CN115000210A - 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法 - Google Patents

一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN115000210A
CN115000210A CN202210544104.3A CN202210544104A CN115000210A CN 115000210 A CN115000210 A CN 115000210A CN 202210544104 A CN202210544104 A CN 202210544104A CN 115000210 A CN115000210 A CN 115000210A
Authority
CN
China
Prior art keywords
layer
interface
zno
solar cell
based inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210544104.3A
Other languages
English (en)
Inventor
台启东
张丹
张祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202210544104.3A priority Critical patent/CN115000210A/zh
Publication of CN115000210A publication Critical patent/CN115000210A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池的技术领域,具体涉及一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法,从下到上依次为导电玻璃层、电子传输层、界面修饰层、钙钛矿吸光层和碳电极层,所述界面修饰层为乙二胺四乙酸或其衍生物掺杂的ZnO。本发明利用乙二胺四乙酸或其衍生物掺杂的ZnO作为界面修饰层,钝化了ZnO自身缺陷;作为界面修饰层,缩小了电子传输层和钙钛矿吸光层之间的界面能级差,抑制了界面电荷非辐射复合,进而促进了电子传输层和钙钛矿吸光层之间电子的提取和传输;此外,乙二胺四乙酸或其衍生物掺杂的ZnO作为界面修饰层也提高了钙钛矿吸光层的薄膜质量;最终,碳基无机钙钛矿太阳能电池的光电转换效率和稳定性均有所提升。

Description

一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池的技术领域,具体涉及一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法。
背景技术
由于吸光系数高,激子束缚能小,载流子迁移率高等优异的光电性质,有机-无机杂化钙钛矿太阳能电池引起科研工作者的广泛关注。从2009年发展到现在,其认证的光电转换效率(PCE)已经达到25.7%。然而有机-无机杂化钙钛矿中甲基铵和甲脒等有机组分易挥发且热不稳定;金属电极易受离子迁移的影响;空穴传输层(HTL)中的吸湿性添加剂(例如,锂双(三氟甲烷磺酰)-酰亚胺和4-叔丁基吡啶等)也会加速器件退化。此外,金属电极和HTL的成本相对较高。上述缺点严重阻碍了有机-无机杂化钙钛矿太阳能电池的商业化应用。由于缺少有机组分,制备成本低,并且疏水性和热稳定性好,碳基无机钙钛矿太阳能电池被广泛研究。遗憾地是,其PCE远低于基于金属电极/HTL的器件。为了解决该问题,需要优化器件结构和材料性能。
作为碳基无机钙钛矿太阳能电池的重要组成部分,电子传输层必须具有较高的电子迁移率和理想的能带结构,且其表面性质很大程度上决定上层钙钛矿吸光层的薄膜质量。ZnO经常被用做电子传输层与钙钛矿吸光层之间的界面修饰层,但是其自身缺陷容易导致严重的界面电荷复合过程。
发明内容
本发明的目的之一在于提供一种界面修饰的碳基无机钙钛矿太阳能电池,降低界面修饰层自身缺陷,调控电子传输层与钙钛矿吸光层之间的界面能级排列,抑制界面电荷非辐射复合,促进电子的提取和传输,提高钙钛矿吸光层的薄膜质量,最终提升碳基无机钙钛矿太阳能电池的PCE和稳定性。
本发明的目的之二在于提供一种界面修饰的碳基无机钙钛矿太阳能电池的制备方法,制备工艺简便,易于调节。
本发明实现目的之一所采用的方案是:一种界面修饰的碳基无机钙钛矿太阳能电池,从下到上依次为导电玻璃层、电子传输层、界面修饰层、钙钛矿吸光层和碳电极层,所述界面修饰层为乙二胺四乙酸(EDTA)或其衍生物掺杂的ZnO。
优选地,所述导电玻璃层为ITO导电玻璃或FTO导电玻璃,电子传输层为SnO2或TiO2,钙钛矿吸光层为CsPbI2Br。
优选地,所述电子传输层的厚度为20-30nm,界面修饰层的厚度为5-10nm。
一般来说导电玻璃层(2.0-2.2mm)、电子传输层(20-30nm)、界面修饰层(5-10nm)、钙钛矿吸光层(350-400nm)和碳电极层(20-25μm)。
优选地,所述乙二胺四乙酸的衍生物为乙二胺四乙酸二钠(EDTA-Na)、乙二胺四乙酸二钾(EDTA-K)和乙二胺四乙酸二铵(EDTA-NH4)中的任意一种。
本发明实现目的之二所采用的方案是:一种所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,包括以下步骤:
S1、在清洁处理后的ITO导电玻璃表面旋涂SnO2前驱体分散液,退火后得到电子传输层;
S2、在步骤S1得到的电子传输层表面旋涂添加剂掺杂的ZnO前驱体溶液,添加剂为乙二胺四乙酸或其衍生物,退火后得到界面修饰层;
S3、在步骤S2得到的界面修饰层表面旋涂钙钛矿吸光层前驱体溶液,退火后得到钙钛矿吸光层;
S4、将碳浆涂覆至钙钛矿吸光层表面,退火后形成碳电极层;
经过S1-S4即得到所述界面修饰的碳基无机钙钛矿太阳能电池。
优选地,所述步骤S1中,SnO2前驱体分散液配制方法如下:将SnO2纳米颗粒或胶体分散在水中,搅拌均匀,得到浓度为2wt%-10wt%的SnO2前驱体分散液。
优选地,所述步骤S2中,乙二胺四乙酸或其衍生物掺杂的ZnO前驱体溶液的配制方法如下:将二水乙酸锌,乙醇胺与乙二醇甲醚混合,搅拌至完全溶解,得到浓度为0.02-0.05gml-1的ZnO前驱体溶液;在上述ZnO前驱体溶液中加入添加剂,引入乙二胺四乙酸或乙二胺四乙酸二钠、乙二胺四乙酸二钾、乙二胺四乙酸二铵中的至少一种,添加剂的浓度为0.1-0.6mg ml-1,搅拌至完全溶解,得到添加剂掺杂的ZnO前驱体溶液。
优选地,所述步骤S3中,钙钛矿吸光层前驱体溶液的制备:将摩尔比为2:1:1的CsI、PbI2和PbBr2溶解至二甲基甲酰胺和二甲基亚砜混合溶剂中,搅拌至完全溶解,得到浓度为0.9-1.2M的CsPbI2Br钙钛矿吸光层前驱体溶液。
优选地,所述二甲基甲酰胺和二甲基亚砜混合溶剂的体积比为7:2-4。
优选地,所述步骤S1中,旋涂条件为低速500-1000rpm旋转5-10s,高速2500-4000rpm旋转20-30s,退火条件为40-150℃退火30-60min;所述步骤S2中,旋涂条件为低速500-1000rpm旋转3-10s,高速4000-5000rpm旋转30-60s,退火条件为40-150℃退火30-60min;所述步骤S3中,旋涂的条件为低速500-1000rpm旋转5-15s,高速2000-4000rpm旋转20-35s,退火条件为低温40-60℃退火2-5min,高温160-180℃退火10-30min;所述步骤S4中,退火条件为100-130℃退火10-30min。
本发明具有以下优点和有益效果:
本发明的太阳能电池利用EDTA或其衍生物掺杂的ZnO作为界面修饰层:首先,EDTA或其衍生物掺杂ZnO钝化了ZnO自身缺陷;其次,EDTA或其衍生物掺杂的ZnO作为界面修饰层,缩小了电子传输层和钙钛矿吸光层之间的界面能级差,抑制了界面电荷非辐射复合,进而促进了电子传输层和钙钛矿吸光层之间电子的提取和传输;此外,EDTA或其衍生物掺杂的ZnO作为界面修饰层也提高了钙钛矿吸光层的薄膜质量;最终,碳基无机钙钛矿太阳能电池的光电转换效率和稳定性均有所提升。
本发明的制备方法使用EDTA或其衍生物掺杂的ZnO修饰电子传输层与钙钛矿吸光层之间的界面,能够钝化ZnO界面修饰层自身缺陷,提高钙钛矿吸光层的薄膜质量,调控界面能级结构。此外,碳电极取代昂贵的HTL和贵金属电极,简化了制备工艺,降低了商业化成本。
附图说明
图1为实施例1-4及对比例制备的碳基无机钙钛矿太阳能电池的器件结构示意图;
图2(a)-(e)为实施例1-4及对比例中界面修饰层的原子力显微镜(AFM)图;图2(f)-(j)为界面修饰层的钙钛矿溶液接触角(将钙钛矿溶液滴到界面修饰层)图;
图3为实施例1-4及对比例中界面修饰层的X射线光电子能谱(XPS)O 1s图;
图4(a)-(e)为实施例1-4及对比例中钙钛矿吸光层的表面扫描电子显微镜(SEM)图;图4(f)-(j)为ITO导电玻璃层,SnO2电子传输层,界面修饰层和CsPbI2Br钙钛矿吸光层的截面SEM图;
图5(a)为实施例1-4及对比例中钙钛矿吸光层的X射线衍射(XRD)图;图5(b)为XRD图中100/110和200/110峰强度比;
图6为实施例1-4及对比例中钙钛矿吸光层的稳态光致发光(PL)图;
图7为实施例1-4及对比例中碳基无机钙钛矿太阳能电池中所用材料的能级结构示意图;
图8(a)(b)为实施例1-4及对比例的电流密度-电压(J-V)特性曲线和湿度稳定性图。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1
步骤S1,将商业化ITO导电玻璃依次用去离子水、丙酮、异丙醇和乙醇超声清洗20min,使用氮气枪对其干燥处理后备用;
步骤S2,将SnO2胶体(产品规格:15%,厂家:Alfa Aesar(阿法埃莎))和去离子水混合,在搅拌台上常温搅拌30min得到浓度为3wt%的SnO2前驱体分散液,使用前无需过滤。然后将其旋涂在紫外臭氧处理10min的ITO导电玻璃上,旋涂条件为低速500rpm旋转10s,高速4000rpm旋转30s,150℃退火30min得到电子传输层。
步骤S3,将0.15g Zn(Ac)2·2H2O(二水乙酸锌),5mL C3H8O2(乙二醇甲醚),137.5μLC2H7NO(乙醇胺)混合,然后加入EDTA添加剂,在搅拌台上室温搅拌10h至完全溶解,得到ZnO/E前驱体溶液,其中EDTA的浓度为0.2mg ml-1。使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理10min的电子传输层上,旋涂条件为低速500rpm旋转3s,高速4000rpm旋转40s,150℃退火30min得到ZnO/E界面修饰层。
步骤S4,将312mg CsI、277mg PbI2和220mg PbBr2溶解至1ml DMF和DMSO的混合溶剂中,DMF和DMSO混合溶剂的体积比为7:3,在搅拌台上70℃搅拌8h至完全溶解,得到浓度为1.2M的钙钛矿前驱体溶液,使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理15min的ZnO/E上,旋涂的条件为低速1000rpm旋转15s,高速3000rpm旋转30s,低温40℃退火2min,高温160℃退火10min得到钙钛矿吸光层。
步骤S5,将商业化碳浆(厂家:Jujo Printing Supplies&Technology(Pinghu)Co.,Ltd.)刮涂至钙钛矿吸光层上,100℃退火10min形成碳电极层。
实施例2
本实施例与实施例1的区别在于,步骤S3使用EDTA-Na掺杂ZnO作为界面修饰层。
步骤S3,将0.15g Zn(Ac)2·2H2O,5mL C3H8O2,137.5μL C2H7NO混合,然后加入EDTA-Na添加剂,在搅拌台上室温搅拌10h至完全溶解,得到ZnO/E-Na前驱体溶液,其中EDTA-Na的浓度为0.3mg ml-1。使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理10min的电子传输层上,旋涂条件为低速500rpm旋转3s,高速4000rpm旋转40s,150℃退火30min得到ZnO/E-Na界面修饰层。
实施例3
本实施例与实施例1的区别在于,步骤S3使用EDTA-K掺杂ZnO作为界面修饰层。
步骤S3,将0.15g Zn(Ac)2·2H2O,5mL C3H8O2,137.5μL C2H7NO混合,然后加入EDTA-K添加剂,在搅拌台上室温搅拌10h至完全溶解,得到ZnO/E-K前驱体溶液,其中EDTA-K的浓度为0.4mg ml-1。使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理10min的电子传输层上,旋涂条件为低速500rpm旋转3s,高速4000rpm旋转40s,150℃退火30min得到ZnO/E-K界面修饰层。
实施例4
本实施例与实施例1的区别在于,步骤S3使用EDTA-NH4掺杂ZnO作为界面修饰层。
步骤S3,将0.15g Zn(Ac)2·2H2O,5mL C3H8O2,137.5μL C2H7NO混合,然后加入EDTA-NH4添加剂,在搅拌台上室温搅拌10h至完全溶解,得到ZnO/E-NH4前驱体溶液,其中EDTA-NH4的浓度为0.2mg ml-1。使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理10min的电子传输层上,旋涂条件为低速500rpm旋转3s,高速4000rpm旋转40s,150℃退火30min得到ZnO/E-NH4界面修饰层。
对比例
对比例与实施例1-4的区别在于,步骤S3使用ZnO作为界面修饰层,无掺杂。
步骤S3,将0.15g Zn(Ac)2·2H2O,5mL C3H8O2,13.5μL C2H7NO混合,在搅拌台上室温搅拌10h至完全溶解,得到ZnO前驱体溶液,使用前用0.22μm PTFE过滤器过滤。然后旋涂在紫外臭氧处理10min的电子传输层上,旋涂条件为低速500rpm旋转3s,高速4000rpm旋转40s,150℃退火30min得到ZnO界面修饰层。
图1为实施例1-4及对比例制备的碳基无机钙钛矿太阳能电池的器件结构示意图。
图2(a)-(e)为实施例1-4及对比例经过步骤S1,S2,S3制备的薄膜的AFM图;图2(f)-(j)为实施例1-4及对比例经过步骤S1,S2,S3制备的薄膜的钙钛矿吸光层前驱体溶液接触角(将钙钛矿吸光层前驱体溶液滴到界面修饰层)图。
经过EDTA或其衍生物掺杂,ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的粗糙度由对比例的1.17nm分别降低至1.04,1.03,0.99和0.91nm,且接触角由对比例的39°分别降低至31°,28°,25°和20°。减小的粗糙度和接触角会影响钙钛矿吸光层的成核和结晶过程,进而提高钙钛矿吸光层的薄膜质量。
图3为实施例1-4及对比例经过步骤S1,S2,S3制备的薄膜的XPS O 1s的拟合图。表1总结了晶格氧(OM)和氧缺陷(OV和OOH)的比例。可以看出,经过EDTA或其衍生物掺杂后,ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层中晶格氧(OM)的比例增多,氧缺陷(OV和OOH)的比例降低。该结果表明EDTA、EDTA-Na、EDTA-K和EDTA-NH4掺杂ZnO有利于钝化ZnO界面修饰层自身缺陷。
图4(a)-(e)为实施例1-4及对比例经过步骤S1,S2,S3,S4制备钙钛矿吸光层的表面SEM图,可以看出,基于ZnO界面修饰层的钙钛矿吸光层的表面凹凸不平,晶界不明显。相反,基于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的钙钛矿吸光层的表面呈现出更加平整的形貌,且晶界明显,晶粒增大。图4(a)-(e)内部插图为实施例1-4及对比例经过步骤S1,S2,S3,S4制备的钙钛矿吸光层的水接触角图。受ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的影响,钙钛矿吸光层变得更加疏水,这对进一步提升器件的湿度稳定性是有利的。
图4(f)-(j)为实施例1-4及对比例经过步骤S1,S2,S3,S4制备样品的截面SEM图。与ZnO界面修饰层对比,ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层与钙钛矿吸光层之间的接触更加紧密、无缝隙。该结果有利于抑制界面电荷非辐射复合,进而促进电子的提取和传输。
图5(a)为实施例1-4及对比例经过步骤S1,S2,S3,S4制备的钙钛矿吸光层的XRD图。样品均在14.7°、20.9°和29.6°处显示出三个明显的XRD衍射峰,分别对应于CsPbI2Br(100)、(110)和(200)晶面。对比几个样品可以看出,XRD衍射峰的峰位没有移动,说明ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层不会改变钙钛矿吸光层的晶体结构。但是基于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的钙钛矿吸光层呈现出增强的XRD衍射峰强度,表明其结晶性有所提高。图5(b)为XRD图谱中100/110和200/110峰强度比,与ZnO界面修饰层对比,基于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的钙钛矿吸光层100/110和200/110峰的强度比值增大,说明其具有较好的取向性。
图6为实施例1-4和对比例经过步骤S1,S2,S3,S4制备的样品的PL图。经过EDTA或其衍生物掺杂后,钙钛矿吸光层呈现更快的PL淬取。该结果说明ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层具有更快的电子提取和传输能力,这对抑制界面电荷非辐射复合是有利的。
图7为实施例1-4和对比例制备的碳基无机钙钛矿太阳能电池中所用材料的能级结构示意图,从图中可以看出,纯ZnO界面修饰层与钙钛矿吸光层之间存在较大的能级差,这不利于电子的提取和传输。引入ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层来调控界面能级结构,形成了比较理想的阶梯式能级结构,这有利于促进电子的提取和传输。
图8(a)为实施例1-4和对比例制备的碳基无机钙钛矿太阳能电池的J-V特性曲线图,图8(b)为实施例1-4和对比例制备的碳基无机钙钛矿太阳能电池的湿度稳定性图。
图8(a)碳基无机钙钛矿太阳能电池的有效活性面积为:0.09cm2,图8(b)测试环境为室外环境(25-35℃,20-30%相对湿度),所有器件均未封装。
表2为图8(a)J-V特性曲线图对应的各项光电性能参数,包括:开路电压(Voc)、短路电流密度(Jsc)、填充因子(FF)和PCE。
从图8(a)和表2中可以看出,基于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的器件PCE均有所提高。特别是基于ZnO/E-NH4界面修饰层的器件PCE达到14.58%,远远超过基于ZnO界面修饰层的器件PCE(12.01%)。提高的PCE主要归结于Voc、Jsc和FF的同时提高。
从图8(b)可以看出,老化720h后,基于ZnO界面修饰层的器件PCE衰减至初始值的58%;基于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层的器件PCE均保持原始值的75%以上。该结果表明EDTA、EDTA-Na、EDTA-K和EDTA-NH4掺杂ZnO有利于提高器件的湿度稳定性。提升的湿度稳定性归结于ZnO/E、ZnO/E-Na、ZnO/E-K、ZnO/E-NH4界面修饰层自身缺陷的钝化和钙钛矿吸光层薄膜质量的提高。
表1实施例1-4及对比例中经过步骤S1,S2,S3制备的薄膜的晶格氧(OM)和氧缺陷(OV和OOH)的比例
Figure BDA0003649148220000071
表2图8(a)J-V特性曲线图对应的各项光电性能参数
V<sub>oc</sub>(V) J<sub>sc</sub>(mA cm<sup>-2</sup>) FF PCE(%)
ZnO 1.207 14.76 0.674 12.01
ZnO/E 1.228 14.85 0.723 13.18
ZnO/E-Na 1.250 14.90 0.743 13.84
ZnO/E-K 1.255 14.95 0.743 13.94
ZnO/E-NH<sub>4</sub> 1.272 14.98 0.765 14.58
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (10)

1.一种界面修饰的碳基无机钙钛矿太阳能电池,其特征在于:从下到上依次为导电玻璃层、电子传输层、界面修饰层、钙钛矿吸光层和碳电极层,所述界面修饰层为乙二胺四乙酸或其衍生物掺杂的ZnO。
2.根据权利要求1所述的界面修饰的碳基无机钙钛矿太阳能电池,其特征在于:所述导电玻璃层为ITO导电玻璃或FTO导电玻璃,电子传输层为SnO2或TiO2,钙钛矿吸光层为CsPbI2Br。
3.根据权利要求1所述的界面修饰的碳基无机钙钛矿太阳能电池,其特征在于:所述电子传输层的厚度为20-30nm,界面修饰层的厚度为5-10nm。
4.根据权利要求1所述的界面修饰的碳基无机钙钛矿太阳能电池,其特征在于:所述乙二胺四乙酸的衍生物为乙二胺四乙酸二钠、乙二胺四乙酸二钾和乙二胺四乙酸二铵中的任意一种。
5.一种如权利要求1-4任一项所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:
S1、在清洁处理后的ITO导电玻璃表面旋涂SnO2前驱体分散液,退火后得到电子传输层;
S2、在步骤S1得到的电子传输层表面旋涂添加剂掺杂的ZnO前驱体溶液,添加剂为乙二胺四乙酸或其衍生物,退火后得到界面修饰层;
S3、在步骤S2得到的界面修饰层表面旋涂钙钛矿吸光层前驱体溶液,退火后得到钙钛矿吸光层;
S4、将碳浆涂覆至钙钛矿吸光层表面,退火后形成碳电极层;
经过S1-S4即得到所述界面修饰的碳基无机钙钛矿太阳能电池。
6.根据权利要求5所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S1中,SnO2前驱体分散液配制方法如下:将SnO2纳米颗粒或胶体分散在水中,搅拌均匀,得到浓度为2wt%-10wt%的SnO2前驱体分散液。
7.根据权利要求5所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S2中,乙二胺四乙酸或其衍生物掺杂的ZnO前驱体溶液的配制方法如下:将二水乙酸锌,乙醇胺与乙二醇甲醚混合,搅拌至完全溶解,得到浓度为0.02-0.05g ml-1的ZnO前驱体溶液;在上述ZnO前驱体溶液中加入添加剂,引入乙二胺四乙酸或乙二胺四乙酸二钠、乙二胺四乙酸二钾、乙二胺四乙酸二铵中的至少一种,添加剂的浓度为0.1-0.6mgml-1,搅拌至完全溶解,得到添加剂掺杂的ZnO前驱体溶液。
8.根据权利要求5所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S3中,钙钛矿吸光层前驱体溶液的制备:将摩尔比为2:1:1的CsI、PbI2和PbBr2溶解至二甲基甲酰胺和二甲基亚砜混合溶剂中,搅拌至完全溶解,得到浓度为0.9-1.2M的CsPbI2Br钙钛矿吸光层前驱体溶液。
9.根据权利要求8所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述二甲基甲酰胺和二甲基亚砜混合溶剂的体积比为7:2-4。
10.根据权利要求5所述的界面修饰的碳基无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤S1中,旋涂条件为低速500-1000rpm旋转5-10s,高速2500-4000rpm旋转20-30s,退火条件为40-150℃退火30-60min;所述步骤S2中,旋涂条件为低速500-1000rpm旋转3-10s,高速4000-5000rpm旋转30-60s,退火条件为40-150℃退火30-60min;所述步骤S3中,旋涂的条件为低速500-1000rpm旋转5-15s,高速2000-4000rpm旋转20-35s,退火条件为低温40-60℃退火2-5min,高温160-180℃退火10-30min;所述步骤S4中,退火条件为100-130℃退火10-30min。
CN202210544104.3A 2022-05-18 2022-05-18 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法 Pending CN115000210A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210544104.3A CN115000210A (zh) 2022-05-18 2022-05-18 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210544104.3A CN115000210A (zh) 2022-05-18 2022-05-18 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN115000210A true CN115000210A (zh) 2022-09-02

Family

ID=83027448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210544104.3A Pending CN115000210A (zh) 2022-05-18 2022-05-18 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN115000210A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827340B (zh) * 2022-11-04 2023-12-21 國立清華大學 鈣鈦礦太陽能電池及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065733A (zh) * 2018-08-08 2018-12-21 华南协同创新研究院 一种全无机钙钛矿太阳能电池及其制备方法
CN110311041A (zh) * 2019-06-25 2019-10-08 宁波大学科学技术学院 一种ZnO修饰的SnO2基钙钛矿太阳能电池及制备方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
CN111740033A (zh) * 2020-06-08 2020-10-02 武汉大学深圳研究院 一种近红外钙钛矿发光二极管及其制备方法
CN113193128A (zh) * 2021-05-24 2021-07-30 电子科技大学 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065733A (zh) * 2018-08-08 2018-12-21 华南协同创新研究院 一种全无机钙钛矿太阳能电池及其制备方法
CN110311041A (zh) * 2019-06-25 2019-10-08 宁波大学科学技术学院 一种ZnO修饰的SnO2基钙钛矿太阳能电池及制备方法
CN110676385A (zh) * 2019-09-19 2020-01-10 北京化工大学 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
CN111740033A (zh) * 2020-06-08 2020-10-02 武汉大学深圳研究院 一种近红外钙钛矿发光二极管及其制备方法
CN113193128A (zh) * 2021-05-24 2021-07-30 电子科技大学 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAODONG LI等: "Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA−ZnO Hybrid Cathode Interlayer", CHEMISTRY OF MATERIALS, vol. 29, no. 10, 23 May 2017 (2017-05-23), pages 4176 - 4180 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827340B (zh) * 2022-11-04 2023-12-21 國立清華大學 鈣鈦礦太陽能電池及其製造方法

Similar Documents

Publication Publication Date Title
Zhang et al. Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells
Hou et al. Efficient quasi-mesoscopic perovskite solar cells using Li-doped hierarchical TiO2 as scaffold of scattered distribution
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN110518128B (zh) 一种aci型二维钙钛矿太阳电池及其制备方法
CN112349848B (zh) 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
CN108281553B (zh) 一种聚3,4-乙烯二氧噻吩包覆氧化钨纳米棒、制备方法及其应用
CN115000210A (zh) 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法
CN114883493A (zh) 一种基于三维/二维钙钛矿太阳能电池及其制备方法
Huang et al. Efficient and stable hybrid conjugated polymer/perovskite quantum dot solar cells
Han et al. Solution‐Processable Zinc Oxide for Printed Photovoltaics: Progress, Challenges, and Prospect
Wang et al. Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment
CN112201756A (zh) 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN115697010A (zh) 一种多功能添加剂修饰的倒置钙钛矿太阳能电池
CN113140680B (zh) 一种HEMA掺杂的CsPbI2Br太阳能电池及其制备方法
CN115000209A (zh) 一种氟化界面层修饰的低温碳基无机钙钛矿太阳能电池、其制备方法及应用
CN115036427A (zh) 基于金刚烷衍生物的埋底界面缺陷钝化与应力释放及其钙钛矿太阳能电池制备方法
CN115000185A (zh) 一种氟化铵盐钝化的碳基无机钙钛矿太阳能电池及其制备方法
Yang et al. Effective passivation of defects in high-performance tin oxide-based perovskite solar cells using guanidinium phosphate additives
Liu et al. Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots
Amrollahi Bioki et al. In-situ additive engineering of PbI2 framework by dopamine for improving performance of mesostructure CH3NH3PbI3 solar cells
Xu et al. Ultrathin Dimethylammonium Iodide Matrix: Suppressing Octahedral Distortion and Reconstructing Surface Ligands for Efficient CsPbI3 Quantum Dot Photovoltaics
Mukametkali et al. The effect of the CH3NH3PbClxI3-x perovskite layer thickness and grain size on its electrophysical and optical properties
Zhao et al. Modulating Buried Interface with Natural Chemical VB2 for TiO2 Based Planar Perovskite Solar Cells
CN118139502A (zh) 一种基于b位镧离子掺杂的高效稳定钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination