CN114999759A - 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺 - Google Patents

一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺 Download PDF

Info

Publication number
CN114999759A
CN114999759A CN202210795488.6A CN202210795488A CN114999759A CN 114999759 A CN114999759 A CN 114999759A CN 202210795488 A CN202210795488 A CN 202210795488A CN 114999759 A CN114999759 A CN 114999759A
Authority
CN
China
Prior art keywords
rare earth
earth permanent
permanent magnet
temperature coefficient
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210795488.6A
Other languages
English (en)
Other versions
CN114999759B (zh
Inventor
叶杨欣
李磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Xinzhou Permanent Magnet Material Co ltd
Original Assignee
Ganzhou Xinzhou Permanent Magnet Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganzhou Xinzhou Permanent Magnet Material Co ltd filed Critical Ganzhou Xinzhou Permanent Magnet Material Co ltd
Priority to CN202210795488.6A priority Critical patent/CN114999759B/zh
Publication of CN114999759A publication Critical patent/CN114999759A/zh
Application granted granted Critical
Publication of CN114999759B publication Critical patent/CN114999759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及稀土永磁材料领域,尤其涉及一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺。本发明提供一种通过在稀土永磁材料中添加其他稀土元素和钙钛矿半金属元素,制备出可以在25~550摄氏度具有低剩磁温度系数的稀土永磁材料,可以满足温度更高的使用要求。技术方案:一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,是一种含有镨钕合金Pr‑Nd、铁Fe、硼B、镝Dy、镧La等;稳定性更好,且成本更低。本发明通过将钙钛矿半金属LaCuFeReO按照一定的比例加入到材料中一起加工,由于钙钛矿半金属LaCuFeReO本身的优点,使得制成的钕铁硼稀土永磁材料能够在25~550摄氏度具有低剩磁温度系数,并满足高温用精密仪器的使用要求。

Description

一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺
技术领域
本发明涉及稀土永磁材料领域,尤其涉及一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺。
背景技术
稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。稀土永磁分为:钐钴(SmCo)永磁体和钕铁硼(NdFeB)永磁体。其中钕铁硼系磁体被称为“永磁王”,是磁性最高的永磁材料。
剩磁全称剩余磁化强度,指的是永磁体经磁化至技术饱和,并去掉外磁场后所保留的表面场Br,剩磁的计算公式:br=φ/n/s,式中:φ是磁通量,n是线圈匝数,s是磁体横截面积。永磁材料的剩磁主要受材料中各个晶粒取向和磁畴结构的影响。剩磁温度系数,顾名思义就是剩磁随温度的变化率,剩磁温度系数的计算公式:
Figure BDA0003731772750000011
式中:Br(T)和Br(T0)分别是在温度T和参考温度点T0的剩磁。剩磁温度系数与永磁体的材料和形状尺寸有关,现有的钕铁硼永磁体虽然磁性能优异,但是现有的钕铁硼永磁体居里温度为585K,约合311.85摄氏度,剩磁温度系数大,温度稳定性较差,温度过高改变会在很大程度上影响其磁性能,而文献中制备的已有的低剩磁温度系数的永磁体只在25~100℃具有低的温度系数,无法用到更高的温度。
为了提高现有钕铁硼永磁体的温度稳定性,降低剩磁温度系数,现通过在稀土永磁材料中添加其他稀土元素和钙钛矿半金属元素,将钕铁硼稀土永磁体压制成特殊形状,能够在25~550摄氏度具有低剩磁温度系数,并满足高温用精密仪器的使用要求。
发明内容
为了克服现有钕铁硼永磁体的温度稳定性低,剩磁温度系数大,居里点低的缺点,本发明的技术问题为:提供一种通过在稀土永磁材料中添加其他稀土元素和钙钛矿半金属元素,制备出可以在25~550摄氏度具有低剩磁温度系数的稀土永磁材料,可以满足温度更高的使用要求。
技术方案:一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,是一种含有镨钕合金Pr-Nd、铁Fe、硼B、镝Dy、镧La、铝Al、铜Cu、铌Nb和钙钛矿半金属的低剩磁温度系数稀土永磁材料。由于钙钛矿半金属的居里温度很高,稳定性更好,且成本更低,随即将钙钛矿半金属按照合适的配比熔入稀土永磁材料当中,从而提高稀土永磁材料的温度稳定性,能够在高温情况下具有低剩磁温度系数。
步骤一、将镨钕合金Pr-Nd、铁Fe、硼B、镝Dy、镧La、铝Al、铜Cu、铌Nb和钙钛矿半金属分别进行粉碎,粉碎后按照质量比21.03:60.24:1.05:1.72:0.83:2.36:0.96:0.12:11.69进行均匀充分混合;
步骤二、将混合均匀后的固体粉末放入真空熔铸炉中,打开真空泵将炉内抽真空,通过真空计调节真空度至0.06~0.08Pa,再通入一定量的氩气使得压力值到达0.07MPa,之后关闭真空泵并停止充气,将熔炉开关打开进行熔铸,熔铸完成后通过冷水进行冷却,从而得到合金熔铸片;
步骤三、将合金熔铸片放入氢碎炉当中,通入高纯度的氢气进行粗破碎,从而得到尺寸约为0.5~0.8mm的粗颗粒粉末,然后将氢碎后的粉末进行搅拌使其均匀混合,搅拌后的粗粉磨倒入气流粉碎机中,再通入氮气,通过气流磨粉碎3~4h,从而得到尺寸在10μm以下的细粉;
步骤四、选择需要的模具,通过自动磁场成型压机将步骤三中制得的细粉进行压制成型,成型后的产品用保鲜膜包起来放入等静压机的液态介质中,要保证产品全部浸入液体中,之后打开等静压机加压,加压到180MPa后,再保压1h,之后将产品取出;
步骤五、将步骤四制得的产品放入烧结炉中,调节炉中的真空度后,通入高纯度氢气,之后进行烧结和回火处理得到具有钙钛矿半金属的钕铁硼稀土永磁材料。
在本发明一个较佳实施例中,步骤一中的钙钛矿半金属是一种兼具高磁相变温度、宽自旋带隙以及大饱和磁矩的钙钛矿半金属LaCuFeReO(LCFRO),该材料的居里温度高达710K。
在本发明一个较佳实施例中,步骤二中熔铸温度为1250~1350℃,同时在进行水冷凝结时要观察冷水的水温变化,且本方法采用的是循环水冷的方式。
在本发明一个较佳实施例中,步骤四中永磁体压制成型时施加磁场,磁场强度为1.5T。
在本发明一个较佳实施例中,步骤四中的液态介质为液压油,并且所选择的模具形状为本发明特有的形状,该形状能够最大化外表面积,并使磁极平行,从而增大磁力,且由于自身磁场的内在相互影响,大大降低了磁体内部随着温度的升高而加剧的分子热运动,从而降低了剩磁温度系数。
在本发明一个较佳实施例中,步骤五烧结时的温度为1100~1200℃,烧结时间为6h,回火处理的温度为550~650℃,时间为4h。
本发明具有以下优点:
1、本发明通过将钙钛矿半金属LaCuFeReO和其他稀土元素按照一定的比例加入到材料中一起加工,由于钙钛矿半金属LaCuFeReO本身的优点,使得制成的钕铁硼稀土永磁材料能够在25~550摄氏度具有低剩磁温度系数,并满足高温用精密仪器的使用要求。
2、本发明通过设计成特殊形状,从而在自身磁场的的内在相互影响之下,降低了因温度升高而加剧的分子热运动,从而大大提高了磁体的居里点,降低了剩磁温度系数。
附图说明
图1为本发明的流程图。
图2为本发明制得的永磁体外形。
具体实施方式
一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,是一种含有镨钕合金Pr-Nd、铁Fe、硼B、镝Dy、镧La、铝Al、铜Cu、铌Nb和钙钛矿半金属的低剩磁温度系数稀土永磁材料。由于钙钛矿半金属的居里温度很高,稳定性更好,且成本更低,随即将钙钛矿半金属按照合适的配比熔入稀土永磁材料当中,从而提高稀土永磁材料的温度稳定性,能够在高温情况下具有低剩磁温度系数。
本发明提供了这样一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,包括以下步骤:
步骤一、将镨钕合金Pr-Nd、铁Fe、硼B、镝Dy、镧La、铝Al、铜Cu、铌Nb和钙钛矿半金属分别进行粉碎,粉碎后按照质量比21.03:60.24:1.05:1.72:0.83:2.36:0.96:0.12:11.69进行均匀充分混合;
步骤二、熔铸之前,先通过向炉内通入高纯氢气检验装置气密性,气密性良好后,将正压立式离心真空感应熔铸炉的上炉盖打开,将步骤一中混合均匀的固体粉末放入熔铸炉中,外接一个开罗茨泵将炉内抽真空,通过真空计实时观察炉内的气压并调节真空度至0.06~0.08Pa,再通入一定量的氩气使得压力值到达0.07MPa,之后关闭真空泵并停止充气,将熔炉开关打开,使其在工作电压40V~65V,工作电流680A~800A,温度1250~1350℃的条件下进行熔铸,当所有材料全部融化后,将材料进行不断的翻转实现反复5次的熔铸,熔铸完成后通过外接的冷水循环冷却装置对熔铸炉进行冷却,冷却时要注意观察水温,如果水温度变高要及时更换冷水,冷却完毕后将合金熔铸片取出;
步骤三、将合金熔铸片放入氢碎炉当中,要注意通过氢碎炉控制面板观察炉内气压并设置相应的参数,打开氢碎炉通入高纯度的氢气进行粗破碎,料吸氢后会使得炉内压力减小,从而继续向炉内吸入氢气,直到炉内气压不再发生变化就表明氢碎完成;之后得到尺寸约为0.5~0.8mm的粗颗粒粉末,然后将氢碎后的粉末进行搅拌使其均匀混合,搅拌后的粗粉磨倒入气流粉碎机中,倒入完成后要关闭进料口,再通入氮气,氮气作为惰性气体可以对粉碎机以及材料结构进行保护,通过气流磨粉碎3~4h,从而得到尺寸在10μm以下的细粉;
步骤四、选择图2所示形状的模具,将步骤三中制得的细粉在称量后倒入自动磁场成型压机,安装下压头,打开压机将细粉压制成型,该形状最大化了外表面积,并且使得磁体本身产生了相互平行的磁场,由于分子由原子构成,原子由核外电子和原子核组成,根据电磁感应永磁体本身产生的磁场会对磁体内部分子施加一定的力,这个力会对分子造成一个牵引力,进而抑制住分子随着温度升高而不断加剧的热运动;压机使用完毕后要及时清扫,否则过多的粉尘会损伤压机内部电路结构,成型后的产品用保鲜膜包起来放入等静压机的液压油中,要保证产品全部浸入液压油中,之后打开等静压机加压,加压到180MPa后,等静压机在压力达到了设定值之后加压灯会熄灭且自动停止加压,之后保压灯开启再保压1h,最后将产品取出;
步骤五、将步骤四制得的产品放入真空烧结炉中,调节炉中的真空度后,通入高纯度的氢气调节至-0.00001~-0.00003Pa,并在1100~1200℃下烧结6h,再进行回火处理,温度为550~650℃,时间为4h,并且回火两次,最后得到具有钙钛矿半金属LaCuFeReO的钕铁硼稀土永磁材料。
上述实施例是提供给熟悉本领域内的人员来实现或使用本发明的,熟悉本领域的人员可在不脱离本发明的发明思想的情况下,对上述实施例做出种种修改或变化,因而本发明的保护范围并不被上述实施例所限,而应该是符合权利要求书提到的创新性特征的最大范围。

Claims (6)

1.一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,包括以下步骤:
步骤一、将镨钕合金Pr-Nd、铁Fe、硼B、镝Dy、镧La、铝Al、铜Cu、铌Nb和钙钛矿半金属分别进行粉碎,粉碎后按照质量比21.03:60.24:1.05:1.72:0.83:2.36:0.96:0.12:11.69进行均匀充分混合;
步骤二、将混合均匀后的固体粉末放入真空熔铸炉中,打开真空泵将炉内抽真空,通过真空计调节真空度至0.06~0.08Pa,再通入一定量的氩气使得压力值到达0.07MPa,之后关闭真空泵并停止充气,将熔炉开关打开进行熔铸,熔铸完成后通过冷水进行冷却,从而得到合金熔铸片;
步骤三、将合金熔铸片放入氢碎炉当中,通入高纯度的氢气进行粗破碎,从而得到尺寸约为0.5~0.8mm的粗颗粒粉末,然后将氢碎后的粉末进行搅拌使其均匀混合,搅拌后的粗粉磨倒入气流粉碎机中,再通入氮气,通过气流磨粉碎3~4h,从而得到尺寸在10μm以下的细粉;
步骤四、选择需要的模具,通过自动磁场成型压机将步骤三中制得的细粉进行压制成型,成型后的产品用保鲜膜包起来放入等静压机的液态介质中,要保证产品全部浸入液体中,之后打开等静压机加压,加压到180MPa后,再保压1h,之后将产品取出;
步骤五、将步骤四制得的产品放入烧结炉中,调节炉中的真空度后,通入高纯度氢气,之后进行烧结和回火处理得到具有钙钛矿半金属的钕铁硼稀土永磁材料。
2.按照权利要求1所述的一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,步骤一中的钙钛矿半金属是一种兼具高磁相变温度、宽自旋带隙以及大饱和磁矩的钙钛矿半金属LaCuFeReO(LCFRO),该材料的居里温度高达710K。
3.按照权利要求1所述的一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,步骤二中熔铸温度为1250~1350℃,同时在进行水冷凝结时要观察冷水的水温变化,且本方法采用的是循环水冷的方式。
4.按照权利要求1所述的一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,步骤四中永磁体压制成型时施加磁场,磁场强度为1.5T。
5.按照权利要求1所述的一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,步骤四中的液态介质为液压油,并且所选择的模具形状为本发明特有的形状,该形状能够最大化外表面积,并使磁极平行,从而增大磁力,且由于自身磁场的内在相互影响,大大降低了磁体内部随着温度的升高而加剧的分子热运动,从而降低了剩磁温度系数。
6.按照权利要求1所述的一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺,其特征是,步骤五烧结时的温度为1100~1200℃,烧结时间为6h,回火处理的温度为550~650℃,时间为4h。
CN202210795488.6A 2022-07-06 2022-07-06 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺 Active CN114999759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210795488.6A CN114999759B (zh) 2022-07-06 2022-07-06 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210795488.6A CN114999759B (zh) 2022-07-06 2022-07-06 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺

Publications (2)

Publication Number Publication Date
CN114999759A true CN114999759A (zh) 2022-09-02
CN114999759B CN114999759B (zh) 2024-07-19

Family

ID=83019131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210795488.6A Active CN114999759B (zh) 2022-07-06 2022-07-06 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺

Country Status (1)

Country Link
CN (1) CN114999759B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582317A (zh) * 2008-05-15 2009-11-18 三环瓦克华(北京)磁性器件有限公司 新型烧结钕铁硼稀土永磁材料及其制造方法
JP2012124189A (ja) * 2010-12-06 2012-06-28 Hitachi Ltd 焼結磁石
CN103247401A (zh) * 2013-05-27 2013-08-14 江西江钨稀有金属新材料有限公司 一种稀土永磁材料
CN104350554A (zh) * 2012-05-30 2015-02-11 株式会社日立制作所 烧结磁铁及其制造方法
CN105118597A (zh) * 2015-09-18 2015-12-02 江苏普隆磁电有限公司 一种高性能钕铁硼永磁体及其生产方法
CN105427994A (zh) * 2015-12-16 2016-03-23 浙江东阳东磁稀土有限公司 一种耐腐蚀的富镧铈烧结钕铁硼磁体及制造方法
WO2016058132A1 (zh) * 2014-10-14 2016-04-21 北京中科三环高技术股份有限公司 一种稀土永磁体的制备方法
CN107919199A (zh) * 2017-10-17 2018-04-17 浙江东阳东磁稀土有限公司 一种超低剩磁温度系数稀土永磁材料及其制备方法
CN113436819A (zh) * 2021-06-30 2021-09-24 杭州科德磁业有限公司 一种低温度系数钐钴烧结永磁材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582317A (zh) * 2008-05-15 2009-11-18 三环瓦克华(北京)磁性器件有限公司 新型烧结钕铁硼稀土永磁材料及其制造方法
JP2012124189A (ja) * 2010-12-06 2012-06-28 Hitachi Ltd 焼結磁石
CN104350554A (zh) * 2012-05-30 2015-02-11 株式会社日立制作所 烧结磁铁及其制造方法
US20150170809A1 (en) * 2012-05-30 2015-06-18 Hitachi, Ltd. Sintered magnet and process for production thereof
CN103247401A (zh) * 2013-05-27 2013-08-14 江西江钨稀有金属新材料有限公司 一种稀土永磁材料
WO2016058132A1 (zh) * 2014-10-14 2016-04-21 北京中科三环高技术股份有限公司 一种稀土永磁体的制备方法
CN105118597A (zh) * 2015-09-18 2015-12-02 江苏普隆磁电有限公司 一种高性能钕铁硼永磁体及其生产方法
CN105427994A (zh) * 2015-12-16 2016-03-23 浙江东阳东磁稀土有限公司 一种耐腐蚀的富镧铈烧结钕铁硼磁体及制造方法
CN107919199A (zh) * 2017-10-17 2018-04-17 浙江东阳东磁稀土有限公司 一种超低剩磁温度系数稀土永磁材料及其制备方法
CN113436819A (zh) * 2021-06-30 2021-09-24 杭州科德磁业有限公司 一种低温度系数钐钴烧结永磁材料的制备方法

Also Published As

Publication number Publication date
CN114999759B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
Nakayama et al. Nd Fe B anisotropic magnet powders produced by the HDDR process
US7175718B2 (en) Rare earth element permanent magnet material
CN108063045A (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
CN106298138A (zh) 稀土永磁体的制造方法
CN109411225B (zh) 一种钐钴磁体的制备工艺
JP2000234151A (ja) R−Fe−B系希土類永久磁石材料
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
CN110491616B (zh) 一种钕铁硼磁性材料及其制备方法
CN114999759A (zh) 一种稀土永磁材料低剩磁温度系数的改善方法及其制备工艺
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
Kuhrt Processing of permanent magnet materials based on rare earth-transition metal intermetallics
WO2021071236A1 (ko) 소결 자석의 제조 방법
CN114944278B (zh) 一种高性能稀土钴基永磁材料及其制备方法和应用
JPS62213102A (ja) 希土類永久磁石の製造方法
CN110875110A (zh) 含vn粒子的钕铁硼磁性材料及其制备方法
JPH0380508A (ja) 希土類磁石の製造方法
CN108735415B (zh) 钐钴磁铁及其制备方法
JPS6233402A (ja) 希土類磁石の製造方法
Trout Permanent Magnets based on the Lanthanides
JPH0562814A (ja) 希土類元素−Fe−B系磁石の製造方法
JPS63114106A (ja) 永久磁石及びその製造方法
JPH0362775B2 (zh)
KR970009409B1 (ko) 소결자석용 사마리움-철계 영구자석 재료의 제조방법
CN117727520A (zh) 一种高磁性耐蚀烧结富铈永磁体及其制备方法
JPH06251917A (ja) 希土類永久磁石

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant