CN112349848B - 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法 - Google Patents

对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法 Download PDF

Info

Publication number
CN112349848B
CN112349848B CN202011097083.2A CN202011097083A CN112349848B CN 112349848 B CN112349848 B CN 112349848B CN 202011097083 A CN202011097083 A CN 202011097083A CN 112349848 B CN112349848 B CN 112349848B
Authority
CN
China
Prior art keywords
perovskite
film
substrate
preparation
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011097083.2A
Other languages
English (en)
Other versions
CN112349848A (zh
Inventor
黄仕华
章磊
池丹
康桥
李林华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jietai New Energy Technology Co ltd
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202011097083.2A priority Critical patent/CN112349848B/zh
Publication of CN112349848A publication Critical patent/CN112349848A/zh
Application granted granted Critical
Publication of CN112349848B publication Critical patent/CN112349848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明公开了一种对苯基二甲基碘化胺钝化的锡铅混合钙钛矿太阳能电池的制备方法,首先制备FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液,在清洗后的ITO玻璃上旋涂(3,4‑乙烯二氧噻吩)‑聚苯乙烯磺酸水溶液,获得PEDOT:PSS膜;把ITO基片转移至氮气保护的手套箱中,将FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液旋涂至PEDOT:PSS膜的上面,将氯苯滴到该衬底上,将ITO基片转移至真空镀膜机中,在钙钛矿薄膜上依次沉积电传输层、界面层浴铜和电极。本发明大幅降低了薄膜的缺陷密度,同时也改善了薄膜的结晶度和形态,制备的电池性能和稳定性得到了显著的提升。

Description

对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法
技术领域
本发明涉及一种太阳能电池的制备方法,尤其涉及一种对对苯基二甲基碘化胺钝化的锡铅混合钙钛矿太阳能电池的制备方法。
背景技术
目前单结纯铅基钙钛矿太阳能电池的转换效率达到了25.5%,但是其光吸收层的带隙为1.5-1.6eV,对于太阳光来说不是理想的光吸收材料。通过调节铅/锡(Pb/Sn)的比例,Pb/Sn混合钙钛矿可以实现1.25eV的窄带隙,它不仅可以应用于单结太阳能电池,而且可以应用于串联太阳能电池。在整体式全钙钛矿串联太阳能电池的结构中,宽带隙的基于Pb的钙钛矿和窄带隙的基于Pb/Sn的混合钙钛矿分别作为顶部和底部子电池的光吸收层,使全钙钛矿串联太阳能电池的效率达到了24.8%。
目前Pb/Sn混合钙钛矿太阳能电池的效率尽管达到了21.1%,但还是低于铅基钙钛矿太阳能电池的效率(25.5%),其主要原因是由于Sn2+容易氧化为Sn4+从而导致开路电压(VOC)较低。二维(2D)混合卤化物钙钛矿,如Ruddlesden-Popper(R-P)相钙钛矿和Dion-Jacobson(D-J)相钙钛矿,可以改善Pb基钙钛矿太阳能电池的性能和稳定性。因为二维钙钛矿中的疏水性有机间隔基阳离子可以将钙钛矿薄膜与水分和氧气分开。此外,由于2D钙钛矿的形成能量较高,抑制了Sn2+向Sn4+的氧化,从而降低了钙钛矿膜的陷阱密度。
发明内容
本发明的目的是提供一种对对苯基二甲基碘化胺钝化的锡铅混合钙钛矿太阳能电池的制备方法,以使得该太阳能电池具有更高的效率和更长的寿命。
本发明的技术方案是这样的:一种对苯基二甲基碘化胺钝化的锡铅混合钙钛矿太阳能电池的制备方法,其特征在于包括以下步骤:
1)FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液制备:
首先将168.5mg的碘化甲脒(FAI)、66.8mg的甲基碘化胺(MAI)、322.7mg的PbI2、260.8mg的SnI2、11.0mg的SnF2加入到750μL的二甲基甲酰胺(DMF)和250μL的二甲基亚砜(DMSO)中,其次将1~4mol%的对苯基二甲基碘化胺(PhDMADI)加入上述混合溶液中;随后,前驱体溶液在60℃下搅拌2h,然后用0.20μm的聚四氟乙烯(PTFE)过滤器过滤,最终获得1.4M的FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液;
2)ITO玻璃清洗:
首先用玻璃洗涤剂对ITO玻璃衬底(15×15mm2)进行漂洗,再用去离子水反复冲洗,然后采用丙酮、异丙醇依次超声处理15min,并用氮气吹干,再在紫外臭氧清洗机中处理30分钟;
3)空穴传输层制备:
在清洗后的ITO玻璃上旋涂(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)水溶液,转速为4000rpm,时间为30s,然后在空气中退火10min,退火温度为140℃,从而获得厚度为20nm的PEDOT:PSS膜;
4)钙钛矿光吸收层制备:
把ITO基片转移至氮气保护的手套箱中,将FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液旋涂至PEDOT:PSS膜的上面,转速为4000rpm,时间为60s,然后在30s时将氯苯(CB)滴到该衬底上,最后,在100℃的温度下进行退火处理10min;
5)电子传输层制备:
将步骤4)的ITO基片转移至真空镀膜机中,采用热蒸镀的方法,在钙钛矿薄膜上依次沉积电传输层C60(30nm)、界面层浴铜BCP(5nm)和电极Ag(100nm)。
本发明通过在Pb/Sn混合钙钛矿的前驱体生长溶液中加入2mol%的对苯基二甲基碘化铵(PhDMADI)作为添加剂,在Pb/Sn混合钙钛矿的晶界处形成了基于D-J相的准2D钙钛矿,形成的2D/3D(二维/三维)异质结结构插入钙钛矿薄膜的晶界中,钝化了晶界的缺陷,大幅降低了薄膜的缺陷密度,同时也改善了薄膜的结晶度和形态,抑制了Sn2+氧化并防止水分和氧气穿过晶界。与未添加PhDMADI的FA0.7MA0.3Pb0.5Sn0.5I3窄带隙Pb/Sn混合钙钛矿太阳能电池(结构示意图如图1所示)相比,电池的性能和稳定性得到了显著的提升,短路电流从30.7mA/cm-2增加到33.1mA/cm-2,开路电压从0.79V增加到0.83V,填充因子从0.69增加到到0.75,转换效率从16.8%增加到20.4%,并在700小时后保持95%(65%,未添加PhDMADI)的原始效率。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为窄带隙Pb/Sn混合钙钛矿太阳能电池结构示意图;
图2为钙钛矿薄膜的SEM图和HRTEM图:
(a)为添加0mol%PhDMADI的SEM图;
(b)为添加2mol%PhDMADI的SEM图;
(c)为添加2mol%PhDMADI的HRTEM图;
图3为不同浓度的PhDMADI添加剂制备的Pb/Sn混合钙钛矿太阳能电池I-V曲线;
图4为不同浓度的PhDMADI添加剂制备的Pb/Sn混合钙钛矿太阳能电池老化实验图。
具体实施方式
本实施例的制备方法如下:
1)FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液制备
首先将168.5mg的碘化甲酰胺(FAI)、66.8mg的甲基碘化胺(MAI)、322.7mg的PbI2、260.8mg的SnI2、11.0mg的SnF2加入到750μL的二甲基甲酰胺(DMF)和250μL的二甲基亚砜(DMSO)中,其次将0~4mol%的PhDMADI加入混合溶液中。随后,前驱体溶液在60℃下搅拌2h,然后用0.20μm的聚四氟乙烯(PTFE)过滤器过滤,最终获得1.4M的FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液。
2)ITO玻璃清洗
首先用玻璃洗涤剂对ITO玻璃衬底(15×15mm2)进行漂洗,再用去离子水反复冲洗,然后采用丙酮、异丙醇依次超声处理15min,并用氮气吹干,最后在紫外臭氧清洗机中处理30分钟。
3)空穴传输层制备
在清洗后的ITO玻璃上旋涂(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)水溶液,转速为4000rpm,时间为30s,然后在空气中退火10min,退火温度为140℃,从而获得厚度为20nm的PEDOT:PSS膜。
4)钙钛矿光吸收层制备
把ITO基片转移至氮气保护的手套箱中,将MFA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液旋涂至PEDOT:PSS膜的上面,转速为4000rpm,时间为60s,然后在30s时将氯苯(CB)滴到该衬底上,最后,在100℃的温度下进行退火处理10min。
5)电子传输层制备
将ITO基片转移至真空镀膜机中,采用热蒸镀的方法,在钙钛矿薄膜上依次沉积电传输层C60(30nm)、界面层浴铜BCP(5nm)和电极Ag(100nm)。
6)测试分析
图2(a)和(b)分别显示了添加有0mol%和2mol%PhDMADI添加剂的钙钛矿前驱体溶液生长的钙钛矿薄膜的扫描电子显微镜(SEM)图,表明薄膜含有微米级的致密钙钛矿晶体,具有明显的晶界。与0mol%添加剂的薄膜相比,在2mol%添加剂的钙钛矿膜的晶界观察到严重的明亮晶体。SEM中的亮区与电绝缘相有关,可能是准2D钙钛矿。晶界处的准2D相可以保护钙钛矿晶体免受潮气并阻止钙钛矿的氧化,因为Sn2+到Sn4+的氧化始于裸露的表面。此外,2mol%添加剂的钙钛矿膜的晶粒尺寸略大于0mol%添加剂的薄膜。较大的钙钛矿颗粒更有利于延缓Sn2+的氧化速率并提高稳定性。采用高分辨率透射电子显微镜(HRTEM)对2mol%添加剂的钙钛矿膜进行了材料相分析,如图2(c)所示,HRTEM图像显示具有不同指纹的精确晶格间距,插图显示了对相应区域的快速傅里叶变换分析。左下角区域中
Figure GDA0003635255510000041
的窄晶面间距对应于3D Pb-Sn钙钛矿晶体的(110)平面,表明薄膜中存在3D钙钛矿相。在右边区域中
Figure GDA0003635255510000042
的较宽的晶面间距可以被标识为准2D钙钛矿(PhDMA)(FA0.7MA0.3)3(Pb0.5Sn0.5)4I13(n=4相),进一步证实了钙钛矿膜中已形成2D结构。为了验证2mol%添加剂的钙钛矿薄膜中的PhDMADI的含量,首先将薄膜溶解在氘代二甲基亚砜(DMSO-d6)溶液中,然后进行质子核磁共振(PMR)光谱测量,在4.15ppm和7.80ppm处观察到了两个信号峰,其分别对应于FA的-CH-质子和PhDMADI的-CH2-质子。通过计算发现薄膜中PhDMADI的实际含量为1.75mol%,这与PhDMADI的2mol%添加量基本吻合。根据PhDMADI的添加量,预计将形成准2D钙钛矿(n=8相)。如果使用具有较大n值(n>8)的准2D钙钛矿前驱体溶液来制备钙钛矿薄膜,则将形成2D/3D异质结结构。
与3D结构相比,2D结构的锡显示出更高的形成能,因此Sn2+的氧化在2D/3D异质结结构中得到了抑制。为了研究2D/3D异质结结构对抑制Sn2+氧化的影响,首先通过在空气中暴露1h,然后用Ar+离子蚀刻1min,对0mol%和2mol%PhDMADI添加剂制备的薄膜进行了X射线光电子能谱(XPS)测量。两种薄膜的表面在487.4eV处显示峰值,与Sn4+有关,表明薄膜表面上的Sn2+通过与空气接触1h而被完全氧化。0mol%PhDMADI添加剂制备而成的薄膜内部和表面的信号峰几乎重叠,表明内部Sn2+也被氧化。但是,对于0mol%PhDMADI添加剂制备而成的薄膜,结合能从487.2eV转变为486.6eV,这表明钙钛矿内部的Sn2+氧化受到抑制。通过计算,0mol%添加剂的薄膜内部Sn2+的精确氧化率为94.1%,而2mol%添加剂的薄膜的Sn4+含量几乎为零。为了进一步研究钙钛矿的表面性能,在0mol%和2mol%添加剂的薄膜的表面上进行了接触角测量,2mol%添加剂的薄膜的水润湿角为30°,高于0mol%添加剂的薄膜的水润湿角(20.9°),说明基于PhDMADI的D-J相钙钛矿的疏水性得到改善,这也表明,PhDMADI的添加剂有利于钙钛矿薄膜的水分和空气的隔离。
为了分析不同浓度的PhDMADI添加剂对Pb/Sn混合钙钛矿太阳能电池性能的影响,在AM1.5的模拟太阳光照射和25℃的温度下测量电池的电流-电压(I-V)特性曲线(如图3所示)。当PhDMADI添加剂的浓度从0mol%逐渐增加到4mol%,电池的效率开始增加然后下降,2mol%时电池的效率最高为20.5%。电池效率的提升主要与开路电压和填充因子的增强有关,主要归因于2D/3D异质结结构对缺陷的钝化作用,从而抑制了晶界的非辐射复合。为了研究具有D-J相2D/3D异质结结构电池的性能稳定性,把未封装的电池放置在氮气手套箱中进行老化测试,如图4所示,在起始的100h内,2mol%添加剂的电池效率略有增加,这可能归因于C60掺杂了碘离子,电池表现出极大的稳定性,在700h后仍保持超过95%的初始效率。但是,0mol%添加剂的电池在300h后降至75%,而在700h后仅保持初始效率的65%。很明显,2mol%添加剂的电池稳定性要比0mol%添加剂的电池好得多。

Claims (1)

1.一种对苯基二甲基碘化胺钝化的锡铅混合钙钛矿太阳能电池的制备方法,其特征在于:包括以下步骤:
1)FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液制备:
首先将168.5mg的碘化甲脒、66.8mg的甲基碘化胺、322.7mg的PbI2、260.8mg的SnI2、11.0mg的SnF2加入到750μL的二甲基甲酰胺和250μL的二甲基亚砜中,其次将1~2mol%的对苯基二甲基碘化胺加入上述混合溶液中;随后,前驱体溶液在60℃下搅拌2h,然后用0.20μm的聚四氟乙烯过滤器过滤,最终获得1.4M的FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液;
2)ITO玻璃清洗:
首先用玻璃洗涤剂对ITO玻璃衬底进行漂洗,再用去离子水反复冲洗,然后采用丙酮、异丙醇依次超声处理15min,并用氮气吹干,再在紫外臭氧清洗机中处理30分钟;
3)空穴传输层制备:
在清洗后的ITO玻璃上旋涂(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸水溶液,转速为4000rpm,时间为30s,然后在空气中退火10min,退火温度为140℃,从而获得厚度为20nm的PEDOT:PSS膜;
4)钙钛矿光吸收层制备:
把ITO基片转移至氮气保护的手套箱中,将FA0.7MA0.3Pb0.5Sn0.5I3钙钛矿前驱体溶液旋涂至PEDOT:PSS膜的上面,转速为4000rpm,时间为60s,然后在30s时将氯苯滴到该衬底上,最后,在100℃的温度下进行退火处理10min;
5)电子传输层制备:
将步骤4)的ITO基片转移至真空镀膜机中,采用热蒸镀的方法,在钙钛矿薄膜上依次沉积电传输层C60、界面层浴铜BCP和电极Ag。
CN202011097083.2A 2020-10-14 2020-10-14 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法 Active CN112349848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011097083.2A CN112349848B (zh) 2020-10-14 2020-10-14 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011097083.2A CN112349848B (zh) 2020-10-14 2020-10-14 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法

Publications (2)

Publication Number Publication Date
CN112349848A CN112349848A (zh) 2021-02-09
CN112349848B true CN112349848B (zh) 2022-07-12

Family

ID=74360700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011097083.2A Active CN112349848B (zh) 2020-10-14 2020-10-14 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法

Country Status (1)

Country Link
CN (1) CN112349848B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506853B (zh) * 2021-06-25 2024-04-12 南京邮电大学 一种异质结锡基钙钛矿薄膜的制备方法和产品
CN115108917B (zh) * 2022-06-01 2024-04-23 湖北文理学院 一种钙钛矿前驱体溶液及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212098A (zh) * 2019-05-15 2019-09-06 暨南大学 一种钙钛矿多晶薄膜的印刷制备方法
CN111029463B (zh) * 2019-10-28 2021-05-18 南开大学 一种钙钛矿薄膜及具有钙钛矿薄膜的太阳能电池
CN111180579B (zh) * 2020-01-16 2023-04-28 苏州大学 一种基于苯乙基氯化胺制备纯相高指数垂直取向的锡基钙钛矿薄膜的方法

Also Published As

Publication number Publication date
CN112349848A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Gao et al. Recent progresses on defect passivation toward efficient perovskite solar cells
CN112349848B (zh) 对苯基二甲基碘化胺钝化的锡铅混合钙钛矿电池的制备方法
Tan et al. Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules
Zhang et al. Thiamine additive engineering enables improved film formation towards high efficiency and moisture stability in perovskite solar cells
CN115241386A (zh) 一种钙钛矿太阳能电池及其制备方法
Yu et al. Heterojunction solar cells based on silicon and composite films of polyaniline and carbon nanotubes
Yao et al. High-efficiency perovskite solar cell based on sequential doping of PTAA
Cao et al. Synergistic effect of multifunctional MXene-nanosheet and naphthoquinone sulfonate toward high-performance perovskite solar cells and modules
CN107845729B (zh) 钙钛矿太阳能电池及其制备方法
CN113725364A (zh) 氢碘酸修饰的锡铅混合钙钛矿太阳能电池及其制备方法
Jin et al. Stable perovskite solar cells with improved hydrophobicity based on bht additive
CN115942842A (zh) 一种钙钛矿太阳能电池及其制备方法
CN113363389B (zh) 一种钙钛矿太阳能电池p/i界面的修饰方法
CN115000210A (zh) 一种界面修饰的碳基无机钙钛矿太阳能电池及其制备方法
He et al. Enhancing open-circuit voltage and charge transportation for ternary organic solar cells with energy cascade double nonfullerene acceptors
Liu et al. Efficient and Stable Inverted Perovskite Solar Cell using Potassium Fluoroborate Doped PEDOT: PSS
CN116918481A (zh) 钙钛矿电池、其制备方法、以及包含其的光伏组件
Yang et al. Lithium Salt‐Doped Organic Conjugated Hole Transport Layer for High‐Performance PbS Quantum Dot Solar Cells
Gotanda et al. Effects of gas blowing condition on formation of mixed halide perovskite layer on organic scaffolds
CN113270548B (zh) 一种反式平面结构钙钛矿太阳能电池及制备方法
CN113764540B (zh) 具有双层钙钛矿光活性层的太阳能电池的制备方法及结构
CN116209289B (zh) 叠层太阳能电池及其制备方法和用电装置
CN117998878A (zh) 钝化层修饰反式钙钛矿太阳能电池及其制备方法
이정훈 Fabrication of high efficiency perovskite solar cells with anionic surfactants
Chiu et al. Role of the ZnO electron transport layer in PbS colloidal quantum dot solar cell yield

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231220

Address after: No. 18, Wenshan Road, Chahe Town, Lai'an County, Chuzhou City, Anhui Province 239200

Patentee after: Chuzhou Jietai New Energy Technology Co.,Ltd.

Address before: 321004 No. 688 Yingbin Road, Zhejiang, Jinhua

Patentee before: ZHEJIANG NORMAL University