S3和S4在惰性气氛中完成。
3. 根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S1中,具体操作方法如下:将SnO2纳米颗粒或胶体分散在水中,搅拌均匀,得到浓度为2wt%-10wt%的SnO2前驱体分散液,在透明导电衬底表面旋涂SnO2前驱体分散液,300-500 rpm旋转3-5 s,2000-4000 rpm旋转20-40 s。
4. 根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S2中,具体操作方法如下:将三氟乙酸钾添加到乙酸乙酯溶剂中,浓度为0.1-1.0 mg/ml,搅拌至完全溶解,在SnO2电子传输层表面旋涂三氟乙酸钾前驱体溶液,300-500 rpm旋转3-5 s,2000-4000 rpm旋转20-40 s。
5.根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S2中,旋涂三氟乙酸钾前驱体溶液前,先采用紫外臭氧预处理SnO2电子传输层5-15min。
6. 根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S3中,具体操作如下:将CsI,PbI2(DMSO)络合物,PbBr2(DMSO)络合物和Pb(Ac)2添加剂按照摩尔比1:0.5:0.5:0.02混合添加到体积比1:3-4的二甲基亚砜和二甲基甲酰胺混合溶剂中,摩尔浓度为0.9-1.1 M,搅拌至完全溶解得到CsPbI2Br前驱体溶液;在三氟乙酸钾氟化界面层表面旋涂CsPbI2Br前驱体溶液,1000-1500 rpm旋转10-15s,3000-4000 rpm旋转30-40 s,在旋涂结束前的15-20 s,滴加绿色反溶剂乙酸乙酯。
7. 根据权利要求1所述的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S4中,90-120 oC退火10-30 min得到碳电极。
8.如权利要求1-7任意一项所述制备方法获得的氟化界面层修饰的低温碳基无机钙钛矿太阳能电池在太阳能电池领域的应用。
CN202210540492.8A 2022-05-17 2022-05-17 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用 Active CN115000209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210540492.8A CN115000209B (zh) 2022-05-17 2022-05-17 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210540492.8A CN115000209B (zh) 2022-05-17 2022-05-17 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN115000209A CN115000209A (zh) 2022-09-02
CN115000209B true CN115000209B (zh) 2024-04-02

Family

ID=83027944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210540492.8A Active CN115000209B (zh) 2022-05-17 2022-05-17 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN115000209B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360308B (zh) * 2022-10-17 2023-01-24 中国华能集团清洁能源技术研究院有限公司 一种钙钛矿太阳能电池的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158391A (ja) * 2002-11-08 2004-06-03 Sharp Corp 有機電界発光素子
CN106505151A (zh) * 2015-09-07 2017-03-15 三星显示有限公司 有机发光装置
CN106796992A (zh) * 2014-10-21 2017-05-31 住友化学株式会社 有机光电转换元件及其制造方法
JP2019068056A (ja) * 2017-09-28 2019-04-25 東レ株式会社 光電変換素子
CN109980109A (zh) * 2017-12-28 2019-07-05 深圳Tcl工业研究院有限公司 Qled器件及其制备方法
JP2019212702A (ja) * 2018-06-01 2019-12-12 コニカミノルタ株式会社 太陽電池及びその製造方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
JP2021057579A (ja) * 2019-09-30 2021-04-08 東レ株式会社 有機半導体組成物、光起電力素子、光電変換デバイスおよび光起電力素子の製造方法
CN112635675A (zh) * 2020-12-16 2021-04-09 华南理工大学 一种基于3-噻吩乙酸界面修饰层的钙钛矿太阳能电池及其制备方法
CN113809271A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912435B2 (en) * 2009-12-14 2014-12-16 Konica Minolta Holdings, Inc. Organic photoelectric conversion element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158391A (ja) * 2002-11-08 2004-06-03 Sharp Corp 有機電界発光素子
CN106796992A (zh) * 2014-10-21 2017-05-31 住友化学株式会社 有机光电转换元件及其制造方法
CN106505151A (zh) * 2015-09-07 2017-03-15 三星显示有限公司 有机发光装置
JP2019068056A (ja) * 2017-09-28 2019-04-25 東レ株式会社 光電変換素子
CN109980109A (zh) * 2017-12-28 2019-07-05 深圳Tcl工业研究院有限公司 Qled器件及其制备方法
JP2019212702A (ja) * 2018-06-01 2019-12-12 コニカミノルタ株式会社 太陽電池及びその製造方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
JP2021057579A (ja) * 2019-09-30 2021-04-08 東レ株式会社 有機半導体組成物、光起電力素子、光電変換デバイスおよび光起電力素子の製造方法
CN113809271A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN112635675A (zh) * 2020-12-16 2021-04-09 华南理工大学 一种基于3-噻吩乙酸界面修饰层的钙钛矿太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cesium-Trifluoroacetate Doped MA/FA-Based Perovskite Solar Cells with Inverted Planar Structure;CHUNXIA WU, LIANG ZHU, YUNFANG ZHANG, JUN DAI;Journal of ELECTRONIC MATERIALS;20201001;第49卷(第12期);全文 *
富勒烯材料在钙钛矿太阳能电池中的应用;叶小琴;闻沚玥;沈王强;卢兴;;化工学报;20200630(第06期);全文 *

Also Published As

Publication number Publication date
CN115000209A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN112635675B (zh) 一种基于3-噻吩乙酸界面修饰层的钙钛矿太阳能电池及其制备方法
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN115000209B (zh) 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用
CN113437226A (zh) 4-吡啶甲胺溴优化锡铅混合钙钛矿太阳能电池的制备方法
CN114284439A (zh) 一种在高湿度环境下制备CsPbI3钙钛矿薄膜及其高效太阳能电池的方法及应用
CN115188893A (zh) 一种钙钛矿太阳能电池及制备方法
CN114566597A (zh) 一种提高钙钛矿太阳电池环境稳定性的界面修饰方法
CN112687808A (zh) 一种基于硫酸盐掺杂的高稳定钙钛矿太阳能电池
CN115000185B (zh) 一种氟化铵盐钝化的碳基无机钙钛矿太阳能电池及其制备方法
WO2024098538A1 (zh) 通过在钙钛矿体相掺杂磺酰基分子制备太阳能电池的方法
CN115000210A (zh) 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法
CN112420877B (zh) 一种以卤素化氧化石墨烯为添加剂及空穴传输层的钙钛矿太阳能电池及其制备方法
CN115101681A (zh) 一种锡基钙钛矿电池的制备方法
CN110611031A (zh) 一种高光电转化率钙钛矿电池及其制备方法
Wan et al. Efficient Tin–Lead Perovskite Solar Cells with a Ultrawide Usage Windows of Precursor Solution Opened by SnF2
CN115117254B (zh) 钙钛矿太阳电池的改性方法和高效稳定钙钛矿太阳电池及其制备方法
CN116507143B (zh) 一种空穴传输层薄膜及其应用
CN112993168B (zh) 一种无退火效应的二氧化锡多孔结构钙钛矿光伏电池及其制备方法
CN114944456B (zh) 一种钙钛矿太阳能电池及其制备方法
CN113257955A (zh) 一种在高湿环境具有高稳定性及光电性能的全无机钙钛矿碳基太阳能电池的制备方法
CN115954399A (zh) 埋底添加剂修饰的碳基无机钙钛矿太阳能电池及制备方法
CN116847697A (zh) 一种基于绿色添加剂制备高效钙钛矿太阳能电池的方法
CN115020597A (zh) 一种基于染料界面层提升钙钛矿太阳能电池性能的方法
Yekani et al. Synergetic interfacial conductivity modulation dictating hysteresis evolution in perovskite solar cells under operation
CN117295344A (zh) 一种三氟硼酸盐掺杂的有机-无机杂化钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant